
Journal of Software Engineering and Applications, 2013, 6, 645-652
Published Online December 2013 (http://www.scirp.org/journal/jsea)
http://dx.doi.org/10.4236/jsea.2013.612077

Open Access JSEA

645

Testability Guidance Using a Process Modeling

Zuhoor Al-Khanjari, Naoufel Kraiem

Department of Computer Science, College of Science, Sultan Qaboos University, Muscat, Oman.
Email: zuhoor@squ.edu.om, naoufel@squ.edu.om

Received August 13th, 2013; revised September 12th, 2013; accepted September 20th, 2013

Copyright © 2013 Zuhoor Al-Khanjari, Naoufel Kraiem. This is an open access article distributed under the Creative Commons Attri-
bution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited. In accordance of the Creative Commons Attribution License all Copyrights © 2013 are reserved for SCIRP and the owner of
the intellectual property Zuhoor Al-Khanjari, Naoufel Kraiem. All Copyright © 2013 are guarded by law and by SCIRP as a guardian.

ABSTRACT

Software testability took a lot of interests of software community. Indeed, this concept has been interpreted in a variety
of ways. One interpretation is concerned with the extent of the modifications a program component requires, so that the
entire behavior of the component is observable and controllable. Another interpretation is the ease with which faults, if
present in a program, can be revealed and estimated by the testing process and the propagation, infection and execution
(PIE) model. It has been suggested that this particular interpretation of testability might be linked with two concepts: 1)
the metric domain-to-range ratio (DRR), i.e. the ratio of the cardinality of the set of all inputs (the domain) to the car-
dinality of the set of all outputs (the range) and 2) the semantic fault size. First, this paper describes the connections
between 1) the domain-to-range ratio and the observability and controllability aspects of testability and 2) the PIE
model and fault size. The main goal of the work described here, is to seek greater understanding of testability in general
and, ultimately, to find easier ways of determining it. Second, in this paper we try to model the PIE estimation using
formalism for process representation system which is MAP formalism. We also use this process model to elaborate and
to present the relationship between testability, PIE, DRR and fault size. Our aim is to enhance the guidance mechanisms
of the process execution. After clarifying the existing relationship between semantic fault and testability, we improve
the MAP model by adding qualitative criteria. We then offer a way to express maps to offer an automatic guidance of
the map.

Keywords: Testability; Observability; Controllability; Domain-to-Range Ratio; Fault Size; Method Engineering;

Situational Method; Process Representation; MAP

1. Introduction

Testability represents one of the important quality attrib-
utes that could affect run-time behavior and system de-
sign. It is defined as the easiness of creating test criteria
for the system and its components, and to execute these
tests in order to determine if the criteria are met. Good
testability measure makes it easier to isolate faults in a
timely and effective manner. It represents area of concern
that has the potential for application wide impact across
the development phases. The importance of this concept
attracted the researchers to relate it to other simpler con-
cepts to provide an estimate of the testability in an easier
and a faster way. Testability received different interpreta-
tions from the researchers [1-4]. These interpretations
suggested some relationships between the testability and
other related concepts. Freedman [5] suggested that in
order to make the behavior of the component both ob-

servable and controllable, the testability could be directly
related to the inputs and outputs of a given program
component. Voas and colleagues [6-8] defined the test-
ability as the ease with which program faults may be
exposed if they are present in the concerned program.
They refer to this definition as the propagation, infection
and execution (PIE) model [9]. They found that it is dif-
ficult and expensive to measure program testability with
this technique. Therefore, they tried to relate it to other
easier concepts that could provide an indication to the
program testability and could guide the researchers to the
best way to design and develop the software product.

To fulfill this role, Woodward and Al-Khanjari [10]
explored the relationship between program testability and
other concepts and made simple observations. Their con-
sideration was restricted to the creation of idealized
model of programs as functions. To show this functional

Testability Guidance Using a Process Modeling 646

view of software, they used a framework in which they
related the program testability to the Dynamic Range
Ratio (DRR) and semantic fault size. For clarity and flow
of information, the concepts are revisited.

In this paper, we introduce a new Situational Method
for Testability. It aims to respond to the following limits
of traditional methods: they do not cover all testability
aspects and they lack flexibility and guidance. The whole
work consists of the study of PIE testability process
using a process modeling. This paper describes the
different types of guidance which are provided by the
approach: 1) Guidance in the selection of the most
appropriate process-model, 2) Guidance in the selection
of the most suitable approach.

