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ABSTRACT 

Software testability took a lot of interests of software community. Indeed, this concept has been interpreted in a variety 
of ways. One interpretation is concerned with the extent of the modifications a program component requires, so that the 
entire behavior of the component is observable and controllable. Another interpretation is the ease with which faults, if 
present in a program, can be revealed and estimated by the testing process and the propagation, infection and execution 
(PIE) model. It has been suggested that this particular interpretation of testability might be linked with two concepts: 1) 
the metric domain-to-range ratio (DRR), i.e. the ratio of the cardinality of the set of all inputs (the domain) to the car- 
dinality of the set of all outputs (the range) and 2) the semantic fault size. First, this paper describes the connections 
between 1) the domain-to-range ratio and the observability and controllability aspects of testability and 2) the PIE 
model and fault size. The main goal of the work described here, is to seek greater understanding of testability in general 
and, ultimately, to find easier ways of determining it. Second, in this paper we try to model the PIE estimation using 
formalism for process representation system which is MAP formalism. We also use this process model to elaborate and 
to present the relationship between testability, PIE, DRR and fault size. Our aim is to enhance the guidance mechanisms 
of the process execution. After clarifying the existing relationship between semantic fault and testability, we improve 
the MAP model by adding qualitative criteria. We then offer a way to express maps to offer an automatic guidance of 
the map. 
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1. Introduction 

Testability represents one of the important quality attrib- 
utes that could affect run-time behavior and system de- 
sign. It is defined as the easiness of creating test criteria 
for the system and its components, and to execute these 
tests in order to determine if the criteria are met. Good 
testability measure makes it easier to isolate faults in a 
timely and effective manner. It represents area of concern 
that has the potential for application wide impact across 
the development phases. The importance of this concept 
attracted the researchers to relate it to other simpler con- 
cepts to provide an estimate of the testability in an easier 
and a faster way. Testability received different interpreta- 
tions from the researchers [1-4]. These interpretations 
suggested some relationships between the testability and 
other related concepts. Freedman [5] suggested that in 
order to make the behavior of the component both ob-  

servable and controllable, the testability could be directly 
related to the inputs and outputs of a given program 
component. Voas and colleagues [6-8] defined the test- 
ability as the ease with which program faults may be 
exposed if they are present in the concerned program. 
They refer to this definition as the propagation, infection 
and execution (PIE) model [9]. They found that it is dif- 
ficult and expensive to measure program testability with 
this technique. Therefore, they tried to relate it to other 
easier concepts that could provide an indication to the 
program testability and could guide the researchers to the 
best way to design and develop the software product. 

To fulfill this role, Woodward and Al-Khanjari [10] 
explored the relationship between program testability and 
other concepts and made simple observations. Their con- 
sideration was restricted to the creation of idealized 
model of programs as functions. To show this functional 
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view of software, they used a framework in which they 
related the program testability to the Dynamic Range 
Ratio (DRR) and semantic fault size. For clarity and flow 
of information, the concepts are revisited.  

In this paper, we introduce a new Situational Method 
for Testability. It aims to respond to the following limits 
of traditional methods: they do not cover all testability 
aspects and they lack flexibility and guidance. The whole 
work consists of the study of PIE testability process 
using a process modeling. This paper describes the 
different types of guidance which are provided by the 
approach: 1) Guidance in the selection of the most 
appropriate process-model, 2) Guidance in the selection 
of the most suitable approach. 

In fact, the PIE process is modeled using a process 
representation system named MAP. This formalism 
allows us to represent the goals through the process and 
the strategies involved into it. Getting a good visual 
representation of our process can be beneficial to the 
better understanding of the problem encountered during 
the test process. The map contains a finite number of 
paths, each of them prescribing a way to elaborate testa- 
bility steps.  

The remainder of this paper is organized as follows: 
Sections 2-5 of this paper present the revisited work of 
Woodward and Al-Khanjari [10] in terms of a functional 
view of software, Domain-To-Range Ratio (DRR), Do- 
main Testability and DRR, the Semantic Fault Size, the 
relationship between Semantic Fault size and Testability, 
Semantic Fault Size and DRR. Section 6 demonstrates 
the process Meta-Model and how to formalize it with 
MAP. The paper finishes with a discussion of some other 
related work followed by some concluding remarks. 

2. A Functional View of Software 

Every item of software at its most primitive level may be 
viewed as a function or mapping according to some 
specification, S, from a set of input values (its domain, D) 
to a set of output values (its range, R). 

