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ABSTRACT 

Rudolfer [1] studied properties and estimation of a  0,1 - state Markov chain binomial (MCB) model of extra-bino- 
mial variation. The variance expression in Lemma 4 is stated without proof but is incorrect, resulting in both Lemma 5 
and Theorem 2 also being incorrect. These errors were corrected in Rudolfer [2]. In Sections 2 and 3 of this paper, a 
new derivation of the variance expression in a setting involving the natural parameters  , ,n p   is presented and the 
relation of the MCB model to Edwards’ [3] probability generating function (pgf) approach is discussed. Section 4 deals 
with estimation of the model parameters. Estimation by the maximum likelihood method is difficult for a larger number 
n of Markov trials due to the complexity of the calculation of probabilities using Equation (3.2) of Rudolfer [1]. In this 
section, the exact maximum likelihood estimation of model parameters is obtained utilizing a sequence of Markov trials 
each involving n observations from a  0,1 - state MCB model and may be used for any value of n. Two examples in 
Section 5 illustrate the usefulness of the MCB model. The first example gives corrected results for Skellam’s Brassica 
data while the second applies the “sequence approach” to data from Crouchley and Pickles [4]. 
 
Keywords: Extrabinomial Variation; Markov Chain Binomial Model; Maximum Likelihood Estimation; Sequence 

Data 

1. Introduction 

Let  be a stationary two-state Markov 
chain with states 0 (failure) and 1 (success), an initial 
probability distribution denoted 

 , 1, 2,iZ i  

 ,q p
0 1 p 

 in which 
 and , and transi- 

tion probabilities 
 1 1p P Z   1q P Z 

 j Z i1i j m m for p P Z  , 0,i j 1  
and  represented in a transition probability 
matrix 

1,2,m  

00 01

10 11

p p
P

p p


 
 






.              (1) 

If  is a sequence from a  , 1, 2,iZ i   0,1 - state 
Markov chain, let 

1i
n

iX Z  
 denotes the number of 

successes in n Markov trials. The random variable X may 
be said to have a Markov chain binomial (MCB) distri- 
bution with parameters n and p, and transition matrix P. 

Rudolfer [1] studied properties and estimation for this 
state Markov chain binomial model. A formula for 

computing the probabilities  is 
given as his Equation (3.2), and an expression for the 
variance of X is given as Equation (3.4) in his Lemma 4. 

However, the variance expression is incorrect and hence 
Lemma 5 and Theorem 2 are also incorrect. These results 
were corrected in Rudolfer (2). Section 3 of this paper 
provides an alternative derivation of the correct versions 
of these results. 

 0,1 -
  , 0,1, ,P X k k n  

Even for relatively small values of n, computation of 
the probabilities  P X k  using Rudolfer’s Equation 
(3.2) involves tedious summations making maximum 
likelihood estimation for the model difficult. Using the 
Edwards’ [3] formulation and an approach introduced by 
Devore [5] and results given by Edwards [6], exact maxi- 
mum likelihood estimation of model parameters is ob- 
tained in Section 4 using a sequence of observations as- 
sumed to come from a  -0,1 state Markov chain with 
the transition probability matrix P given in (1) above. 

Two examples are presented in Section 5 to illustrate 
the effect of the corrections and of parameter estimation 
utilizing the sequence nature of the data. 

2. The Markov Chain Binomial Model 

Rudolfer [1] writes the matrix of transition probabilities 
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(1) for the state Markov chain as  0,1 -

00 01

10 11

1

1

p p
P

p p
 
 
   

      
        (2) 

in which 0 , 1   . For such a chain, the probability 
of a success at stage , , depends 
on k and the initial probability distribution 

2k   1k kp P Z 



,
2

q p . This 
is seen by noting that, for , k 

 
  

   
 

1 1

1 1

1

1

1, 1 0, 1

1 1

1  .

k k

k k k k

k k

k

p P Z

P Z Z P Z Z

p p

p

 

  

 

 



 

    

   

   


 

Recursive application of this procedure results in 

  1
1

k
kp p  

  
  

       
. 

Since 1    1


 it follows that, as k , k  
tends to the limit 

 p
    independent of the initial 

state (0 or 1) and of the initial probability distribution 
 ,q p . Also, if the initial probability distribution has 

 p   


 , the probability of a success k  is con- 
stantly equal to 

p
    throughout all trials. 

