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ABSTRACT

The Bogner-Fox-Schmit rectangular element is one of the simplest elements that provide continuous differentiability of
an approximate solution in the framework of the finite element method. However, it can be applied only on a simple
domain composed of rectangles or parallelograms whose sides are parallel to two different straight lines. We propose a
new triangular Hermite element with 13 degrees of freedom. It is used in combination with the Bogner-Fox-Schmit
element near the boundary of an arbitrary polygonal domain and provides continuous differentiability of an approximate
solution in the whole domain up to the boundary.
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1. Introduction

The finite elements with inter-elemental continuous dif-
ferentiability are more complicated than those providing
only continuity. Such two-dimensional elements are
mostly developed for triangles: the Argyris triangle [1],
the Bell reduced triangle [2], the family of Morgan-Scott
triangles [3], the Hsieh-Clough-Tocher macrotriangle [4],
the reduced Hsieh-Clough-Tocher macrotriangle [5], the
family of Douglas-Dupont-Percell-Scott triangles [6],
and the Powell-Sabin macrotriangles [7]. The Fraeijs de
Veubeke-Sander quadrilateral [8] and its reduced version
[9] are also composed of triangles. As for single, non-
composite rectangles, the Bogner-Fox-Schmit (BFS)
element [10] is the most popular and simplest one in the
family of elements discribed by Zhang [11]. All these
elements are widely used in the conforming finite ele-
ment method for the biharmonic equation and other
equations of the fourth order (see for example [12-18]
and references therein) along with mixed statements of
problems and a nonconforming approach [12,14,17].

A direct application of the BFS-element is restricted to
the case of a simple domain that is composed of rectan-
gles or parallelograms whose sides are parallel to two
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different straight lines. This condition fails even in the
case of a simple polygonal domain where the intersection
of the boundary with rectangles results in triangular cells
(cf. Figure 1). Of course, one can construct the special
triangulation compatible with the boundary as some iso-
parametric image [19] of a domain composed of rectan-
gles with sides parallel to the axes. This way requires
solving some additional boundary value problems for the
construction of such a mapping that is smooth over the
whole domain.

In this paper we suggest to use the BFS-elements in
the direct way (without an isoparametric mapping) for a
couple with the proposed triangular Hermite elements
with 13 degrees of freedom. These triangular elements
supplement BFS-elements in the following sense. They
are used only near the boundary of a polygonal domain
and provide inter-element continuous differentiability
between finite elements of these two types. Thus, due to
the joint use of these elements on a polygonal domain
Q , the approximate solution of finite element method
belongs to the class C' (Ez) of functions which are con-
tinuously differentiable on the closure Q of the do-
main.
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Figure 1. A subdivision of a domain.

2. Triangulation of a Domain and the
Bogner-Fox-Schmit Element

Let Qc R*> be a convex polygon with a boundary T.
Assume that we can construct a triangulation 3, of Q
subdividing it into closed rectangular and triangular cells
so that the most of them are rectangles and only a part of
the cells adjacent to the boundary may be rectangular
triangles. Besides, any two cells of J, may not have a
common interior point and any two triangular cells may
not have a common side. In addition, the union of all the
cells coincides with Q. A simple example of the trian-
gulation is shown in Figure 1. We also assume that all
sides of the rectangular cells and the catheti of the trian-
gular cells are parallel to the axes.

Denote by # the maximal diameter of all meshes
e€J,. On rectangular cells we use the Bogner-Fox-
Schmit element [1]. It is defined by the triple fe, P! ,ZL)

where e is the rectangle with vertices a; = (af 1y 2),

a, = (a;l’ale,z)ﬂ a; = (a;l»ajg): and a; = (ale,lvaz,Q)
and with side lengths 4’ =a3, —a;, and &5 =ay, —a;,.
Besides, P =(,(e) is the space of bicubic polynomi-
als on e; and X, is the set of linear functionals (de-
grees of freedom or nodal parameters) of the form [12]

Zi = {V/i,l (17) = p(afe)»‘//i,z (p) = alp(aie)v
Vis (p)=52p(af),l//i‘4 (p)=5172p(af), (1)
=1,---,4, pe Pel}

The dimension of P! =Q;(e) (the number of the co-
efficients of a polynomial) is equal to 16 and coincides
with the number of the degrees of freedom. For this ele-
ment we have the Lagrange basis in P’ that consists of
the functions ¢, (x) (i,j=1.---,4) satisfying the con-
dition

l//ie,j (qjl:,l):é‘i,ké‘j,l for ivj’kslzla"'a4: (2)
where J is the Kronecker delta. These functions can be

written in the explicit form with the help of the one-di-
mensional splines

¢?0(x)=l—3xz-i-2x3 and ¢31 (x)=x-2x"+x".
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Indeed, the direct calculations show that the basis has

oty = bol(x=ai )/ ool (v =ai2)/15).
ot = 9((v=ais) /1t ) o )
ois = 9o (x =i )15 ) ((v=ai) /15,
=g((v=ais) /15 ) (a2 f15).
(( a
( (

