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Abstract 
 
It has been a hot research topic to synthesize maximally permissive controllers with fewest monitors. So far, 
all maximally permissive control models for a well-known benchmark are generalized Petri net, which com-
plicates the system. In addition, they all relied on time-consuming reachability analysis. Uzam and Zhou ap-
ply First-met-bad-marking (FBM) method to the benchmark to achieve a near maximal permissive control 
policy with the advantage of no weighted control (WC) arcs. To improve the state of the art, it is interesting 
to synthesize optimal controller with as few weighted arcs as possible since it is unclear how to optimize the 
control for siphon involving WC arcs, This paper explores the condition to achieve optimal controller with-
out WC and defining a new type of siphon, called α-siphon. If the condition is not met, one can apply the 
technique by Piroddi et al. to synthesize optimal controllers with WC. 
 
Keywords: Petri Nets, Siphons, Controllability, FMS, S3PR 

1. Introduction 
 
Petri nets are a popular and powerful formalism to han-
dle deadlock problems in a resource allocation system 
that is a technical abstraction of contemporary technical 
systems. Petri nets (PN) have been employed to model 
FMS to discover that insufficiently marked siphons cause 
deadlocks [1-4]. 

Uzam and Zhou [5] propose an iterative approach. At 
each iteration, a first-met bad marking (FBM) is singled 
out from the reachability graph of a given Petri net 
model. The objective is to prevent this marking from 
being reached via a place invariant of the Petri net. A 
well-established invariant-based control method is used 
to derive a control place. This process is carried out until 
the net model becomes live. The proposed method is 
generally applicable, easy to use, effective and straight-
forward although its off-line computation is of exponen-
tial complexity. Two FMS are used to show its effec-
tiveness and applicability. 

Although reaching 19 states fewer and 6 more moni-
tors than that the optimal one by Piroddi et al. for a 
well-known benchmark, it does not employ weighted 
control arcs and runs more efficiently. Piroddi et al. [6,7] 

further increase it to the optimal 21581 states using the 
set covering approach. However, the computation is ex-
pensive since the set-covering problem involves a large 
system of inequalities with numerous (the number of 
minimal siphons) variables. Redundant monitors must 
be identified based on the method in [8] during each it-
eration, which entails exponential time complexity. Thus, 
the computational burden remains high and the method is 
not applicable to large FMS. 

Furthermore, unlike that in [5], quite a few control 
arcs are weighted rendering the net to be a general Petri 
net (GPN), which are much harder to analyze than the 
ordinary control net by Uzam and Zhou. The traditional 
MIP method cannot be extended to GPN. Hence, Piroddi 
et al. transformed weighted arcs into ordinary ones, 
which sometimes may cause unnecessary deadlocks as 
mentioned in [5].  

Our approach [9-11] categorizes SMS into basic, 
compound, control and mixture siphons and derives their 
controllability. If one carefully selects a sequence of 
emptiable siphons to add monitors, the number of moni-
tors required can be reduced. Mixture siphons containing 
nonsharing resource places may be emptiable. 

This method does not need to enumerate all minimal 
siphons, nor to compute the reachability graph. Also no 
iterations are required and no need to remove redundant 
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monitors. Hence, the computation burden is much less 
than those by Uzam et al. as well as Piroddi et al. In ad-
dition, no control arcs are weighted. 

However, the resulting model of the well-known S3PR 
reaches fewer (21363) states than the one (21562) in [5], 
but with 11 monitors and 50 control arcs fewer than 19 
monitors and 120 control arcs reported in [5]. 

Without the knowledge of unmarked siphons, Uzam 
and Zhou employ a simplified generalized mutual-exclu- 
sion constraints (GMECs) equivalently setting the num-
ber of tokens in the complementary set [S] of a siphon S 
fewer than the initial number of tokens in S by one. This 
excludes some live states where the number of tokens in 
[S] may equal the initial number of tokens in S. The 
GMEC by Piroddi et al. sets S to be always marked and 
does not cause states to be lost. 

