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Abstract 
 
This paper deals with the distributed consensus problem of high-order multi-agent systems with nonlinear 
dynamics subject to external disturbances. The network topology is assumed to be a fixed undirected graph. 
Some sufficient conditions are derived, under which the consensus can be achieved with a prescribed H  

norm bound. It is shown that the parameter matrix in the consensus algorithm can be designed by solving 
two linear matrix inequalities (LMIs). In particular, if the nonzero eigenvalues of the laplacian matrix ac-
cording to the network topology are identical, the parameter matrix in the consensus algorithm can be de-
signed by solving one LMI. A numerical example is given to illustrate the proposed results. 
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1. Introduction 
 
The consensus problem of multi-agent systems has been 
researched extensively in recent years. This is because of 
its widely application in much areas such as flocking 
[1-2], synchronization of coupled oscillators [3], forma-
tion control of mobile robots [4-5], distributed computa-
tion [6] and information fusion in wireless sensor net-
works [7]. The object of consensus control is to design 
consensus protocol such that the group of agents can 
asymptotically agree upon certain quantities of interest 
based on information received from their neighbors. 

Most of the work on the consensus problem focuses on 
the multi-agent systems with first-order dynamics. In 
particular, [8] deals with the first-order multi-agent sys-
tems with switching topologies and time delays in a con-
tinuous setting. The fist-order multi-agent systems with 
switching topologies is investigated in [9] in a dis-
crete-time setting. The consensus problem has also been 
investigated from many other aspects such as reference 
signals [10], asynchronous sampling time [11], and so on. 
Recently, the consensus problem of second-order multi- 
agent systems has been investigated extensively [12-14]. 
In particular, the consensus problem of second-order 
multi-agent systems with nonlinear dynamics was inves-

tigated in [15]. The nonlinear dynamics can be taken as 
the potential functions or the desired final dynamics of 
the agents. There is also some work on the consensus 
problems of high-order multi-agent systems [16-17]. 

Generally speaking, the consensus cannot be achieved 
accurately if there are external disturbances. To deal with 
this problem, the H  consensus problem is considered 
[18-21]. It is shown that for undirected network topolo-
gies, the desired parameter matrix in the consensus algo-
rithm can be designed by solving two LMIs, which relate 
to the system matrix of the agents and the eigenvalues of 
the laplacian matrix corresponding to the network topol-
ogy. The 2H  consensus problem was investigated in 
[22]. 

In the aforementioned work on the H  or 2H  con-
sensus problem, the nonlinear dynamics was not consid-
ered. As is mentioned in [14-15] much multi-agent sys-
tems have nonlinear dynamics. Motivated by this, this 
paper considers the H  consensus problem of high- 
order multi-agent systems with nonlinear dynamics. To 
the best of the author's knowledge, this problem has not 
been considered in the literature. Some sufficient condi-
tions will be derived, under which the consensus can be 
achieved with a prescribed H  norm bound. It will be 
shown that the parameter matrix in the consensus algo-
rithm can be designed by solving two LMIs, which relate 
to the system matrix of the agents and the smallest and 
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the biggest nonzero eigenvalue of the laplacian matrix 
corresponding to the network topology. In particular, if 
the nonzero eigenvalues of the laplacian matrix accord-
ing to the network topology are identical, the parameter 
matrix in the consensus algorithm can be designed by 
solving one LMI. 
 
2. Preliminary Notations and Problem  

Formulation 
 
Let  , ,     be a weighted undirected graph of 
order  N ,  where   1, , N   i s  the node set . 
     is a set of unordered pairs of nodes, and   

is the adjacency matrix.  An undirected path is a se-
quence of edges in a undirected graph of the form 
 1 2
v , v ,i i  2 3

v , v ,i i  , where 
1 2
,i iv v    An undi-

rected graph is called connected if for any two nodes of 
the graph, there exists a path that follows the edges of the 
graph. The adjacency matrix  is a nonnegative matrix 

N N
d ija       satisfying a 0ii   for any i , 

a a 0ij ji  , if  ,j i  , and a 0ij   if agents j  
and i  are not adjacent. The Laplacian matrix of the 

graph is defined as N N
ijl       with ii ij

j i

l a


    

and l a , .ij ij i j    We can see that   satisfies 
01  and 0T 1   where   .1, ,1

T1   For matri-
ces M and N, M N  denotes their Kronecker product. 
It is well known that if the undirected network topology 
  is connected, the lapalacian matrix corresponding to 
  has 1N   positive eigenvalues and a simple zero 
eigenvalue. 

Consider a group of N agents with the following dy-
namics: 

 1 2 ,i i i i ix Ax Bu B B f x            (1) 

where   ,m
ix t     p

iu t   are, respectively, the state, 
the control input of agent i ,   m

i t   is the external 
disturbance which belongs to  2 0, ,  and    m

if x   
is a nonlinear function. 