(a2 -)
5=, x)/hf bo((a52 - 2)/55),
#ia = ¢o((a —x) /i) ((a52 =) /55
0o =i((a5, =) 3 ) (a3 =) 25

3. The “Reference” Triangular Hermite
Element

First we construct the “reference” triangular element
(é,PZ,Zg) with the specified properties. We consider
the right triangle é which has 4 nodes q,,i=1,---,4,
with the coordinates (0, 0), (1, 0), (0.5, 0.5), and (0, 1),
respectively (Figure 2).
We define the space P’ of functions and the set X

of degrees of freedom as follows:

P =span{l,%, %, 5.5, 1 %,. 5. %,

R, 55,55, 85,55,

22:{‘/}iﬂl(ﬁ):ﬁ(d,‘)9i:L"'74a (3)

lﬁ(&i)7!/}i,3 (ﬁ):aZi)(&i)’

h(4,).i=1.2,4,peP’}.
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Figure 2. The “reference” triangular element.

Observe that at each of the nodes 4,,a,, and a,
there are 4 degrees of freedom and at the node a, there
is only one degree. Besides, the degrees of freedom for
the nodes 4,,a,, and 4, coincide with those for the
nodes of the BFS-element (1).

Lemma 1. The triple (é, P;,Zg) is a finite element.

Proof. The dimension of the space P/ coincides with
the number of elements of the set X:. Hence, to prove

unisolvence of the couple (P;,Zﬁ), it is sufficient to
construct the Lagrange basis { ¢, (%,%,)e P, where
j=1,---,4 fori=1,2,4andj =1 for i=3} on ¢
satisfying the condition [12]

l/;i,j ((bk,l ) = é‘i,ké‘/,l . (4)

The direct calculations show that the Lagrange basis
has the following form:

P, :1—33212 +2% -3%) +2%;,

Py =X —2X] +X) “3R 3] 428X + 25757,

_ A2n A3 a A222
(p13 =3, —3x1x2+2x1x2

—2% 4+ % + 2872,

_ = A2a  A3n A2, ~n3 2222
Py = XX, —2X7X, + XX, = 2X,X; + XX, +2X7 X5,
A A3 A22
0y, =—R]+ & +2%7%3,

A _An2a A3 A A2 A2
03 =3X, %, = 2%, X, —4x7X;,

(5)
A A2 A2
D4 ——x1 X, +x1x2 +X, X5,

A 1pn2R2
(23 =16xx;,
A _ A2 A3 A2n2
@, =3%, —2x, —18x7 X5,
A A2 A3 A2R2
P4y ==X, +X; +2X, x5,
~ _Aa A2 A A3 A2 AD
P45 =3%,%; —2X,X; —4X X5,
Doy = —H% +X,% +5%2. 0
Dy 4 x1x2 xx2 XX

Let Ve P be an arbitrary function. Along the side
a,a,, it is a polynomial of degree 3 in x,. Together
with the derivative 0,7, it is uniquely determined by the
values ¥(4,),%(a,),0,9%(4,), and 8,9(a,) of nodal
parameters. In addition, the derivative 0,v along a4,
is a polynomial of degree 3 in X, as well and is uniquely
determined by the values 0,0(d,),0,%(d,),0,,v(4,),
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and 0,,%(a,) of nodal parameters. On the side a4,

similar statements are valid within the replacement of %,
by X,.

Thus, on the sides @,a, and g,a, the values of a
function of P’ and its first-order partial derivatives are
uniquely determined by the values of nodal parameters of
¥> at the nodes on the corresponding side.

On the side a,a, a similar property does not hold.
Generally speaking, the element fé,P;,Eg) is not of
the class C'. This follows from the fact that the first-
order partial derivatives of the basis functions related to
the node 4, do not vanish on the side 4,a, . However,
further we assume that the side of any triangular element
of 3, being the image of the hypotenuse a,a, is a
part of the boundary and can not be a common side of
two meshes. Hence, this feature has no influence on in-
terelemental continuity inside the domain.

To check the interpolation properties, we use the usual
notations for Sobolev spaces. Here H°(Q) is the Hil-
bert space of functions, Lebesgue measurable on Q,
equipped with the inner product

(u,v)Q = J'qudQ, uveH® (Q),
and the finite norm

g =)} w1 (@)

For integer nonnegative k, H'(Q) is the Hilbert
space of functions u € H’ (Q) whose weak derivatives
up to order k inclusive belong to H°(€). The norm
in this space is defined by the formula
12

a S+r u 2
s r
Ox; Ox,

=] 2

0<s+r<k

0,Q
We also use the seminorm
12

0 u s uer(Q).