A program which implements specification S should 
also map from D to R. However, if a fault f exists in the 
program, there will be some subset of the domain, Df say, 
on which the erroneous program Pf computes a faulty 
result. The set of faulty results, denoted Rf, may contain 
values both in R and outside R. The effect of Pf on values 
outside of D remains unspecified. See Figure 1. Note 
that the domain and the range can be considered for an 
entire program, an individual program component, a 
program path or simply a single program location. 

3. Domain-to-Range Ratio (DRR) 

The domain-to-range ratio (DRR) has been proposed by 
Voas and Miller [11] as a specification metric. Put sim- 

ply: 

Domain-to-Range Ratio
D

R
          (1) 

where |D| is the cardinality of the domain of the 
specification and |R| is the cardinality of the range. DRR 
can be determined for mathematical or computational 
functions. As presented in [10] we consider, for example, 
the function f(d) = d mod 2, where the input d is a 
member of the set of natural numbers not greater than 
100, i.e.  1,2,3, ,100D   . Clearly the function 
generates only two possible outputs, namely 0 when d is 
even and 1 when d is odd, so that R = {0,1} and DRR = 
100/2 = 50. Difficulties arise when the domain and the 
range, are infinite. 

DRR metric provides an approximate measure of in- 
formation loss. Information loss may become manifest as 
“internal data state collapse” which occurs when two dif- 
ferent data states are input in a program and produces the 
same output state. Voas and Miller [11,12] remark a 
connection between DRR and state collapse as presented 
[10], and imply that the testability of a program is corre- 
lated with the DRR. High DRR is thought to lead to low 
testability and vice versa. 

4. Domain Testability and DRR 

Domain testability involves use of the concepts of obser- 
vability and controllability [5]. A software component is 
observable, if a test input is repeated, the output is the 
same. If the outputs are not the same, the component is 
dependent on hidden states not identified by the tester 
and Freedman calls this an “input inconsistency”. A soft- 
ware component is controllable, if an output identifier is 
specified to be a certain range of values and there are 
particular instances of values that cannot be generated by 
any test input values, those are termed “output inconsis- 
tencies”. 

Most functions and procedures are not a priori 
observable and controllable. The modifications required 
to achieve domain testability are called extensions.  
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Figure 1. Functional view of a faulty program. 
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Observable extensions are achieved by introducing new 
input variables so that the component becomes observa- 
ble, i.e. distinct outputs can only arise from distinct 
inputs.Controllable extensions are achieved by modify- 
ing outputs for the given component so that it becomes 
controllable, i.e. all claimed outputs are attainable with 
some input. Controllability is achieved by an appropriate 
reduction of the range. Observability and Controllability 
can be measured as presented in [10]. 

In order to consider the relationship between domain 
testability and domain-to-range ratio, the domain and 
range of the component after modification with observ- 
able and controllable extensions can be written as [10]: 

DRR
D D D

R R R

  

  
              (2) 

Domain-to-range ratio of a program component, after 
modification to make it domain testable, is the domain- 
to-range ratio of the component before modification mul- 
tiplied by one plus the relative size of the domain exten- 
sion and divided by one minus the relative size of the 
range reduction. 

5. Semantic Fault Size 

Offutt and Hayes [13] drew a distinction between the 
syntactic and the semantic nature of faults. The syntactic 
nature can be described by the syntactical differences 
between the faulty program and the correct program. The 
semantic nature of a fault, on the other hand, results from 
the view that for some subset of the input domain a faulty 
computation takes place producing incorrect output. 
Corresponding to the syntactic size of a fault, Offutt and 
Hayes defined the semantic size of a fault as “the relative 
size of the sub domain of D for which the output map- 
ping is incorrect”. It should be obvious that there is no 
reason why there should be a link between syntactic fault 
size and semantic fault size. Indeed it is perfectly possi- 
ble to find situations where a syntactically small fault 
results in a very large semantic fault size, and vice versa. 

5.1. Semantic Fault Size and Testability 

Offutt and Hayes [13] suggested that semantic fault size 
is closely related to testability in the sense of Voas et al. 
[6]. If a statement in the subject program has low 
testability, then any fault associated with that statement 
might be expected to have small semantic size and any 
statement containing a fault with large semantic size 
could be expected to exhibit high testability. 