To avoid WC while not losing live states, we need to 
understand why the state loss occurs. An earlier paper 
helps this by proposing one way to list all lost states and 
estimating the number of lost states without reachability 
analysis. Analyzing these state losses, one may find 
some enhancements to reach more states. 

However, it assumes that the siphon responsible for 
the lost states is known a priori. This paper focuses on 
developing theory to find the responsible siphon and the 
conditions where weighted arcs cannot be avoided. 

Without theory, one could waste much time failing to 
reach more states. Thus, it is important to find out the 
condition where more states can be reached. If no more 
states can be reached, one simply stop and satisfy with 
the suboptimal model obtained or to employ weighted 
control arcs to reach more states following the approach 
by Piroddi et al. 

The rest of the paper is organized as follows. Section 2 
presents the preliminaries about Petri nets and S3PR. 
Section 3 presents different types of siphons: basic, 
compound, mixture and α-siphons. It shows that only 
α-siphons siphons are responsible for state losses. Sec-
tion 4 develops the condition for an α-siphon to incur 
state losses. Finally, Section 5 concludes the paper. 
 
2. Preliminaries 
 
A Petri net (or Place/Transition net) is a 3-tuple N = 
(P,T,F), where P = {p 1, p2, ···, pa} is a set of places, T = 
{t1,t2, ··· ,tb} a set of transitions, with P  T ≠  and P ∩ 
T =  and F a mapping from (P × T)  (T × P) to non-
negative integers indicating the weight of directed arcs 
between places and transitions. In the special case that 
the flow relation F maps onto {0, 1}; the Petri net is said 
to be ordinary (otherwise, general). M0 : P → {0,1,2, ···} 
denotes an initial marking whose ith component, M0(pi), 
represents the number of tokens in place pi. N is strongly 
connected iff there is a directed path from any node to 

any other node. A node x in N = (P, T, F) is either a p  
P or a t  T. The post-set of node x is x● = {y  P  T 
|F(x,y) > 0}, and its pre-set ●x = {y  P  T |F(y,x) > 
0}. 

ti is firable if each place pj in ●ti holds no less tokens 
than the weight wj = F(pj,ti). Firing ti under M0 removes 
wj tokens from pj and deposits wk = F(ti,pk) tokens into 
each place pk in ti

●; moving the system state from M0 to 
M1. Repeating this process, it reaches M’ by firing a se-
quence  of transitions. M’ is said to be reachable from 
M0; i.e., M0 [ > M’. 

R(N, M0) is the set of markings reachable from M0. A 
transition t  T is live under M0 if M  R(N, M0), M’ 
 R(N, M), t is firable under M’. A transition t  T is 
dead under M0 if ∄M  R(N, M0) where t is firable. A 
marking M  R(N, M0) is a (total) deadlock if t  T, t is 
dead. A PN is live under M0 if t  T, t is live under M0. 

For a Petri net (N, M0), a non-empty subset S() of 
places is called a siphon (trap) if ●S  S●(●  ●), i.e., 
every transition having an output (input) place in S has  

an input (output) place in S (). If M0(S) = 
 0

p S

M p



 = 0, 
S is called a empty siphon at M0. A minimal siphon does 
not contain a siphon as a proper subset. It is called a 
strict minimal siphon (SMS), if it does not contain a trap. 

A P-vector (place vector) is a column vector Y : P → 
Z indexed by P where Z is the set of integers. For econ-
omy of space, we use p  P L(p)p to denote a P-vector. 
The incidence matrix of N is a matrix [N] : P × T → Z 
indexed by P and T such that [N]+ − [N]− where [N] + (p, t) 
= F(t, p) and [N]−(p, t) = F(p, t). We denote column vec-
tors where every entry equals 0(1) by 0(1). YT and [N]T 
are the transposed versions of a vector Y and a matrix [N], 
respectively. Y is a P-invariant (place invariant) if and 
only if Y ≠ 0 and YT [N] =0T hold. ||Y|| = {p  P | Y(p) ≠ 0} 
is the support of Y. A minimal P-invariant does not con-
tain another P-invariant as a proper subset. If a siphon S 
 ||Y||, then [S] = ||Y|| \ S is called the complementary 
siphon of S and S  [S] is the support of a P-invariant. 
Let YV be the minimal P-invariant associated with control 
place V. H(V) = [V] = ||YV|| \ {V} is called the controller 
(or disturbed) region or the set of holder places of V. 