Ox, Ox,

o =| 2

s+r=k

0,Q

Let 4 be an arbitrary function of H*(é). By a
Sobolev embedding theorem, H* (é) is continuously
embedded into C*(é) [20], hence, i e C?(é). Thus,
we can construct its interpolant #, € /. Denote by
m,,i=1,---,4, the number of degrees of freedom related
toanode g,. We have

n;

i (%,%,) = Zzwzf(ﬁ)gbu(xl’xz)

i=1 j=1

Theorem 1. Let iic H*(é). Then for any integer
m <4 we have the estimate

i, <e.ll, ©

with constant ¢, independent of 1 (and h).
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Proof. The maximal order of partial derivatives equals
2 in the definition of the set X.. As mentioned above,
the space H*(é) is embedded into C?(é). Besides,
from (3) it follows that P’ > B (é) where B (é) is
the space of polynomials of degree no more than 3.

Thus, all the hypotheses of the Theorem 3.1.5 in [12]
are fulfilled, which implies the estimate (6). [

4. Combination of Rectangular and
Triangular Elements

Let ee 3, be an arbitrary triangular element (Figure 3)
with vertices a; =(ail,aiz), a; =\a;,,a;, ),

a, = (af’l,ajﬁz) and side lengths A = a3, —a;,,

h; =a;, —a;,. The affine mapping (x,,x,)= f.(%,%,),
that maps the «reference» element é into e, has the
form

x, =X +af,, x, =X, +ay,. @)
We specify the space P’ of functions and the set X’
of degrees of freedom as follows:
P’ :span{l,xl,xz,xlz,xzz,xlxz,xf,xg,
2 2 2.2 .3 3
Xy Xy X1 %55 %) x2’x1x2’x1x2}7
Zﬁ = {l//le,l (p) = p(ale)’l = 1"”’49(//52 (p) = alp(aie)’
vis(p)=0.p(a ).wis(p)=0,p(af), i=12,4}.
The Lagrange basis in P’ consists of the functions
9 (x), where j=1,--,4 fori=124andj=1fori=

3 being the images of the basis (5) under the mapping (7)
and satisfying the condition

V/Zj ((0:,1) = é‘i,ké‘j,l' ©

Thus, the triple (e, Pf,Ej) is a finite element that is
affinely equivalent to the «reference» element (é, P’ ,22)
[12].

Now denote the set of all nodes of the elements
ec€3, by Q, and number them from 1 to s. With
eachnode y, €Q, we associate the number m, equal

®)

X2

Figure 3. A triangular cell e 3, .
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to the number of degrees of freedom related to this node.
Observe that m, =1 is occurred when the node y, is
the midpoint of the side of a triangular element being a
part of the boundary I" and m, =4 for all remaining
nodes of Q,.

This is the global numbering of nodes. We also intro-
duce the local numbering. The couple (i,e) is assumed
to be a local number of the node a; of an element
ee€J,. To any local number (i,e) there corresponds
one and only one global number %, hence, we can in-
troduce the function ¢(i,e) so that k =gq(i,e). In ad-
dition, for an element ee 3, we denote the local ana-
logue of the parameter m, by m;, ie., m, =m; for
k=g (i , e).

At each node y, €Q,, k=1---,s, we specify m,
numbers v, ;,j=1---,m. Construct the function v,
defined on Q2 suchthat Vee 3,

e
n;

4
e 21: Z}vq(i,e),ﬂ”ﬁ/- (10)
1= /:

Vi

By the construction, the function v, is uniquely de-
fined on each e€ 3, . Put

Pl
P{
e PZ

Then VhL e P, forany ec3,.

Lemma 2. The function v, defined by the relation
(10) belongs to C" (5_2)

Proof. The BFS-rectangles are elements of the class
C', ie., the function v, and its first-order derivatives
are continuous on the sides common for two elements of
this type [10].

Now let e, €3, be an arbitrary triangular cell and
e, €3, be arectangular cell that has a common side y
with e, (Figure 4). Because of construction, the values
of the nodal parameters of the functions v,| ~and v, |E
on y are equal. In addition, the traces of these functions
and their first-order derivatives with respect to x; on
y are polynomials of degree 3 in x, and are uniquely
defined by the sets of nodal parameters related to the side
v . Hence, the functions v, o and v, o coincide on

if ee 3, is a rectangle,

if e 3, is a triangle.

y along with their first-order derivatives. [

X2

[}

€p
el}.

X1

Figure 4. Two neighbouring elements of different types.

AM



54 L. GILEVA

Corollary 1. v, e H*(Q) [12,21].0
Thus, we can define the finite element space as fol-
lows:

v, ={vh eCl(f_l):th eP ‘v’eeSh}cHz(Q).