In fact, the PIE process is modeled using a process
representation system named MAP. This formalism
allows us to represent the goals through the process and
the strategies involved into it. Getting a good visual
representation of our process can be beneficial to the
better understanding of the problem encountered during
the test process. The map contains a finite number of
paths, each of them prescribing a way to elaborate testa-
bility steps.

The remainder of this paper is organized as follows:
Sections 2-5 of this paper present the revisited work of
Woodward and Al-Khanjari [10] in terms of a functional
view of software, Domain-To-Range Ratio (DRR), Do-
main Testability and DRR, the Semantic Fault Size, the
relationship between Semantic Fault size and Testability,
Semantic Fault Size and DRR. Section 6 demonstrates
the process Meta-Model and how to formalize it with
MAP. The paper finishes with a discussion of some other
related work followed by some concluding remarks.

2. A Functional View of Software

Every item of software at its most primitive level may be
viewed as a function or mapping according to some
specification, S, from a set of input values (its domain, D)
to a set of output values (its range, R).

A program which implements specification S should
also map from D to R. However, if a fault f exists in the
program, there will be some subset of the domain, Df say,
on which the erroneous program Pf computes a faulty
result. The set of faulty results, denoted Rf, may contain
values both in R and outside R. The effect of Pf on values
outside of D remains unspecified. See Figure 1. Note
that the domain and the range can be considered for an
entire program, an individual program component, a
program path or simply a single program location.

3. Domain-to-Range Ratio (DRR)

The domain-to-range ratio (DRR) has been proposed by
Voas and Miller [11] as a specification metric. Put sim-

ply:

Domain-to-Range Ratio
D

R
 (1)

where |D| is the cardinality of the domain of the
specification and |R| is the cardinality of the range. DRR
can be determined for mathematical or computational
functions. As presented in [10] we consider, for example,
the function f(d) = d mod 2, where the input d is a
member of the set of natural numbers not greater than
100, i.e.  1,2,3, ,100D   . Clearly the function
generates only two possible outputs, namely 0 when d is
even and 1 when d is odd, so that R = {0,1} and DRR =
100/2 = 50. Difficulties arise when the domain and the
range, are infinite.

DRR metric provides an approximate measure of in-
formation loss. Information loss may become manifest as
“internal data state collapse” which occurs when two dif-
ferent data states are input in a program and produces the
same output state. Voas and Miller [11,12] remark a
connection between DRR and state collapse as presented
[10], and imply that the testability of a program is corre-
lated with the DRR. High DRR is thought to lead to low
testability and vice versa.

4. Domain Testability and DRR

Domain testability involves use of the concepts of obser-
vability and controllability [5]. A software component is
observable, if a test input is repeated, the output is the
same. If the outputs are not the same, the component is
dependent on hidden states not identified by the tester
and Freedman calls this an “input inconsistency”. A soft-
ware component is controllable, if an output identifier is
specified to be a certain range of values and there are
particular instances of values that cannot be generated by
any test input values, those are termed “output inconsis-
tencies”.

Most functions and procedures are not a priori
observable and controllable. The modifications required
to achieve domain testability are called extensions.

R

Rf
Faulty

result

Correct

result

Mapping not

specified

Figure 1. Functional view of a faulty program.

Open Access JSEA

Testability Guidance Using a Process Modeling 647

Observable extensions are achieved by introducing new
input variables so that the component becomes observa-
ble, i.e. distinct outputs can only arise from distinct
inputs.Controllable extensions are achieved by modify-
ing outputs for the given component so that it becomes
controllable, i.e. all claimed outputs are attainable with
some input. Controllability is achieved by an appropriate
reduction of the range. Observability and Controllability
can be measured as presented in [10].

In order to consider the relationship between domain
testability and domain-to-range ratio, the domain and
range of the component after modification with observ-
able and controllable extensions can be written as [10]:

DRR
D D D

R R R

  

  
   (2)

Domain-to-range ratio of a program component, after
modification to make it domain testable, is the domain-
to-range ratio of the component before modification mul-
tiplied by one plus the relative size of the domain exten-
sion and divided by one minus the relative size of the
range reduction.