To explore this connection between semantic size and 
testability further, consider the propagation, infection and 
execution (PIE) model that provides the basis for test- 
ability estimation. According to the PIE model, the 
probability of failure under a particular input distribution, 

is a combination of the individual probabilities: 1) that 
the fault is executed (E = execution); 2) that execution of 
the fault causes corruption of the data state (I = infection); 
and 3) that the faulty data state propagates to the output 
(P = propagation) [14]. 

Referring to Figure 2, where, as before, D represents 
the entire input domain of the subject program, there will 
be some subset E of D such that all test values in E cause 
the fault to be executed. Amongst those input values that 
cause fault execution, some will result in data state 
infection, as represented by the region I. Finally amongst 
those input values that cause data state infection, some 
will propagate the faulty state to the output, as repre- 
sented by the region P. 

In practice Voas [9] suggests estimating testability at a 
location by separate estimation processes for the three 
individual components of the model. These processes are 
presented in Section 6. 

An alternative testability estimation procedure could 
be based on considering versions of the chosen program 
with location L mutated. The mutation change, provided 
it does not generate an equivalent mutant, can be 
regarded as a seeded fault that has a semantic size in the 
same way as naturally occurring faults. The smallest 
semantic size of such mutants, being a worst case, could 
provide an estimate for testability at the location L.  

A traditional (strong) mutation testing tool such as 
Mothra [14] could be used. It requires establishing a 
large number of input test cases chosen randomly from 
the input domain and then determining for each mutant 
generated by the tool, the proportion of test cases that kill 
that mutant. This is different from normal usage where, 
once a mutant is killed with some test case, no further 
test cases are applied to that mutant. Offutt and Hayes 
[13] did adopt this procedure to estimate the semantic 
size of all mutants created by the same mutation operator 
in an attempt to measure the size of given fault types. 
The aim is to determine the minimum semantic size of all 
mutations at a location. Although still an expensive 
process, this has the merit, superficially at least, of being 
considerably more straightforward than using separate  
 

E
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Figure 2. Input domain view of the PIE model. 
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estimation procedures for the three components of the 
PIE model. 

It is noted in passing that since propagation analysis is 
akin to strong mutation testing, and infection analysis is 
akin to weak mutation testing, a similar distinction could 
be made for semantic fault size. On the other hand, weak 
semantic fault size can be considered as the proportion of 
the input domain that merely results in an infected data 
state immediately after executing a fault, i.e. 

Weak semantic fault size
I

D
          (3) 

5.2. Semantic Fault Size and DRR 

Semantic can be related to the domain-to-range ratio 
(DRR). However, since semantic fault size depends 
solely on the input domain, whereas DRR depends on 
both the domain and the range, there is unlikely to be a 
direct connection. What can be deduced is a relationship 
involving fault size, measured in terms of input and 
output, and DRR both for the correct program and also 
for a faulty version when executed over just that portion 
of the domain that exposes the fault. 

Then denoting DRR for the correct program P with 
input domain D by DRR DP  and for faulty program Pf 
with just the fault-exposing input domain Df by 
DRR

f fDP  the following is obtained: 

output fault size
DRR DRR

input fault sizef fD D P P        (4) 

This equation captures the (admittedly) rather limited 
connection between DRR and semantic fault size. 

6. The Process Meta-Model 

Process modeling is considered today as a key issue by 
both the Software Engineering (SE) and the Information 
Systems Engineering (ISE) communities. Recent interest 
in process modeling is part of the shift of focus from the 
product to the process view of systems development. 
There is already considerable evidence for believing that 
there shall be both: improved productivity of the soft- 
ware systems industry and improved systems quality, as 
a result of improved development processes. Recent in- 
depth studies of software development practices [15], 
however, demonstrate that we know very little about the 
development process. Thus, to realize the promise of 
systems development processes, there is a great need for 
“a conceptual process model framework” [16]. 

Process modeling is a rather new research area. Con- 
sequently there is no consensus on what is a good for- 
malism to represent processes or even on what the final 
objectives [15]. Process models may be constructed for a 
number of different reasons, to fulfill different purposes. 

One purpose may be purely descriptive, that is, to record 
how some process or class of processes is actually per-
formed. 

Alternatively, models may be constructed to guide, 
support and provide advises or instructions to developers, 
i.e.: to be prescriptive. The SE community has focused 
on descriptive models more than the ISE community. 

Yet another way of looking at process models is in 
terms of the process aspect that they address: some focus 
on managerial aspects of the development process where- 
as others have technical concerns. 