Definition 1 [1]: A simple sequential process (S2P) is a 
net N = (P  {p0},T,F) where: 1) P  , p0 P (p0 is 
called the process idle or initial or final operation place); 
2) N is strongly connected state machine (SM) and 3) 
every circuit C of N contains the place p0. 

Definition 2 [1]: A simple sequential process with re-
sources (S2PR), also called a working processes (WP), is 
a net N = (P{p0}PR,T,F) so that 1) the subnet gener-
ated by X = P  {p0}  T is an S2P; 2) PR   and P  
{p0}  PR = ; 3) p  P, t  p, t'  p, rp  PR, ●t 
 PR = t'●  PR = {rp}; 4) The two following statements 
are verified: r  PR, a) r  P =r  P  ; b) r  
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r = . 5) (p0)  PR = (p0)  PR = . p  P, p is 
called an operation (or activity) place. r  PR, r is 
called a resource place. H(r) = r  P denotes the set of 
holders of r (operation places that use r). (r) = {r}  
H(r) denotes the union of H(r) and {r} and is the support 
of a minimal P-invariant Yr that contains r. 

Definition 3 [1]: A system of S2PR (S3PR) is defined 
recursively as follows: 1) An S2PR is defined as an S3PR; 
2) Let Ni = (Pi  Pi

0  PRi, Ti, Fi), i  {1,2} be two S3PR 
so that (P1  P1

0)  (P2  P2
0) = . PR1  PR2 = PC ( 

) and T1  T2 = . The net N = (P  P0  PR,T,F) re-
sulting from the composition of N1 and N2 via PC (de-
noted by N1 o N2) defined as follows: 1) P = P1  P2; 2) 
P0 = P1

0  P2
0; 3) PR = PR1  PR2; 4) T = T1  T2 and 5) 

F = F1  F2 is also an S3PR. A directed circuit in N is 
called a resource circuit, if p  , p  R. An elemen-
tary resource circuit is both a resource and an elemen-
tary circuit. 
 
3. Types of SMS and Siphon Responsible for 

Lost States 
 
In [12-14], we show that SMS can be synthesized from 
resource or core subnets. New types (such as control 
siphons) of SMS can be synthesized from control subnets 
formed by control places. If we add monitors to these 
different types of siphons in a certain order, then some 
siphons may be redundant. 

We construct an SMS based on the concept of handles. 
Roughly speaking, a “handle” is an alternate disjoint path 
between two nodes. A PT-handle starts with a place and 
ends with a transition while a TP-handle starts with a 
transition and ends with a place. A core subnet can be 
obtained from an elementary circuit, called core circuit, 
by repeatedly adding handles. 

The control place and arcs for siphon S, similar to re-
source places, form a number of elementary circuits. 
Hence, there is an elementary circuit containing adjacent 
control places, from which we can synthesize new prob-
lematic siphons. 

Definition 4: An elementary resource circuit is called 
a basic circuit, denoted by cb. The siphon constructed 
from cb is called a basic siphon. A compound circuit c = 
c1 o c2 o ··· cn-1 o cn is a circuit consisting of multiply 
interconnected elementary circuits c1, c2, ···, cn such that 
ci  ci+1 = {rpi}, rpi  R (i.e., ci and ci+1 intersects at a 
resource place ri). rpi is called an inter-place. The SMS 
synthesized from compound circuit c (resp. control, mix-
ture) using the Handle-Construction Procedure in [9] is 
called an n-compound (resp. control, mixture) siphon S, 
denoted by S = S1 o S2 o ··· Sn-1 o Sn. A siphon is called a 
resource siphon if it does not contain any control place. 
The set of compound, control, and mixture siphons for an 

n-compound siphon is called a family set of siphons of 
the n-compound siphon. 