Assumption 1: There exists a positive scalar   such 
that 

       
    ,
, .

T

i j i j

T

i j i j

m
i j

f x f x f x f x

x x x x

x x



       
  

 
 

Remark 1: Assumption 1 is similar to the Assumption 
1 in [14]. It is a Lipschitz-type condition satisfied by 
many systems.  

Definition 1: We say algorithm ui  solves the con-
sensus problem if 

1

0,  ,  .
N

j
i

j

x
x t i

N

       

Definition 2: We say algorithm ui  solves the con-
sensus problem with H  norm bound   if the fol-
lowing two conditions are satisfied: 

1) Algorithm ui  solves the consensus problem if 
0;    

2) If 0 0,z   the following inequality is satisfied: 
2 22

0 0
,z dt dt 

 
   

where 

1

1

1

,

,

,

N
j

i i
j

TT T
N

TT T
N

x
z x

N

z z z

  



 

   

   







 

and 0z  is the initial value of z. 
The object of the H  consensus control is to design 

consensus algorithms such that the consensus problem is 
solved for a prescribed H  norm bound. 

Lemma 1: (Schur complement [23]) Let S be a sym-
metric matrix of partitioned form ijS S     with 

11 ,r rS   ( )
12

r n rS    and ( ) ( )
22

n r n rS     Then, 
0S   if and only if 11 0,S   1

22 21 11 12 0,S S S S   or 
equivalently 1

22 11 12 22 210, 0.  S S S S S  
Lemma 2: For matrices A, B, C, D with appropriate 

dimensions, one has 

       ,  
T T TA B A B CD A C B D       

and  A B C A C B C       

 
3. Results 
 
In this section, the H  consensus problem of multi- 
agent systems with nonlinear dynamics will be investi-
gated. Considers the following state feedback consensus 
algorithm: 

   
1

N

i ij i j
j

u t K a x x


             (2) 

With (2), system (1) becomes 

   1 2
1

,
N

i i ij i j i i
j

x Ax BK a x x B B f x


       (3) 

which can be written in a compact form as 

   
 

1

2     ,

N N

N

x I A L BK x I B

I B f

     

 


        (4) 

where 1  ,N
T T T

x x x     and 1( ) ( ) . 
TT

N
Tf f x f x     

By the definition of z we have the consensus is 
achieved if and only if 0z   as .t   It is easy to 
see that 
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  ,mz H I x                    (5) 

where N NH   with 

1
,

1
, .

ij

N
i j

NH

i j
N

  
  


 

It can be seen that ,T
NH I N 11  2 ,H H  

,T T
N NH 1 0  N NH 1 0  and .H H     

Lemma 3: There exists an orthogonal matrix 
N NU   with last column N N1 H such that 

1 1 1, .
* 0 * 0
N n NT TI

U HU U LU     
    
   

0 0
 

From (4) and (5) we have 

 
   
 

   
 

1

2

1

2

 

     

 

     .

mz H I x

H A L BK x H B

H B f

H A L BK z H B

H B f





 

     

 

     

 



     (6) 

Define 1
NU U
N

 
 
 

1 , from Lemma 3 we have  

1 1 1
T

NU HU I   and 1 1 .TU LU    Define  T
mU I z   

1 ,
TT T

N      we have 

   

     1 2

1 1 1

1 1
1 2

1 1

     

* 0 * 0

.

T
m m

T T
m m

N n N

T T

T T
N N

U I H A L BK U I z

U I H B U I H B f

I
A BK

U H U H
B B f









  

 

     

     

     
       

    
      

                  

0 0

0 0



(7) 

It can be seen that 0N  . So 0   if and only if  

0i  , 1, , 1.i N  Define 1 1 .
TT T

N         
From (7) we have 

 
   

1

1 1 1 2     .

N

T T

I A BK

U H B U H B f

 


   

   


      (8) 

Note that the eigenvalues of   are 2 , , .N   
There exists an orthogonal matrix    1 1N NF     so 
that  2 , , .T

NF F diag      

Define   1 1

TT T T
m NF I           we have 

  
   

1 2

1 1 1 2

, ,

     .