Let ueC’ ((_2) . Define its interpolant u, €V, in the
following way:

4 mf
u; (x,,x, )L => 2w (), (x.x,) VeeT,. (11)
i=1 j=1
With the help of the Theorem 1, the following estimate
can be proved in the usual way (see, for instance, [12,14]).
Theorem 2. Assume that u e H*(Q). And let u, €V,
be its interpolant defined by (11). Then

||u—u,||m!Q <c,h*™" ||u 0<m<2. 0

o

Here and later constants c, are independent of #
and u.

5. Numerical Example

We illustrate properties of the proposed finite elements
by the following example. Let Q be a right triangle
with unit catheti (see Figure 5) and a boundary T
Consider the problem

—Au=f inQ,
u=0 onI’
with the right-hand side
f(xp)=2(x+y)cos(l-x—y)+2xysin(1-x—-y).
It has the exact solution
u(x,y) = xysin(l—x—y).

Subdivide the domain Q into elementary squares
(with triangles adjacent to the hupotenuse) by drawing two
families of parallel straight lines x, =ih,i=1,---,n—1,
and y, = jh,j=1,--,n—1 with meshsize h=1/n.

To compare accuracy with decreasing mesh size, we
construct a system of linear algebraic equations of the
finite element method with the BFS-elements on the
elementary squares and the proposed elements on the

[

AN
: AN

0 1

Figure 5. Domain Q with initial triangulation.
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triangles for n=4and n=8. Since the exact solution is
known, the difference u—u, between exact and ap-
proximate solutions can be expressed in the explicit form.
As a result, we have the following accuracy.

Theoretically, in the finite element method we have
the estimate [12,14]

h —_
"u—u " Sc3||u—u1|| m=1,2.

mQ m,Q

Combining it with the estimate in Theorem 2, we ar-
rive at the following error estimate for an approximate
solution:

m=1,2. (12)

/ 4
u—u" e, u”
Q

m, 4.0°

Comparing the last two results in Table 1, observe that
they are close to the asymptotic values 4 and 3, respec-
tively.

6. Summary and Further Implementations

Thus, the use of the proposed triangular finite elements
only near a boundary extends the field of application of
the BFS-elements at least for second order equations. In
its turn, an approximate solution is of the class H’ (Q)
enabling one to calculate a residual directly and consid-
erably simplifies a posteriori accuracy estimates for an
approximate solution.

In principle, to achieve the same order accuracy, in-
stead of the BFS-elements, one can use the Lagrange
bicubic elements on rectangles and the Lagrange ele-
ments of degree three on triangles. But in this case a
general advantage of Hermite finite elements in com-
parison with Lagrange ones makes itself evident in the
number of unknowns of a discrete system. In particular,
Table 2 shows the number of degrees of freedom for an
approximate solution which is equal to the number of
unknowns and the number of equations in a discrete sys-
tem of linear algebraic equations for the example from
the above section.

Table 1. Accuracy of an approximate solution.

h S, =Hu —u" o o, = Hu —u"Hm
0.25 2.661 x 107 8.664 x 107°
0.125 1.724 x 1077 1.124 x 107
8,,/6, c,,/0, log, (6,,/6,) log, (o,,/0,)
15.43 7.71 3.95 2.95

Table 2. The numbers of degrees of freedom for an ap-
proximate solution.

h Hermite elements Lagrange elements
0.25 33 55
0.125 129 253
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€3

€l €2

Figure 6. A “hanging” node b.

Observing a considerable gain in the number of un-
knowns, with the further refinement of triangulation, the
number of unknowns (and equations) asymptotically
tends to the ratio of 4:9 in favour of Hermite elements.

Now we notice an apparent inconvenience and show a
way to overcome it that is also useful for nonconforming
grid refinement. The triangulation shown in Figure 1 is
constructed by adjusting cells of a rectangular grid in the
x, - and x, -directions. It imposes restrictions on the
ratio of steps for a rectangular grid inside a domain. We
show that the proposed triangular elements are sufficient
to construct a conforming interpolant, generally speaking,
on an “uncoordinated” grid without restriction on the
ratio between steps.

Considering a typical case shown in Figure 6, the
node b is a so-called “hanging” node. At the algo-
rithmic level, the challenge is solved as follows. For the
degrees of freedom at the node b, instead of the corre-
sponding variational equations for an approximate solu-
tion u", we write 4 linear algebraic equalities which
express the quantities u”(b),0u" (b),0,u"(b), and
0,,u" (b) in terms of 16 degrees of freedom of the
neighbouring rectangle e,. This trick ensures interele-
mental continuous differentiability of an interpolant be-
tween e,e,, and e,. Thus in this case one again may
implement proposed pair of elements in the frame of the
conforming finite element method with estimate (12).
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