5. Semantic Fault Size

Offutt and Hayes [13] drew a distinction between the
syntactic and the semantic nature of faults. The syntactic
nature can be described by the syntactical differences
between the faulty program and the correct program. The
semantic nature of a fault, on the other hand, results from
the view that for some subset of the input domain a faulty
computation takes place producing incorrect output.
Corresponding to the syntactic size of a fault, Offutt and
Hayes defined the semantic size of a fault as “the relative
size of the sub domain of D for which the output map-
ping is incorrect”. It should be obvious that there is no
reason why there should be a link between syntactic fault
size and semantic fault size. Indeed it is perfectly possi-
ble to find situations where a syntactically small fault
results in a very large semantic fault size, and vice versa.

5.1. Semantic Fault Size and Testability

Offutt and Hayes [13] suggested that semantic fault size
is closely related to testability in the sense of Voas et al.
[6]. If a statement in the subject program has low
testability, then any fault associated with that statement
might be expected to have small semantic size and any
statement containing a fault with large semantic size
could be expected to exhibit high testability.

To explore this connection between semantic size and
testability further, consider the propagation, infection and
execution (PIE) model that provides the basis for test-
ability estimation. According to the PIE model, the
probability of failure under a particular input distribution,

is a combination of the individual probabilities: 1) that
the fault is executed (E = execution); 2) that execution of
the fault causes corruption of the data state (I = infection);
and 3) that the faulty data state propagates to the output
(P = propagation) [14].

Referring to Figure 2, where, as before, D represents
the entire input domain of the subject program, there will
be some subset E of D such that all test values in E cause
the fault to be executed. Amongst those input values that
cause fault execution, some will result in data state
infection, as represented by the region I. Finally amongst
those input values that cause data state infection, some
will propagate the faulty state to the output, as repre-
sented by the region P.

In practice Voas [9] suggests estimating testability at a
location by separate estimation processes for the three
individual components of the model. These processes are
presented in Section 6.

An alternative testability estimation procedure could
be based on considering versions of the chosen program
with location L mutated. The mutation change, provided
it does not generate an equivalent mutant, can be
regarded as a seeded fault that has a semantic size in the
same way as naturally occurring faults. The smallest
semantic size of such mutants, being a worst case, could
provide an estimate for testability at the location L.

A traditional (strong) mutation testing tool such as
Mothra [14] could be used. It requires establishing a
large number of input test cases chosen randomly from
the input domain and then determining for each mutant
generated by the tool, the proportion of test cases that kill
that mutant. This is different from normal usage where,
once a mutant is killed with some test case, no further
test cases are applied to that mutant. Offutt and Hayes
[13] did adopt this procedure to estimate the semantic
size of all mutants created by the same mutation operator
in an attempt to measure the size of given fault types.
The aim is to determine the minimum semantic size of all
mutations at a location. Although still an expensive
process, this has the merit, superficially at least, of being
considerably more straightforward than using separate

E
D

Figure 2. Input domain view of the PIE model.

Open Access JSEA

Testability Guidance Using a Process Modeling 648

estimation procedures for the three components of the
PIE model.

It is noted in passing that since propagation analysis is
akin to strong mutation testing, and infection analysis is
akin to weak mutation testing, a similar distinction could
be made for semantic fault size. On the other hand, weak
semantic fault size can be considered as the proportion of
the input domain that merely results in an infected data
state immediately after executing a fault, i.e.

Weak semantic fault size
I

D
 (3)

5.2. Semantic Fault Size and DRR

Semantic can be related to the domain-to-range ratio
(DRR). However, since semantic fault size depends
solely on the input domain, whereas DRR depends on
both the domain and the range, there is unlikely to be a
direct connection. What can be deduced is a relationship
involving fault size, measured in terms of input and
output, and DRR both for the correct program and also
for a faulty version when executed over just that portion
of the domain that exposes the fault.

Then denoting DRR for the correct program P with
input domain D by DRR DP and for faulty program Pf
with just the fault-exposing input domain Df by
DRR

f fDP the following is obtained:

output fault size
DRR DRR

input fault sizef fD D P P (4)

This equation captures the (admittedly) rather limited
connection between DRR and semantic fault size.

6. The Process Meta-Model

Process modeling is considered today as a key issue by
both the Software Engineering (SE) and the Information
Systems Engineering (ISE) communities. Recent interest
in process modeling is part of the shift of focus from the
product to the process view of systems development.
There is already considerable evidence for believing that
there shall be both: improved productivity of the soft-
ware systems industry and improved systems quality, as
a result of improved development processes. Recent in-
depth studies of software development practices [15],
however, demonstrate that we know very little about the
development process. Thus, to realize the promise of
systems development processes, there is a great need for
“a conceptual process model framework” [16].