Definition 5: A mixture subnet is obtained by adding 
non-resourceless TP-handles (containing no operation 
places) upon a core circuit. A siphon synthesized from a 
mixture subnet is called a mixture siphon. A full mixture 
subnet is a mixture subnet upon which we can no longer 
add non-resourceless TP-handles to form a larger subnet 
to synthesize a new siphon. Otherwise, it is called a par-
tial mixture (briefed as p-mix) subnet. A siphon synthe-
sized from a full (resp. partial) mixture subnet is called a 
full (resp. partial) mixture siphon, briefed as f-mix (resp. 
p-mix). RS (resp. CS) the set of resource (resp. control) 
places in S. An α-siphon is a mixture one with non- 
sharing places. 

For the benchmark in Figure 1, S11 is an α-siphon 
(where p43 is a non-sharing place.), whose core subnet 
can be obtained by adding handles [t3 p40 t2 p30 t22 V11], 
[t22 p42 t7 p30], [t20 p43 t19 p32 t5 V16], [V16 t8V11], [p32 t10 
p43], [t10 V16], and [t8 p42] to Core circuit c = [V16 t3V11 t20 
V16]. c1 = [p31 t3 p40 t2 p30 t22 p42 t21 p31], c2 = [p31 t20 p43 
t19 p32 t5 p41 t4 p31], c1 ∩ c2 = {p31}, and M0 {rp = p31} = 1. 
Table 1 lists the controlled model by Uzam et al. based 
on the FBM approach. 

In a mixture siphon, t  (S / S), |t  S| > 1, and 
each firing of t may remove multiple (say x) tokens from 
S. This is the reason that the arc from VS to t must be 
weighted by x if M0(VS) = M0(S) – 1. Thus, Mmax([S]) < 
M0(S). In order to avoid empty S, one may set M0(VS) = 
Mmax([S]) – 1 with ordinary control arcs. 

On the other hand, for a siphon S where all 
non-operation places are resource ones, t  (S / S), |t 
 S| = 1, each firing of t (called sink transitions of the 
siphon) removes one token from VS and S respectively. 
Thus, Mmax([S]) = M0(S). The same holds true for a con-
trol siphon. 

Based on the above discussion, there will be no live 
state losses if M0(VS) = M0(S) – 1 for the resource or con-
trol siphon since state losses occur iff there are live states 
M such that M([S]) > M0(VS)(Theorem 1 in [11]). For a 
mixture siphon to be emptiable, it must be an α-siphon.  

Lemma 1: Let S be a siphon in the family set of a 
2-compound siphon involved in some state loss, then S 
must be an α-siphon. 

Proof: The state loss would not occur if no monitor is 
added to S. The thesis holds since there is no state loss if 
S is not emptiable and a mixture siphon is emptiable and 
needs a monitor iff it is an α-siphon. 

Monitor V17 is added to S11 to make 19 live states to be 
forbidden and lost via reachability analysis in [2]. In the 
sequel, we will develop the condition for state loss for an 
α-siphon since other siphons in the family set of a 
2-compound do not incur state loss. 
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Figure 1. A well-known example of S3PR [1]. 
 

Table 1. Control model by Uzam et al. for the benchmark in Figure 1. 

i FBM(M0(Vi)) S 
Vi Vi

 

1 p11 + 2p12(2) {p5, p8, p13, p23, p31, p41} t14 t12 

2 p4 + 2p12(2) S1 t4, t14 t3, t13 

3 2p7 + p23(2) S2 = {p4, p8, p11, p13, p24, p31, p42} t8, t21 t7, t20 

4 p8 + 2p22(2) S3 = {p4, p9, p11, p13, p23, p31, p43} t9, t20 t8, t19 

5 2p7 + p22(3) S4 = {p8, p23, V2, V3} t8, t20 t7, t19 

6 2p9 + p21(2) S5 = {p6, p22, p32, p43} t10, t19 t9, t18 

7 2p7 + p8 + p21 + p22(4) S6 = {p6, p23, V3, V8} t9, t20 t7, t18 

8 p8 + p9 + p21 + p22(3) S7 = {p6, p23, p31, p32, p43} t10, t20 t8, t18 

9 2p7 + p9 + p21 + p22(4) S6 t8, t10, t20 t7, t9, t18 

10 p5 + p11 + p12 + p21 + 2p22(5) S8 = {p6, p13, p23, p31, p32, p41, p43} t5, t14, t20 t4,t12, t18 