If the probability of success at the first trial is 
   1 1p P Z        so that  

   1 0 1P Z q p         , and if 1     , 
then the transition matrix (2) can be written as 

q p p p
P

q q p q
 
 

 
    


 .             (3) 

Replacing Rudolfer’s [1] parameter   with r, the 
transition matrix (3) is seen to be equivalent to the one 
for the MCB model in Edwards [3]. The parameter   
in Rudolfer [1] has the same interpretation as that of r in 
Edwards [3], namely it is the first-order autocorrelation 
between 1kZ   and kZ  for . Thus, Rudolfer’s and 
Edwards’ MCB models are exactly the same probability 
model under re-parameterization with parameters n, p 
and 

2k 

 , and transition matrix P as given in (3). A ran- 
dom variable X with this distribution may be denoted by 

 , ,~ ,X MCB n p P . 
Edwards’ [3] approach involved the use of the prob- 

ability generating function (pgf). For given n, the pgf of 
the MCB model is 

    1 1

1
nG s qps P   

  
 

           (4) 

in which s is a dummy variable. Explicit expressions for 
the probabilities  can be ob- 
tained from the pgf (4), although the calculations are not 
straightforward. For example, in the case of n = 3, the 
probabilities are 

  , 1, 2, ,P X k k n  

 

  
        
        
  

2

2

0

1 1 2

1 1 2

3

q q p k

pq q q p k
P X k

pq p p q k

p p q k



  

  



  

       





1

2    


 

 

These equations can also be obtained by substituting 
 1p    and  1q    into the expressions for 

the probabilities as given by Rudolfer [1] at the begin- 
ning of Section 4.2 of his paper. 

3. Rudolfer’s [1,2] Corrected Results 

Rudolfer’s [1] Lemma 4 incorrectly expresses the vari- 
ance of a random variable  ~ , , ,X MCB n p P  as 

 
 

  
2

1
4

2
1 1n nVar X npq n n  

 
    


 

resulting in an incorrect statement of his Lemma 5 and 
thus Theorem 2. In Rudolfer [2] the variance expression 
is corrected and proper statements of Lemma 5 and The- 
orem 2 are given. A corrected version of Lemma 4 is 
presented with an alternative derivation, and is followed 
by the corrected Theorem 2. 

Corrected Lemma 4 of Rudolfer [1] 
For a random variable  ~ , , ,X MCB n p P  with 

 p      and 1     , the mean and vari- 
ance are  E X n p  and 

 
 

 2
2 1 1

1

nVar X npq pq n  


      
   (5) 

Proof: The n-th step transition probability matrix is 
equal to 

n n
n

n

q p p p
P

q q p q n

 
 

  
 

  


n

           (6) 

as is easily shown by diagonalizing the transition matrix 
P given in (3), using its right and left eigenvectors and its 
eigenvalues. For 1,2, , 1i    and , 
it follows from (6) that 

1, 2, ,h n  i

   
 

2

2

cov , 1, 1i i h i i h

h h

Z Z P Z Z p

p p q p pq 
    

   
 

and thus 

     

   

 
 

1

1 1 1

1
2

1

2

2 cov ,

1, 1 2 1

2 1 1 .
1

n n n i

i i i
i i h

n
i

i i h
i

n

Var X Var Z Z Z

P Z Z p npq pq n

npq pq n

h



  


 


  






 

      

      

 

  
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Corrected Theorem 2 of Rudolfer [1] 
For  and 2n   ~ , , ,X MCB n p P , 

 
if 0 1     

if 1 0.

npq
Var X

npq



  
   

 

where .  2 1B np p  
Proof: From the variance expression (5), let 

 
 

 

     

2

2 3

1 1
1

1 2 3 2

n

n n

h n

n n n 2 .

  


     

     

           

(7) 

From (7) it follows that 

   
 

   

1 2 0   if 1 0,  odd

2 0   if 1 0,  even

0 1 2   if 0 1

n h n

n h n

h n n

 

 

 

      

     

    

 

which immediately gives the result in the theorem. 

4. Estimating the Model 

Consider N trials from a  0,1 - state Markov chain with 
parameters n, p and  . Let 

1 ijj
n

iX Z  
. Then 

, 1,2, ,iX i   N  are independent, identically distributed 
random variables each having the MCB distribution with 
parameters n, p and  . 