Process modeling is a rather new research area. Con-
sequently there is no consensus on what is a good for-
malism to represent processes or even on what the final
objectives [15]. Process models may be constructed for a
number of different reasons, to fulfill different purposes.

One purpose may be purely descriptive, that is, to record
how some process or class of processes is actually per-
formed.

Alternatively, models may be constructed to guide,
support and provide advises or instructions to developers,
i.e.: to be prescriptive. The SE community has focused
on descriptive models more than the ISE community.

Yet another way of looking at process models is in
terms of the process aspect that they address: some focus
on managerial aspects of the development process where-
as others have technical concerns.

We propose in this paper a well-defined and repeatable
approach to generate well-formed guidance centered
process models. For guidance centered process models to
be well-formed, we have identified a list of requirements
and intentions.

To realize and adapt this approach we adopted a goal-
perspective, the Map-driven process modeling approach.
The Map approach is a representation system based on
intentions and strategies. In this system, intentions ab-
stract from organizational tasks and the different ways in
which tasks are performed are intention-achievement
strategies. The map is capable of abstracting from the
detail of business processes to highlight organizational
goals and their achievement.

In this section we first introduce the key concepts of a
map and their relationships. Then we define map com-
ponents as process to for modeling the testability process.

The Process Meta-Model Formalized with MAP

This process is modeled using MAP formalism which is
a process model. This model is a process representation
system based on a non-deterministic ordering of goals
and strategies [17]. A map can be represented as a la-
beled directed graph. The nodes represent goals and the
links between nodescorrespond to strategies. The di-
rected nature of the graph shows the order of the differ-
ent goals.

A MAP is defined as a meta-process model which al-
lows designing several processes under a single repre-
sentation (Figure 3). It is a labeled directed graph with
intentions as nodes and strategies as edges between in-
tentions. A MAP is composed of one or more sections. A
section is a triplet < source intention I, target intention J,
strategy Sij> that captures the specific manner to achieve
the intention J starting from the intention I with the
strategy Sij. An intention is expressed in natural language
and is composed of a verb followed by parameters. Each
MAP has two special intentions “Start” and “Stop” to
respectively begin and end the navigation in the MAP.
Each intention can only appear once in a given MAP.
Each section is associated a guideline that can be one of
the following three types: Simple, Tactic or Strategic.

here are three guidelines associated with a MAP: IAG, T

Open Access JSEA

Testability Guidance Using a Process Modeling

Open Access JSEA

649

Figure 3. The MAP process meta-model.

SSG and ISG. IAG can be one of the aforementioned
types namely tactic or simple or strategic while SSG and
ISG are always tactic guidelines. For more details see
[18]. These guidelines are further explained below.

1) A guideline named “Intention Achievement Guide-
line” (IAG) is associated to each section providing an
operational mean to satisfy the target intention of the
section.

2) “Strategy Selection Guideline” (SSG) determines
which strategies connect two intentions and helps to
choose the most appropriate one according to the given
situation. It is applied when more than one strategy exists
to satisfy a target intention from a source one.

3) “Intention Selection Guideline” (ISG) determines
which intentions follow a given one and helps in the se-
lection of one of them. It results in the selected intention
and the corresponding set of either IAGs or SSGs. The
former is valid when there is only one section between
the source and target intentions, whereas the latter occurs
when there are several sections.

Figure 4 shows that: 1) for a section <Ii, Ij, Sij>, there
is an IAG, 2) for a couple of intentions <Ii, Ij>, there is
an SSG, and 3) for an intention Ii, there is an ISG.

As presented in Figure 5, a map has two special goals,
Start and Stop which represent the beginning and the
ending of the process respectively. A goal represents a
state that is expected to be reached and a strategy corre-
sponds to how to achieve a goal. To estimate the testabil-
ity, the process consists of the estimation of the probabil-
ity of propagation, infection and execution. We try
through this MAP to model our process. We can find the
principal goals which are the estimation of the probabil-
ity of propagation, infection and execution. Achieving
these goals allows the estimation of the testability.