11 p2 + 2p3 + p7 + p23 + p24(5) 
S9 = {p4, p8, p11, p13, p25, p30, p31, 
p40, p42} 

t3, t8, t22 t1, t20 

12 p4 + p5 + p12 + p21 + 2p22(5) S8 t5, t14, t20 t3, t13, t18 

13 p5 + 2p7 + p11 + p12 + p21 + 2p22(6) S10 = {p6, p23, p31, p32, p41, V2} t5, t8, t14, t20 t4, t7, t12, t18 

14 p5 + p9 + p11 + p12 + p21 + 2p22(5) S8 t5, t10, t14, t20 t4, t9, t12, t18 

15 p4 + p5 + 2p7 + p12 + p21 + p22(6) S10 t5, t8, t14, t20 t3, t7, t13, t18 

16 p4 + p5 + p9 + p12 + p21 + p22(5) S8 t5, t10, t14, t20 t3, t8, t13, t18 

17 
p2 + 2p3 + p4 + p5 + p7 + p9 + p21 +
p22 + p24(9) 

S11 = {p6, p11, p13, p25, p30, p32, 
p40, p42, p43, V8, V11, V16} 

t5, t8, t10, 
t20, t22 

t1, t9, t18, t21 

18 
p2 + 2p3 + 2p5 + p7 + p9 + p21 + p22

+ p23(9) 
S12 = {p6, p11, p13, p25, p30, p32, 
p40, p43, V9, V11, V16} 

t3, t5, t8, 
t10, t21 

t1, t4, t9, t18 

19 
p2 + p3 + 2p5 + p7 + p8 + p21 + p22 
+ p24(9) 

S13 = {p6, p11, p13, p25, p30, p32, 
p40, p42, V4, V11, V16, V17} 

t3, t5, t9, 
t20, t22 

t1, t4, t18, t21 
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4. Condition for State Loss 
 
To have lost live states, some live states must be forbid-
den by the addition of Monitor VS. For states to be live, 
the α-siphon S must be always marked. For states to be 
forbidden, the total number of tokens in the complemen-
tary set [S] of S must remain at its maximum, which 
cannot occur in the presence of ordinary VS. To turn M(S) 
> 0 (live) from M’(S) = 0 while maintaining M([S]) = 
M’([S]) = Mmax([S]) (forbidden), a token must be shifted 
from one place in [S] to another place in [S]. In the se-
quel, we first deal with liveness of lost states followed by 
two different cases where state loss may or may not oc-
cur. 

Lemma 2: Let S be a siphon and M0(S) > 0. M(S) > 0 
[M  R(N, M0)], if no transitions in S \ S ever fire. 

Proof: Only transitions in S \ S can fire to move to-
kens from S into [S]. Transitions in SS fire to move 
tokens from S into S itself. Hence, the thesis holds. 

Observation 1: Let S be an α-siphon, VS’  S, (S \ S) 
 VS’

  . 
For the α-siphon S = S11 in Table 1, S  S = {t1, t18}. 

If t1 and t18 never fire, tokens in S cannot leak out from S. 
There are 3 VS’ in S11: V8, V11 and V16. S

  S = {t1, t18} 
and t1  V11

, t18  V16
. 

Lemma 3: Let S be an α-siphon, VS’  S, M(VS’) = 0, 
M  R(N, M0). Then no transitions in S \ S can ever 
fire. 

Proof: The thesis holds since all transitions in VS’
 are 

disabled owing to the fact that M(VS’) = 0 and (S \ S)  
VS’

   by Observation 1. 
The above lemmas help prove that markings, where an 

α-siphon is always marked, are live ones. 
Definition 6: Let S be an α-siphon, RC = {r| r  PR, r  

R(cSi), cSi  CS} the set of resource places whose holder 
places are also in that of control places of CS and  = RC 
\ {rp}, where rp is an inter-place. p’  H(rp) is called a 
skew place. 