N N

T T T T

I A diag BK

F U H B F U H B f

   



   

   

 
  (9) 

Noting that ,T T T Tz z          we conclude 

that algorithm (2) solves the consensus problem with 

H  norm bound   if and only if system (9) is asymp-

totically stable with ,T 

  where T 

 denotes 

the H  norm of the transfer function matrix from   

to  . 
Theorem 1: Suppose the undirected graph   is 

connected and the nonzero eigenvalues of   are 

2 , , N  . Using algorithm (2), the consensus is 
achieved with H  norm bound   if there exists a 
symmetric positive definite matrix X  and a matrix W  
such that the LMIs 

1 2
2

1

2

0 0
0,  0 0

1
0 0

1

T

T
m

m

m

B XB X

B I

B I

X I





 
 

 
 

 
   



    (10) 

2, ,i N  hold, where  

 .T T T
iAX XA BW W B      

In this case, the parameter matrix in (2) can be chosen as 
1.K WX   

Proof: Assume that the undirected graph   is con-
nected, we have 2 0  . Suppose there exists a symmet-
ric positive definite matrix X and a matrix W such that 
(10) hold. Define 1,WP X   1.K WX   Pre- and 

post-multiply both sides of (10) by

0 0 0

0 0 0

0 0 0

0 0 0

m

m

m

P

I

I

I

 
 
 
 
 
 

 

one can get 

1 2
2

1

2

0 0
0,0 0

1
0 0

1

T
m

T
m

m

m m

PB B I

B P I

B I

I I





 
 

 
 

 
   



    (11) 

2, ,i N  hold, where  

 T T T
iPA A P PBK K B P     . 

For ,i  3, , 1,i N   there exists 0 1i   such 
that  2 1 .i N       It is easy to see that (11) also 
holds for 3, , 1i N  . By Lemma 1 we know that (11) 
holds if and only if 

 2 2 1
2

1

1
0

T
m

T
m

B B I PB

B P I




    
 

 
     (12) 

holds. Define 
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 
   

1 1

2
1 1 1

,
N

T

N N m

I PB

I PB I


  

  
 

   
  

where 

     
   

21

1 2 2 1

, ,

     .

T T
NN m

T T
N N m

I diag PBK K B P

I B B I PA A P I

 



 

 

    

     


 

From (12) we know that 0.   
Next prove that the consensus is achieved if 0.   

If 0  , (9) becomes 

  
 

1 2

1 2

, ,

     .

N N

T T

I A diag BK

F U H B f

      

 

 
     (13) 

Consider the Lyapunov function  

   1 .T
NV I P     

Because P symmetric positive definite, we have  V   
is symmetric positive definite with respect to .  Taking 
derivative of  V   along (13), we have 

    
    
  

 
   
 

1 1

1 2

1 1 2

1

2

1 2

2

          2 , ,

           2

        

          , ,

          2 .

T
N N

T
N N

T T T
N

T T
N

T T
N

T T T

V I P I A

I P diag BK

I P F U H B f

I PA A P

diag PBK K B P

F U H B f

  

   





  



 







  

  

  

  

  

 







 (14) 

Because U is an orthogonal matrix, one has 

1 1

T

T N N
NI U U U U

N N

   
     

   

1 1
 It follows that 

1 1 1.
T

NU U I   Then we have 

 
   
 

   

1 2

1 1 2 2

2

1 2 2

2

   

.

T T T

T T T T

T
m

T T T
N m

F U H B f

F U U F B B

f H I f

I B B f H I f



 

 



   

   

     

       (15) 

Notice that 

 

       

   
1

1

1

1

T
m

N T

i j i j
i j i

N T

i j i j
i j i

f H I f

f x f x f x f x
N

x x x x
N



 

 



        

  





 

 
.

T
m

T T

x H I x

z z



  

 

 
                    (16) 

From (14)-(16) we have 

 
 

   
 

 
   

1

2

1 2 2

1 2 2

2

  , ,

  

  , , .

T T
N

T T
N

T T T
N

T T T
N m

T T
N

V

I PA A P

diag PBK K B P

I B B

I PA A P B B I

diag PBK K B P





  

   

 

  







  

  

    

    

  







    (17) 

It follows from (12) that  2 2 0,1T
mB B I     

which, together with (17) implies that  V   is negative 
definite with respect to  . It then follows that 0   
asymptotically. From the analysis above we know the 
consensus can be achieved. 

Assume that 0.   Taking derivative of  V   
along (9), we have 

    
    

  
 

   
   

1 1

2 1 1

1 2

1 2 2

2

1 1

2

          , ,

           

        

          , ,

           2 .

T
N N

T T
N

T T

T T T
N m

T T
N

T T T

V I P I A

diag BK F U H B

F U H B f

I PA A P B B I

diag PBK K B P

F U H PB

 

   

 

  

 

 



  

   

 

    

  

 







 

(18) 

Assume that 0 0z  , which implies that 0 0  , 
where 0  is the initial state of  . It follows that 

   


 

   
    

2 22

0 0

2 22
00

2

0

1 2 2

2

1 1

0

  

  , ,

  2

,

T T

T T T
N m

T T
N

T T T

T

z dt dt

V dt V V

I PA A P B B I

diag PBK K B P

F U H PB dt

dt

 

    

    

 

  

 

 

 











      

 

    

  

 

 

 










     (19) 

where ,
TT T       0 0V   is the initial value of 

 V  , and 

   

   
1 1

2
1 1

.