4.1. Moment Estimation of p and   

Let 1 2, , , NX X X
~ ,

 be a random sample of size N from 
the , ,X MCB n p P  distribution, and let  

k kx f k f   and 2
2 k km f k f    be the  

sample mean and sample second raw moment respec- 
tively. Using the method of moments, estimators  and p̂
̂  are determined as solutions to the equations 

0np x                    (8) 

and 

 
  2 2

22
2 1 1 0

1

nnpq pq n n p m  


        
. (9) 

Equation (8) gives p̂ x n . Replacing p by  in 
Equation (9) and rearranging gives 

p̂

   
   

1 2 2 2
2

2 2 2 2
2 2

ˆ ˆ ˆ ˆ ˆ2 1 1

ˆ ˆ ˆ ˆ ˆ ˆ2 1 1

np p np p n p m

m n p p p np p n p m

 



       
          0

 

This nonlinear equation can be solved for ̂  by itera- 
tion using MAPLE or other mathematical software. 

4.2. Maximum Likelihood Estimation of p and  
  for Sequence Data 

Even for a relatively small value of n, maximum likeli- 

hood estimation of the model parameters p and   may 
prove to be difficult using either Rudolfer’s [1] Equation 
(3.2) (in this case, the summation in the expression for 
the probabilities is complex) or Edwards’ [3] pgf ap- 
proach. However, if N sequences  , 1 , ,j , 2Z j n   
each involving n trials from a state Markov chain 
with transition matrix (1) are observed, an alternative 
approach to obtaining maximum likelihood estimates of 
the parameters p and 

 0,1 -

  is as follows. 
The likelihood function for such sequence data can be 

written in the form 

  01
1

, 0

1 ijN NN
ij

i j
L p p p



               (10) 

in which 1  is the number of the N sequences that be- 
gin with the occurrence of state 1 (that is, success), 

0 1

N

NN N   is the number of sequences that begin with 
the occurrence of state 0 (that is, failure), and ij  de- 
notes the total number of transitions from state i to state j 
observed within the N sequences. Since each of the N 
sequences involves n trials, a total of nN transitions will 
be observed. If the transition probabilities are written in 
terms of p, 

N

1q p   and   as in the version of the 
transition matrix P in expression (3), the likelihood func- 
tion (10) becomes 

   
   

111 01 0 10

00 01 10

,

1 .

NN N N N

N N

L p p q p q

q p

 

 

 



 

   N
      (11) 

Devore [5] obtained maximum likelihood solutions by 
ignoring the contribution of the initial state 1Z , and con- 
sidering only the modified likelihood function 

       11 00 01 1001 10* , 1
N N NN NL p p q p q q p       N

(12) 

The solutions obtained restricting attention to this 
modified likelihood function are 

00

00 11

ˆ1
ˆ

ˆ ˆ2

p
p

p p



 

             (13) 

00 11
ˆ ˆ ˆ 1p p                 (14) 

in which  00 00 00 01p̂ N N N   and  

 11 00 10 11p̂ N N N  . 

Edwards [6] provides a solution using the full likely- 
hood function (11). Equating each of the partial deriva- 
tives log L p   and log L    of the log-likelihood 
function to zero and solving for   provides the two 
expressions 

 
10 0 1

10 11 0 1

ˆ 1
N N p N q

q N N N q N p


 
 

  
        (15) 

and 
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 
01 1 0

00 01 1 0

ˆ 1
N N q N p

p N N N q N p


 
 

  
        (16) 

Equating expressions (15) and (16), and letting 
, 1 01 , 1 00  

and  results in the cubic equation in p 
01 11 1a N N N  

10 1d N N 
b N N  0c N N N   1

 
 

2 3 22

0

N p N N a b c d p

ab cd N a b p ab

    

       
       (17) 

which can be solved by standard methods. Substituting 
the solution  from (17) into either (15) or (16) pro- 
vides the solution 

p̂
̂ . 

5. Examples 

5.1. Application to Skellam’s [7] Brassica Data 

Rudolfer [1,2] used the “Brassica” data of Skellam [7] to 
illustrate the model and parameter estimation. Using this 
data and the method of moments with result (5) of the 
corrected Lemma 4, the obtained estimate ˆ 0.5806p   
is essentially the same as the maximum likelihood esti- 
mate . The corrected moment Equation (9) 
for the variance in the case of n = 3 is 

ˆ 0.5807p 

   
 

2

2
2

2 1 4 1

3 1 9 0

p p p p

p p p m

   

    
           (18) 

On substitution of , the quadratic Equation 
(18) gives the possible root , rejecting the 
other root as it is less than . 