We propose in this paper a well-defined and repeatable 
approach to generate well-formed guidance centered 
process models. For guidance centered process models to 
be well-formed, we have identified a list of requirements 
and intentions. 

To realize and adapt this approach we adopted a goal- 
perspective, the Map-driven process modeling approach. 
The Map approach is a representation system based on 
intentions and strategies. In this system, intentions ab- 
stract from organizational tasks and the different ways in 
which tasks are performed are intention-achievement 
strategies. The map is capable of abstracting from the 
detail of business processes to highlight organizational 
goals and their achievement.  

In this section we first introduce the key concepts of a 
map and their relationships. Then we define map com- 
ponents as process to for modeling the testability process. 

The Process Meta-Model Formalized with MAP 

This process is modeled using MAP formalism which is 
a process model. This model is a process representation 
system based on a non-deterministic ordering of goals 
and strategies [17]. A map can be represented as a la- 
beled directed graph. The nodes represent goals and the 
links between nodescorrespond to strategies. The di- 
rected nature of the graph shows the order of the differ- 
ent goals. 

A MAP is defined as a meta-process model which al- 
lows designing several processes under a single repre- 
sentation (Figure 3). It is a labeled directed graph with 
intentions as nodes and strategies as edges between in- 
tentions. A MAP is composed of one or more sections. A 
section is a triplet < source intention I, target intention J, 
strategy Sij> that captures the specific manner to achieve 
the intention J starting from the intention I with the 
strategy Sij. An intention is expressed in natural language 
and is composed of a verb followed by parameters. Each 
MAP has two special intentions “Start” and “Stop” to 
respectively begin and end the navigation in the MAP. 
Each intention can only appear once in a given MAP. 
Each section is associated a guideline that can be one of 
the following three types: Simple, Tactic or Strategic. 

here are three guidelines associated with a MAP: IAG,  T 
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Figure 3. The MAP process meta-model. 
 
SSG and ISG. IAG can be one of the aforementioned 
types namely tactic or simple or strategic while SSG and 
ISG are always tactic guidelines. For more details see 
[18]. These guidelines are further explained below.  

1) A guideline named “Intention Achievement Guide- 
line” (IAG) is associated to each section providing an 
operational mean to satisfy the target intention of the 
section.   

2) “Strategy Selection Guideline” (SSG) determines 
which strategies connect two intentions and helps to 
choose the most appropriate one according to the given 
situation. It is applied when more than one strategy exists 
to satisfy a target intention from a source one.  

3) “Intention Selection Guideline” (ISG) determines 
which intentions follow a given one and helps in the se-
lection of one of them. It results in the selected intention 
and the corresponding set of either IAGs or SSGs. The 
former is valid when there is only one section between 
the source and target intentions, whereas the latter occurs 
when there are several sections. 

Figure 4 shows that: 1) for a section <Ii, Ij, Sij>, there 
is an IAG, 2) for a couple of intentions <Ii, Ij>, there is 
an SSG, and 3) for an intention Ii, there is an ISG. 

As presented in Figure 5, a map has two special goals, 
Start and Stop which represent the beginning and the 
ending of the process respectively. A goal represents a 
state that is expected to be reached and a strategy corre- 
sponds to how to achieve a goal. To estimate the testabil- 
ity, the process consists of the estimation of the probabil- 
ity of propagation, infection and execution. We try 
through this MAP to model our process. We can find the 
principal goals which are the estimation of the probabil- 
ity of propagation, infection and execution. Achieving 
these goals allows the estimation of the testability. 

Also, the process meta-model for the Testability for- 
malized using MAP is shown in Figure 5. It contains 
four core intentions “Estimate Propagation probability” 
and “Estimate Execution Probability”, “Estimate Infec- 

tion Probability” and “Estimate Testability” in addition 
to “Start” and “Stop” intentions. We use also this process 
model to elaborate and to present the relationship be- 
tween testability, PIE, DRR and semantic fault size as 
presented in Figure 6. The main purpose of using the 
MAP formalism is to simplify the relationship between 
testability (PIE), DRR and semantic fault size. The MAP 
model was introduced in this paper in order to model 
processes in a flexible way. 

To allow tester or user to go through the different 
intentions of the map, the approach provides a set of 
factors called Situational Factors [19,20]. 