Theorem 1: Let S be an α-siphon, Ma(p) = 0, Ma(H(p) 
 [S]) = M0(p), p    CS, Ma  R(N, M0). Then all 
transitions in S are dead. 

Proof: It is easy to see that Ma(S) = 0 and all transi-
tions in S are dead. 

For the example, CS = {V11, V16}, R(V16) = {p31, p32, 
p41, p43}, RC = {p30, p31, p32, p40, p41, p42, p43}, rp = p31, 
and  = Rc \ {rp} = {p30, p32, p40, p41, p42, p43}, where p30, 
p32, p40, p42, p43 are unmarked under FBM17. H(rp) = {p4, 
p8, p23} and each place in H(rp) is a skew place. Ma(p2) = 
Ma(H(p30)  [S]) = M0(p30) = 1, Ma(p3) = Ma(H(p40)  
[S]) = M0(p40) = 2, M(p21) = Ma(H(p32)  [S]) = M0(p32) 
= 1, and Ma(p7) + Ma(p24) = Ma(H(p42)  [S]) = M0(p42) = 
2, Ma(p9) + Ma(p22) = Ma(H(p43)  [S]) = M0(p43) = 2. 
Note that Ma(p) = 0, p    CS. Thus all output tran-

sitions of p are dead. The rest transitions are output tran-
sitions of p6, p25, p4, p8, p23, which are also dead since 
Ma(p6) = Ma(p25) = Ma(p4) = Ma(p8) = Ma(p23) = 0. 

We first add Monitor V’, so that H(V’) = . This in-
duces dead submarkings (markings restricted to opera-
tion places or ) FBMa = p2 + 2p3 + p4 + p5 + p7 + p9 + 
p21 + p22 + p24, FBMb = p2 + 2p3 + 2p5 + p7 + p9 + p21 + 
p22 + p23 and FBMc = p2 + 2p3 + 2p5 + p7 + p8 + p21 + 
p22 + p24. Monitors V17, V18, and V19 (called induced 
monitors) are added with M0(V17) = 9, M0(V18) = 9 and 
M0(V19) = 9, respectively. 

Now Monitor V’ is redundant since its controller re-
gion ’ = {p2, p3, p5, p7, p9, p21, p22, p24} is a subset of 
that ( = {p2, p3, p4, p5, p7, p9, p21, p22, p24}) for Monitor 
V17 by the following lemma. 

Lemma 4 [11]: Let S be an SMS. 1    [S]. M, M1 
 R(N, M0) such that M( )  = M1(1) = Mmax([S]), V and 
V1 are two monitors added such that M0(V) = M0(V1) = 
Mmax([S]) – 1 and [V] = , [V1] = 1. Then V1 is redun-
dant. 
1 and  are the controller regions for Monitors V and 

V11, respectively. In the sequel, we will prove that when 
the above redundant monitor appears, there are lost states, 
and vice versa.  

Theorem 2: Let S be an α-siphon,  the set of marked 
operation places when S is unmarked under Ma, and VS 
is the monitor added to S with M0(VS) = Mmax([S]) – 1 
and H(VS) = . Let Mb(p) = Mb(r) = 1, Mb(p') = Ma(p') – 
1, Mb(p*) = Ma(p*), p*  P \ ({p, p'}, Mb  R(N, M0), 
where p  H(rp), rp an inter-place, r  ((p))  , p’  
p  H(r) and Ma was defined in Theorem 1. If H(r)  
[S] = {p’} and r  S, then 1) Mb is a nonlive marking. 2) 
There are no lost live states iff Mb(p’) = 0 or M0(r) = 1 
and a monitor has been added to prevent Mb from being 
reached. 

Proof: 1) Among all dead transitions under Ma, only 
output transitions of r may be enabled under Mb since 
Mb(r) = 1. If H(r)  [S] = {p'}, the only possibly enabled 
transition is the output transition of both r and p. How-
ever, after t fires, it reaches Ma, which is a dead marking. 
Thus, Mb is a nonlive marking. But t is disabled by VS 
since t is the output transition of VS and M(VS) = 0 
(Mb([S]) = Ma([S]) + Mb(p) – Ma(p) + Mb(p') – Ma(p') = 
Ma([S]). 