ˆ 0.5806p 
̂ 

1
0.1218

Comparisons of the p-values and of the values of the 
Chi-square statistics given in Table 1 suggest that the 
Markov chain binomial model fitted by the method of 
moments using the corrected variance Formula (5) gives 
a fit very similar to those provided by the maximum like- 
lihood method in Rudolfer [1] and the corrected method 
of moments method in Rudolfer [2]. 

5.2. Application to Human Birth-Order Data 

Using the solutions provided by Devore’s [5] modified 
likelihood function and by Edwards’ [6] full likelihood 
function, the MCB model is fitted to a case in which a 
sequence of observations is given. Table 2 gives birth- 
order data for families with four children from Finland 
and from the United States. This data appears in Crouch- 
ley and Pickles [4]. It is assumed that the data are gener- 
ated by a Markovian dependent sequence as defined in 
(1). The parameters p and   are the quantities of inter- 
est in the analysis. 

Let state 0 refer to females and state 1 to males. For 
the Finish data, the full likelihood function, as given by 
(10) and then (11), is 

Table 1. Fits of the MCB model to Skellam’s [7] Brassica 
data. 

k kf  MCB(a) MCB(b) MCB(c) MCB(d) 

0 32 135.08 33.98 33.94 34.13 

1 103 93.41 97.13 97.19 97.05 

2 122 66.73 127.73 127.81 127.51 

3 80 41.78 78.16 78.06 78.31 

Total 337 337.00 337.00 337.00 337.00 

2   35.59 0.77 0.77 0.77 

D.F.  1 1 1 1 

p-value  0.00 0.38 0.38 0.38 

p̂   0.5806 0.5807 0.5806 0.5806 

̂   0.3824 0.1223 0.1218 0.1240 

(a)MCB estimated by method of moments (Rudolfer [1]—with error), (b)MCB 
estimated by maximum likelihood method (Rudolfer [1]), (c)MCB estimated 
by method of moments (Rudolfer [2]—error corrected), (d)MCB estimated by 
method of moments with variance Formula (5) in natural parameter setting. 

 
Table 2. Frequencies of birth-order for families of four child- 
ren from Finland and the United States. 

Order Finland USA Order Finland USA

MMMM 469 1133 FFFF 481 913 

MMMF 484 1140 FFFM 442 952 

MMFM 466 1106 FFMF 428 1010

MMFF 448 1046 FFMM 424 1028

MFMM 398 1105 FMFF 342 935 

MFMF 448 1049 FMFM 406 1071

MFFM 420 1094 FMMF 406 1019

MFFF 425 982 FMMM 419 1085

 

   
   
    

33483558 5239 5005 5119 5355
00 01 10 11

8467 101248563

5355 5239

, 1

1 1

1 1

L p p p p p p p

p p

p p p p





 

 

  

     .

 

From the latter form, the maximum likelihood esti- 
mates are determined to be  and  

, and the estimated matrix of transition 
probabilities is 

ˆ 0.5039p 
ˆ 0.02266 

0.5078 0.4922ˆ
0.4848 0.5152

P  
  
 

 

Using Devore’s [5] modified likelihood function (12), 
the estimated matrix of transition probabilities is 

0.5114 0.4886ˆ
0.4887 0.5113

P  
  
 
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from which, applying Equations (13) and (14),  
 and . ˆ 0.4999p  ˆ 0.0227 

Similarly, for the case of the United States population 
the estimated parameters from the full likelihood func- 
tion are  giving as the estimated matrix of 
transition probabilities 

ˆ 0.5150p 

0.4820 0.5180ˆ
0.4879 0.5121

P  
  
 

 

Using Devore’s method, the estimated matrix of tran- 
sition probabilities is 

0.4834 0.5166ˆ
0.4898 0.5106

P  
  
 

 

so that  and . ˆ 0.5135p  ˆ 0.0060  

6. Discussion 

In the application of the Markov chain binomial model to 
the Brassica data of Skellum [7] using the method of 
moments, Table 2 illustrates that the variance expression 
(5) results in a fit little different from that provided by 
the method of moments using Rudolfer’s [2] corrected 
values. 

The second example dealing with birth-order data pre- 
sented in Crouchley and Pickles [4] illustrates the use- 
fulness of the “sequence data approach” in finding maxi- 
mum likelihood estimates for the MCB model. Very little 
difference is seen in the estimates in this approach be- 
tween using the full likelihood equation solution dis- 
cussed by Edwards [6] and using the modified likelihood 

equation as discussed by Devore [5]. 
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