Estimating testability involves the use of observability, 
controllability concepts and some extensions which are 
modifications required to achieve domain testability. The 
relationship between testability and semantic fault size is 
important where in case of low testability we expect to 
have small semantic size and in case of high testabilitywe 
expect to have large semantic fault size. Testability is 
correlated with the domain/range ratio. Adapting do- 
main-to-range ratio needs two ways: to invert the ratio so 
that it becomes the range-to-domain ratio (RDR) or to 
calculate the range-to-domain ratio dynamically. 

The proposed situational factors characterize current 
situation and then, help designer to choose the appropri- 
ate strategy among several presented in the map. We 
have identified the following factors: Application type, 
Application complexity, Similarity with others applica- 
tions, User-application adaptation, User-application 
adaptation, Tester Experience [7]. 

Situational factors guide and orient tester during test- 
ing through the design meta-model process. When we 
say guide the tester we mean that this person can choose 
the appropriate goal to achieve the different options in 
PIE process (propagation estimation, infection estima- 
tion and execution estimation). After the achievements 
of these goals, the tester can calculate the global test- 
bility. a 
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Figure 4. Guidelines associated with the MAP. 
 

 

Figure 5. Testability Process Modeled using MAP formalism. 
 
7. Other Related Work 

This section briefly mentions some of the most signi- 
ficant related work (besides that already cited) which is 
concerned with fault models, fault propagation and fault- 
based testing. 

The PIE model bears some similarity to the RELAY 
model [21] in which a fault originates a potential failure 
that must then transfer through computations to produce 
a state failure and ultimately be revealed as an external 
failure. Morell [22] developed a theory of fault-based 
testing that placed emphasis on fault propagation and 
then used symbolic testing to explore its limitations. The 
work of Goradia [23] was also concerned with fault 
propagation and a technique known as “dynamic impact  

analysis” was formulated to determine the extent of the 
effect of program components on the program output for 
a specific test case. Hamlet and Voas [24] showed just 
how useful a PIE testability estimate could be when used 
in conjunction with conventional reliability testing to 
provide, via so-called “squeeze play”, a confidence 
bound for the correctness of a program. On a more cau- 
tionary note however, they also provided a stark critique 
of the assumptions underlying the PIE model. 

We used the formalism MAP to define the PIE model. 
PIE model is a testability process.MAP as process model 
allows us to better understand the PIE process and 
presents the selection of the appropriate probability 
stimation. Map as representation system was originally  e 
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Figure 6. Relationship between testability, DRR and semantic fault size. 
 
defined in [18] and has been the subject of many uses 
that go beyond the representation of process engineering. 
We can find for example the use of maps for require- 
ments engineering and alignment of COTS products or 
customization of an ERP system to the needs of an 
organization [25-27]. 

Finally to validate our proposed approach, we have 
focused, after that, in describing how the approach 
guides through an empirical evaluation. 

8. Conclusions 

Testability is an important attribute of software as far as 
the testing community is concerned since its measure- 
ment leads to the prospect of facilitating and improving 
the testing process. Unfortunately testability has various 
guises. Two distinct and significant interpretations are 
due to Freedman [5] and Voas et al. [6]. Freedman’s 
notion of testability has two facets, observability and 
controllability, both of which can be measured by the 
extent of certain modifications to a program component. 
Voas’s notion of testability can be estimated by the com- 
putationally expensive PIE technique and Voas himself 
has suggested a possible link with the rather simpler con- 
cept of domain-to-range ratio. 

By taking a functional view of software, this paper has 
produced a succinct characterization of controllability 
and observability and developed a simple mathematical 
relationship involving them and the domain-to-range 
ratio. Semantic fault size has also been considered and its 
relationship with Voas’s testability has been explored. A 
consequence of this is the suggestion that testability of a 
program location could be estimated more straightfor- 
wardly by a small adaptation of the traditional strong 

mutation testing process, to find the minimum semantic 
size of all mutants at the location. Finally some refine- 
ments of semantic fault size have been introduced and 
their relationship with DRR has been considered. To 
visualize the PIE model, we model the process using the 
system of representation MAP. This formalism allows 
giving more importance to the goals and the strategies 
used in this process.  

The authors recognize the desirability of validating the 
connections between the concepts as discussed here. 
Validation could take the form of empirical evidence, but 
could also consider a more analytical approach along the 
lines adopted by How Tai Wah [28-30] who has modeled 
software as finite functions to deduce theoretical results 
concerning fault coupling. In the meantime, this paper 
has made a limited start at putting together the various 
separate pieces of what might be considered a rather 
complex jigsaw of related concepts. 
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