2) First assume a) Mb(p') > 0 (or M0(r) > 1). Let Mc  
R(N, M0) be such that Mc(p') = Mb(p') + 1 (i.e., adding a 
token to p'), Mc(p^) = Mb(p^) – 1 (to ensure Mb(V) = 0), 
Mc(p*) = Mb(p*), p*  P \ ({p', p^}, where p^  H(r') 
 H(V), p'  H(V), V  S, r'  RC. 

Then M(H(r')  S) = 1. By Lemma 2, S remains 
marked since V is unmarked to disable its output transi-
tion in S \ S. All markings M’ where S and all other 
siphons in the final live controlled net are marked and 
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M’(p) = Mc(p), p  S  [S]. Such states are live as 
proved below. Assume it necessarily evolves to a dead-
lock state M*, then there exist an unmarked siphon under 
M*, which violates the fact that all siphons have been 
controlled. 

These states are lost since Mc() = Mb() = Mmax([VS]), 
which are not reachable by Monitor VS with M0(VS) = 
Mmax([S]) – 1. 

Next consider b) Mb(p’) = 0 (or M0(r) = 1).  now 
does not include p'. One can no longer add a token to p' 
to induce M(H(r')  S) = 1. Thus, there are no lost states. 
a) and b) together prove the thesis. 

For the example, p' = p5, r = p41 and H(r)  [S] = {p'}. 
r has only one output transition t4 with an input operation 
place in . The above theorem indicates that when 
M0(p41) = 1 (instead of 2 as in Figure 1), there will be no 
loss of good states. VS is not redundant and cannot be 
removed for the control. 

a) If M0(p41) > 1, then there will be lost live states by 
adding a token to p5 so that Mc(p5) = Mb(p5) + 1. These 
live states must be such that Mc() = Mmax(), which are 
not reachable by adding Monitor VS to make Mc() < 
Mmax(). To make Mc() = Mmax (), it must be that 
Mc(V) = Mb(V) = Ma(V) = 0, V = V16. This leads to 
Mc([V16]) = M0(V16) = 5 or  

Mc(p4) + Mc(p5) + Mc(p8) + Mc(p9) 

+ Mc(p21) + Mc(p22) = M0(V16) = 5 
Mc(p8) = 0, implies that 

α = Mc(p4) + Mc(p5) + Mc(p9) + Mc(p21) + Mc(p22) = 5. 

Note that the addition of Monitor V16 limits α to be 
no more than 5. However, setting α to 5 may not 
make S unmarked since some resource place (e.g., p43 
or p32) in S may be marked (Mc(S) > 0) even though 
V16 is unmarked. These states Mc(S) > 0 will stay so 
(and are live as proved above) since transitions in S \ S 
are disabled by output control arcs from unmarked V16 

and V11. Note that VS is redundant and can be removed. 
b) If M0(p41) = 1, then there will be no lost live states 

since Mc(p5) = 0 and the set c of marked operation 
places under Mc does not include p5. One can no longer 
add a token to c to make Mc(S) > 0. Hence, there are no 
lost states. 

Theorem 3: Let S be an α-siphon,  the set of marked 
operation places when S is unmarked under Ma, and VS 
is the monitor added to S with M0(VS) = Mmax() – 1 and 
H(VS) = . Let Mb(p) = Mb(r) = 1, Mb(p*) = Ma(p*), p* 
 P \ ({p, p'}, Mb  R(N, M0), Mb(p’) = 0, where p  
H(rp), r  ((p))  , p’  p  H(r). If r  S and H(r) 
 [S]  {p'}, then 1) Mb is a nonlive marking, and 2) 
there are no lost live states by adding a monitor to pre-
vent Mb from being reached. 

