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ABSTRACT 

In this paper, we are concerned with the Riesz means of Dirichlet eigenvalues for the sub-Laplace operator on the Engel 
group and deriver different inequalities for Riesz means. The Weyl-type estimates for means of eigenvalues are given. 
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1. Introduction 

The Engel group  is a Carnot group of step G 3r   
(see [1]), its Lie algebra is generated by the left-invariant 
vector fields 
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where  is a point of . It is easy to 

see that 
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and  3 4,X X  0
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. So the Lie algebra of  is G

1 2g V V V   , 

where   and  1 1, ,V span X X 2  2 3V span X

 3V span X

E

4 . The sub-Laplace operator on G  is of 

the form 2 2
1 2X X  . 

In the paper, we investigate the Riesz means of the 
Dirichlet problem 

, in ,

0, on .
Eu u

u

  
  

            (1.1) 

in the Engel group . Here   is a bounded and 
noncharacteristics domain in , with smooth boundary 

G
G

 . The existence of eigenvalues for (1.1) is from [2]. 
Let us by  R z  denote the Riesz means of order   
of the sequence  k  of eigenvalues of (1.1). 

The Riesz means of Dirichlet eigenvalues for the 
Laplace operator in the Euclidean space have been 
extensively studied(see [3-5]). In recent years, E. M. 
Harrell II and L. Hermi in [6] treated the Riesz means 

 R z  of order   of  k  on the bounded domain 
dR  and pointed out that: for 0 2   and 

1z  , 
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 is a nondecreasing function of z, and then  

the Weyl-type estimates of means of eigenvalues is 
derived. 

Jia et al. in [7] extended (1.2), (1.3) to the Heisenberg 
group. 

The main results of this paper are the following. 
Theorem 1.1 For 0 2   and 1z  , we have 
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3
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R z R z

z              (1.4) 
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,
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and 
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  is a nondecreasing function of z; for  

2     and 1z  , we have  
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1 1
1R z R z
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,         (1.6) 

     1
1R z R z

z    ,           (1.7) 

and 
 

1

R z

z

   is a nondecreasing function of z. 

Theorem 1.2 Suppose that 3 jz  , then 
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and therefore 
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Moreover, for all , we have the upper bound 1k j 

1

3
.k

k

j j                   (1.11) 

Theorem 1.3 For 
4

3

j
k  , we have 

9
.
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j

k
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                   (1.12) 

Authors in [6] combined the Weyl-type estimates of 
means of eigenvalues established in [6] and the result in 
[8] to obtain the Weyl-type estimates of eigenvalues. But 
it is not easy to extend the result in [8] to the Engel group. 
The Weyl-type estimates of eigenvalues for (1.1) still are 
open questions. 

This paper is arranged as follows. In Section 2 the 

definition of Riesz means and Lemmas are described; 
Section 3 is devoted to the proof of Theorem 1.1. The 
proof of Theorem 1.2 is appeared in Section 4. In Section 
5 the proof of Theorem 1.3 is given. 

2. Preliminaries 

Definition 2.1 For an increasing sequence   1k k
 


 of  

real numbers and , the Riesz means 0z   R z  of  

order 0   of  k  is defined by 

   
1

,k
k

R z z


 





   

where    max 0,kz kz 


    is the ramp function. 

Clearly, 

  1 .R z R z                 (2.1) 

Similarly to Theorem 1 of [9], we immediately have 
Lemma 2.2 Denoting the -normalized eigenfunc- 

tions of (1.1) by 

2L
 ju , let 
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Lemma 2.3 ([10]) Let 0 x y   and 0  , then 
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3. The Proof of Theorem 1.1 

In this section, we prove Theorem 1.1 and two coro- 
llaries. 

Proof. Let us use (2.2) and denote the first term on the 
right-hand side of (2.2) by  , ,G z   . Applying Lem- 
ma 2.3 it follows 
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here we used the symmetry on  and  in the last 
step. 

j m

Putting the above estimate into (2.2), we have  
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where we denote 
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Since  mu  is a complete orthonormal set, it follows 
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Returning to (3.1) with them, it yields  
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Substituting this into (3.4), we obtain  
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Using (2.1), we have 
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The remainders are discussed similarly to 1). 

3) 2  . In this case 1
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Substituting this into (3.4), we have  

     11 2 2C R z zC R z       

and (1.6) is proved. 
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we see that when  0 1z 1    , it gets  
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2) By the Berezin-Lieb inequality (see [11]), we have  
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and the inequality in the right-hand side of (3.6) is 
proved. 

Corollary 3.2 1) For 1 2   and   12z    ,  
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and (3.8) is proved. 
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Remark 3.3 Specially, we have 
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4. Proof of Theorem 1.2 
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Proof of Theorem 1.2 1) Substituting 3j jz   into 
(4.2) and noticing (4.3), we have 
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Corollary 4.1 We have 
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5. Proof of Theorem 1.3 

We first recall the following definition before proving 
Theorem 1.3. 

Definition 5.1 If  f z  is superlinear in z as , 
then its Legendre transform is defined by 
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value of  in (5.1) is a nondecreasing function of , it 
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Proof of Theorem 1.3 From (1.9), we have 
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Taking (5.3) and (5.5) into (5.2), we have 
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Meanwhile, for any , we can always find an integer 
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and Theorem 1.3 is proved.  
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We point out that (5.7) is sharper than (4.4). In fact, 
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