Also, the process meta-model for the Testability for-
malized using MAP is shown in Figure 5. It contains
four core intentions “Estimate Propagation probability”
and “Estimate Execution Probability”, “Estimate Infec-

tion Probability” and “Estimate Testability” in addition
to “Start” and “Stop” intentions. We use also this process
model to elaborate and to present the relationship be-
tween testability, PIE, DRR and semantic fault size as
presented in Figure 6. The main purpose of using the
MAP formalism is to simplify the relationship between
testability (PIE), DRR and semantic fault size. The MAP
model was introduced in this paper in order to model
processes in a flexible way.

To allow tester or user to go through the different
intentions of the map, the approach provides a set of
factors called Situational Factors [19,20].

Estimating testability involves the use of observability,
controllability concepts and some extensions which are
modifications required to achieve domain testability. The
relationship between testability and semantic fault size is
important where in case of low testability we expect to
have small semantic size and in case of high testabilitywe
expect to have large semantic fault size. Testability is
correlated with the domain/range ratio. Adapting do-
main-to-range ratio needs two ways: to invert the ratio so
that it becomes the range-to-domain ratio (RDR) or to
calculate the range-to-domain ratio dynamically.

The proposed situational factors characterize current
situation and then, help designer to choose the appropri-
ate strategy among several presented in the map. We
have identified the following factors: Application type,
Application complexity, Similarity with others applica-
tions, User-application adaptation, User-application
adaptation, Tester Experience [7].

Situational factors guide and orient tester during test-
ing through the design meta-model process. When we
say guide the tester we mean that this person can choose
the appropriate goal to achieve the different options in
PIE process (propagation estimation, infection estima-
tion and execution estimation). After the achievements
of these goals, the tester can calculate the global test-
bility. a

Testability Guidance Using a Process Modeling 650

Figure 4. Guidelines associated with the MAP.

Figure 5. Testability Process Modeled using MAP formalism.

7. Other Related Work

This section briefly mentions some of the most signi-
ficant related work (besides that already cited) which is
concerned with fault models, fault propagation and fault-
based testing.

The PIE model bears some similarity to the RELAY
model [21] in which a fault originates a potential failure
that must then transfer through computations to produce
a state failure and ultimately be revealed as an external
failure. Morell [22] developed a theory of fault-based
testing that placed emphasis on fault propagation and
then used symbolic testing to explore its limitations. The
work of Goradia [23] was also concerned with fault
propagation and a technique known as “dynamic impact

analysis” was formulated to determine the extent of the
effect of program components on the program output for
a specific test case. Hamlet and Voas [24] showed just
how useful a PIE testability estimate could be when used
in conjunction with conventional reliability testing to
provide, via so-called “squeeze play”, a confidence
bound for the correctness of a program. On a more cau-
tionary note however, they also provided a stark critique
of the assumptions underlying the PIE model.

We used the formalism MAP to define the PIE model.
PIE model is a testability process.MAP as process model
allows us to better understand the PIE process and
presents the selection of the appropriate probability
stimation. Map as representation system was originally e

Open Access JSEA

Testability Guidance Using a Process Modeling 651

Figure 6. Relationship between testability, DRR and semantic fault size.

defined in [18] and has been the subject of many uses
that go beyond the representation of process engineering.
We can find for example the use of maps for require-
ments engineering and alignment of COTS products or
customization of an ERP system to the needs of an
organization [25-27].

Finally to validate our proposed approach, we have
focused, after that, in describing how the approach
guides through an empirical evaluation.

8. Conclusions

Testability is an important attribute of software as far as
the testing community is concerned since its measure-
ment leads to the prospect of facilitating and improving
the testing process. Unfortunately testability has various
guises. Two distinct and significant interpretations are
due to Freedman [5] and Voas et al. [6]. Freedman’s
notion of testability has two facets, observability and
controllability, both of which can be measured by the
extent of certain modifications to a program component.
Voas’s notion of testability can be estimated by the com-
putationally expensive PIE technique and Voas himself
has suggested a possible link with the rather simpler con-
cept of domain-to-range ratio.

By taking a functional view of software, this paper has
produced a succinct characterization of controllability
and observability and developed a simple mathematical
relationship involving them and the domain-to-range
ratio. Semantic fault size has also been considered and its
relationship with Voas’s testability has been explored. A
consequence of this is the suggestion that testability of a
program location could be estimated more straightfor-
wardly by a small adaptation of the traditional strong

mutation testing process, to find the minimum semantic
size of all mutants at the location. Finally some refine-
ments of semantic fault size have been introduced and
their relationship with DRR has been considered. To
visualize the PIE model, we model the process using the
system of representation MAP. This formalism allows
giving more importance to the goals and the strategies
used in this process.