Proof: 1) Similar to the proof of Theorem 2, the output 

transition of both r and p is an output transition of VS 
(Monitor for S) and disabled by unmarked VS. Other 
output transitions t' of r are also disabled as explained 
here. If H(r)  [S]  {p'}, then μ =  \ {p'} ( = (H(r)  
[S])  {p}) is the complementary set of another siphon 
S’; the output transition set of VS' (control place for S') 
contains t'. Mb(p') = 0 implies that Mb(μ) = M0(rp) + M0(r) 
– 1 = M0(r) = Mb(p) + Mb(H(r)  [S]) – Mb(p') = M0(S') – 
1 = M0(VS’). Thus, VS' is unmarked to disable t' and all 
possible enabled transitions are dead and Mb is a nonlive 
marking, which needs a monitor V' with H(V') the set of 
unmarked operation places in [S]. 

2) Note that H(V') does not include p’ since Mb(p') = 0. 
Since Mb(μ \ {p}) + Mb(r) = M0(r), there is no way to add 
a token (to reach states forbidden by V') to enable some 
transition. Hence, such states are nonlive and there are no 
lost live states. 

For the example, there are two possible pairs of (r p 
p’): 1. (p43 p8 p9) and 2. (p42 p23 p24) for the above theo-
rem. For Case 1, H(r)  [S] = {p9, p22}  {p' = p9}. For 
Case 2, H(r)  [S] = {p7, p24}  {p' = p24}. r has more 
than one output transition (1. t9, t19 and 2. t7, t21) with an 
input operation place in . 1 = (H(r)  [S])  {p} = {p8, 
p9, p22}, μ1 = 1 \ {p'} = {p8, p22} = [S4], 2 = (H(r)  [S]) 
 {p} = {p7, p23, p24}, μ2 = 2 \ {p'} = {p7, p23} = [S3]. 

The corresponding submarkings are FBMb = p2 + 2p3 
+ 2p5 + p7 + p9 + p21 + p22 + p23 (Mb(p') = Mb(p24) = 0) 

and FBMc = p2 + 2p3 + 2p5 + p7 + p8 + p21 + p22 + 
p24(Mb(p') = Mb(p9) = 0),respectively. Thus, the set b of 
marked operation places under Mb does not include p'. 
One cannot add a token to a skew place inb to make 
Mc(S) > 0. Hence, there are no lost states. Combining 
Theorems 2 and 3, we have 

Theorem 4: Let S be an α-siphon and all necessary 
monitors have been added such that there are no marked 
set  (  S) of operation places with dead output tran-
sitions. Then there are no lost live states iff Mb(p’) = 0 
for all possible p' (defined in Theorem 3). 

Proof: Theorems 2 and 3 consider all cases where H(r) 
 [S] = {p'} and H(r)  [S]  {p'}, respectively. Theo-
rem 2 proves that there are no lost live states iff Mb(p') = 
0 for all possible p'. Theorem 3 proves that if Mb(p') = 0, 
then Mb is a nonlive marking and there are no lost states. 
Similar to the proof for Theorem 2, one can show that if 
there are no lost states, then it must be that Mb(p') = 0. 
All cases have been considered and the thesis is proved. 

In summary, this section develops the condition for a 
mixture siphon S to be involved in reaching fewer live 
states. After adding a monitor VS to S, new unmarked 
siphons may be generated. One new set of unmarked 
operation places may cover H(VS) of VS, as a proper sub-
set. This makes VS redundant and some live states lost. 

The physics of loss of live states is as follows. Adding 
a token to a skew place (e.g., p4 in Figure 1) of S reduces 
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a token in the holder set (e.g., p21 in Figure 1) of a re-
source place r (e.g., p32 in Figure 1) in S, which in turn 
induces a token in r, thus making S marked. Such a state 
is live and forbidden since the total number of tokens in 
  remains unchanged. 
 
5. Conclusions 
 
This paper enhances an earlier paper (which estimates 
the number of lost states without reachability analysis) 
and develops theory to identify the siphon responsible 
for lost states for a well-known benchmark and explores 
the condition to achieve optimal controller without WC. 
If the condition is not met, one can apply the technique 
by Piroddi et al. to synthesize optimal controllers with 
WC. Future work should be addressed to synthesize 
suboptimal controller without WC when the condition 
cannot be satisfied. 
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