T T

T

Nm

F U H PB

HU F PB I

  
 
   

  
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By Lemma 1 we know that 0   if and only if 

   
     

   
 

2

1 1 1 12

2

1 1 12

, ,

1
( )

, ,

1
  0.

T T
N

TT T

T T
N

T
N

diag PBK K B P

F U H PB HU F PB

diag PBK K B P

I PB B P

 



 

 

   

       

    

    




  (20) 

Also by Lemma 1 we know that (20) is equivalent to 
0  , which has been proved in the above analysis. So 

we have that   is symmetric negative definite. It fol-
lows from (19) that 

2 22

0 0
0.z dt dt 

 
    

Therefore, the consensus is achieved with H  norm 
bound  . The proof is completed. 

Sometimes, the laplacian matrix has 1N   identical 
nonzero eigenvalues, i. e. 20 N    . Take the 
complete graph for example. Consider the complete 
graph with N nodes. The laplacian matrix is chosen as 

1 1 1

1 1 1
.

1 1 1

N

N N N
N

N N N

N

N N N

   
 

   
 
 
 
  

 





   



  

By some calculations we have the eigenvalues of   

are 
1 1

0, , ,
1 1N N 
 . In this case, we have the fol 

lowing corollary. 
Corollary 1: Suppose the undirected graph   is 

connected and the nonzero eigenvalues of   satisfy 

2 .N    Using algorithm (2), the consensus is 
achieved with H  norm bound   if there exists a 
symmetric positive definite matrix X and a matrix W 
such that the LMI 

1 2
2

1

1

2

0 0
0,0 0

1
0 0

1

T

T
m

m

m

B XB X

B I

B I

X I





 
 

 
 

 
   





  (21) 

holds, where 1 .T T TAX XA BM M B      In this 
case, the parameter matrix in (2) can be chosen as 

1.K WX   
Proof: Assume that there exists a symmetric positive 

definite matrix X and a matrix W such that (21) holds.  

Define 
2

1
.XM W


  It follows that 

1 2
2

1

2

0 0
00 0

1
0 0

1

T

T
m

m

m

B XB X

B I

B I

X I





 
 

 
 

 
   





 

Holds for 2.i   From Theorem 1 we have the con-
sensus is achieved with H  norm bound  , and the 
parameter matrix can be chosen as 1.K WX   

Remark 2: From Corollary 1 one has that if the non-
zero eigenvalues of the laplacian matrix are identical, the 
H  performance is determined by 2  and the system 
matrices of the agents. It has no relationship with the 
number of the agents. 
 
4. A Numerical Example 
 
Consider a multi-agent systems consisted of N nodes 
with the following second-order 

 ,  sin 0.5 ,i i i i i i ix v v u x        

where 
1

sin
1i t

     
 is the external disturbance. This  

multi-agent system can be written in the form of (1) with 

1 2

0 1 0 1 0 0 0
,  ,  ,  .

0 0 1 0 1 0 1
A B B B

       
          
       

 

The communication topology is given in Figure 1. 
The laplacian matrix is chosen as 

1 1 0 0

1 2 1 0
.

0 1 2 1

0 0 1 1

 
   
  
 

 

  

The eigenvalues of   are 0, 0.5858, 2 and 3.4142. 
Solving the LMIs in (10) with 2 0.5858  , 4   
3.4142 , 0.5   and 1.29  , we can get 

 0.0455 0.6688
,  0.1 2605.7 .

0.6688 23.2996
X W

 
    

 

From Theorem 1 we know that K can be chosen as 

 1 2844.2 193.5 .K WX      

Figure 2 shows the trajectory of the external distur-
bance. Figures 3 and 4 show, respectively, the position 
and velocity responses of nodes 1 4.  

 

 

Figure 1. The communication topology of nodes 1-4. 
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Figure 2. Positions of nodes 1-4. 
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Figure 3. Positions of nodes 1-4. 
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Figure 4. Velocities of nodes 1-4. 

 
5. Conclusions 
 
The H  consensus problem has been investigated in 
this paper, for the high-order multi-agent systems with 
nonlinear dynamics. Sufficient conditions have been 

given in the forms of LMIs, under which the H  con-
sensus problem can be solved. The parameter matrix in 
the consensus algorithm can be designed by solving two 
LMIs. If the nonzero eigenvalues of the laplacian matrix 
according to the network topology are identical, the pa-
rameter matrix in the consensus algorithm can be de-
signed by solving one LMI. The numerical simulation 
confirmed the proposed results. 
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