The authors recognize the desirability of validating the
connections between the concepts as discussed here.
Validation could take the form of empirical evidence, but
could also consider a more analytical approach along the
lines adopted by How Tai Wah [28-30] who has modeled
software as finite functions to deduce theoretical results
concerning fault coupling. In the meantime, this paper
has made a limited start at putting together the various
separate pieces of what might be considered a rather
complex jigsaw of related concepts.

REFERENCES
[1] R. Bache and M. Müllerburg, “Measures of Testability as

a Basis for Quality Assurance,” Software Engineering
Journal, Vol. 5, No. 2, 1990, pp. 86-92.
http://dx.doi.org/10.1049/sej.1990.0011

[2] J. Bainbridge, “Defining Testability Metrics Axiomati-
cally,” Software Testing, Verification and Reliability, Vol.
4, No. 2, 1994, pp. 63-80.
http://dx.doi.org/10.1002/stvr.4370040203

[3] A. Bertolino and L. Strigini, “On the Use of Testability
Measures for Dependability Assessment,” IEEE Transac-
tions on Software Engineering, Vol. 22, No. 2, 1996, pp.
97-108.

[4] B. W. Boehm, J. R. Brown and M. Lipow, “Quantitative

Open Access JSEA

http://dx.doi.org/10.1049/sej.1990.0011
http://dx.doi.org/10.1002/stvr.4370040203

Testability Guidance Using a Process Modeling 652

Evaluation of Software Quality,” Proceedings of 2nd In-
ternational Conference on Software Engineering, San
Francisco, IEEE Press, 1976, pp. 592-605.

[5] R. S. Freedman, “Testability of Software Components,”
IEEE Transactions on Software Engineering, Vol. 17, No.
6, 1991, pp. 553-564.

[6] J. M. Voas, L. J. Morell and K. W. Miller, “Predicting
Where Faults Can Hide from Testing,” IEEE Software,
Vol. 8, No. 2, 1991, pp. 41-48.
http://dx.doi.org/10.1109/52.73748

[7] J. Gao, J. Tsao and Y. Wu, “Testing and Quality Assu-
rance for Component-Based Software,” Artech House,
2005.

[8] N. Kazuteru, “Delay Fault Testability on Two-Rail Logic
Circuits,” Proceeding of the Defect and Fault Tolerance
of VLSI Systems, DFTVS ‘08. IEEE International Sympo-
sium, Boston, 1-3 October, 2008, pp. 482-490.

[9] J. M. Voas, “PIE: A Dynamic Failure-Based Technique,”
IEEE Transactions on Software Engineering, Vol. 18, No.
8, 1992, pp. 717-727.

[10] M. R. Woodward and Z. A. Al-Khanjari, “Testability,
Fault Size and the Domain-to-Range Ratio: An Eternal
Triangle,” Software Engineering Notes, Vol. 25, No. 5,
2000, pp. 168-172.
http://dx.doi.org/10.1145/347636.349016

[11] J. M. Voas and K. W. Miller, “Semantic Metrics for Soft-
ware Testability,” The Journal of Systems and Software,
Vol. 20, No. 3, 1993, pp. 207-216.
http://dx.doi.org/10.1016/0164-1212(93)90064-5

[12] M. R. Woodward and Z. A. Khanjari, “Testability, Fault
Size and the Domain-to-Range Ratio: An Eternal Trian-
gle,” Proceedings of the ACM SIGSOFT International
symposium on Software Testing and Analysis, Vol. 25, No.
5, 2000. pp. 168-172.

[13] A. J. Offutt and J. H. Hayes, “A Semantic Model of Pro-
gram Faults,” Proc. Int. Symp. on Software Testing and
Analysis ISSTA ’96, San Diego, ACM Press, 1996, pp.
195-200.

[14] R. A. DeMillo, D. S. Guindi, W. M. McCracken, A. J.
Offutt and K. N. King, “An Extended Overview of the
Mothra Software Testing Environment,” Proc. Second
Workshop on Software Testing, Verification and Analysis,
Banff, IEEE Press, 1988, pp. 142-151.
http://dx.doi.org/10.1109/WST.1988.5369

[15] M. A. Friedman and J. M. Voas, “Software Assessment:
Reliability, Safety, Testability,” Wiley, New York, 1995.

[16] N. Kraiem, “Use of the Process Meta-Model to Describe
Requirements Engineering Methodologies,” Proceeding
of the ICECCS, Como, 1997, pp. 306-318.

[17] S. Selmi, N. Kraiem and H. Hajjami Ben Ghazala,
“WApDM: A Multi-Process Approach for Web Applica-
tions Design,” Proceedings of International Conference
on Internet Computing ICOMP’05, Las Vegas, June 27-
30, 2005, pp. 115-125.

[18] C. Rolland and N. Prakash, “On the Adequate Modeling
of Business Process Families,” Proceedings of 8th Work-
shop on Business Process Modeling, Development, and
Support (BPMDS’07) Norway, 2007, pp. 1-8.

[19] C. Rolland, N. Prakash and A. Benjamen, “A Multi-
Model View of Process Modelling,” Requirements Engi-
neering, Vol. 4, No. 4, 1999, pp. 169-187.
http://dx.doi.org/10.1007/s007660050018

[20] S. S. Selmi, N. Kraiem and H. H. Ben Ghezala, “Guidan-
ce in Web Applications Design,” Proceeding of the
MoDISE-EUS’08 (CAISE2008), Montpellier, June 2008,
pp. 114-125.

[21] D. J. Richardson and M. C. Thompson, “An Analysis of
Test Data Selection Criteria Using the RELAY Model of
Fault Detection,” IEEE Transactions on Software Engi-
neering, Vol. 19, No. 6, 1993, pp. 533-553.

[22] L. J. Morell, “A Theory of Fault-Based Testing,” IEEE
Transactions on Software Engineering, Vol. 16, No. 8,
1990, pp. 844-857.

[23] T. Goradia, “Dynamic Impact Analysis: A Cost-Effective
Technique to Enforce Error-Propagation,” Proc. Int.
Symp. on Software Testing and Analysis ISSTA ’93,
Cambridge, ACM Press, 1993, pp. 171-181.

[24] D. Hamlet and J. Voas, “Faults on Its Sleeve: Amplifying
Software Reliability Testing,” Proc. Int. Symp. on Soft-
ware Testing and Analysis ISSTA ’93, Cambridge, ACM
Press, 1993, pp. 89-98.

[25] C. Rolland and N. Prakash, “Bridging the Gap between
Organisational Needs and ERP Functionality,” Require-
ments Engineering Journal, Vol. 5, 2000, pp. 180-193.

[26] C. Rolland and N. Prakash, “Matching ERP System
Functionality to Customer Requirements,” Proceedings of
the 5th IEEE International Symposium on Requirements
Engineering, Toronto, August 27-31, 2001, pp. 66-75.

[27] C. Rolland, C. Salinesi and A. Etien, “Eliciting Gaps in
Requirements Change,” Requirements Engineering Jour-
nal, Vol. 9, No. 1, 2003, pp. 1-15.

[28] C. Rolland and C. Salinesi, “Fitting Business Models to
Systems Functionality Exploring the Fitness Relation-
ship,” Proceedings of the 15th Conference on Advanced
Information Systems Engineering CAiSE’03, Austria,
June 2003, pp. 647-664.

[29] K. S. How Tai Wah, “A Theoretical Study of Fault Cou-
pling,” Software Testing, Verification and Reliability, Vol.
10, No. 1, 2000, pp. 3-45.
http://dx.doi.org/10.1002/(SICI)1099-1689(200003)10:1<
3::AID-STVR196>3.0.CO;2-P

[30] J. Gao, J. Guan, A. Ma, C. Tao and T. Kung,” Testing A
Configurable Component-Based Software—Configura-
tion Test Modeling and Complexity Analysis,” The 23th
International Conference on Software Engineering and
Knowledge Engineering, Miami, July 7-9, 2011, pp.
495-502.

Open Access JSEA

http://dx.doi.org/10.1109/52.73748
http://dx.doi.org/10.1145/347636.349016
http://dx.doi.org/10.1016/0164-1212(93)90064-5
http://dx.doi.org/10.1109/WST.1988.5369
http://dx.doi.org/10.1007/s007660050018
http://dx.doi.org/10.1002/(SICI)1099-1689(200003)10:1%3C3::AID-STVR196%3E3.0.CO;2-P
http://dx.doi.org/10.1002/(SICI)1099-1689(200003)10:1%3C3::AID-STVR196%3E3.0.CO;2-P

