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ABSTRACT 

The Bogner-Fox-Schmit rectangular element is one of the simplest elements that provide continuous differentiability of 
an approximate solution in the framework of the finite element method. However, it can be applied only on a simple 
domain composed of rectangles or parallelograms whose sides are parallel to two different straight lines. We propose a 
new triangular Hermite element with 13 degrees of freedom. It is used in combination with the Bogner-Fox-Schmit 
element near the boundary of an arbitrary polygonal domain and provides continuous differentiability of an approximate 
solution in the whole domain up to the boundary. 
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1. Introduction 

The finite elements with inter-elemental continuous dif-
ferentiability are more complicated than those providing 
only continuity. Such two-dimensional elements are 
mostly developed for triangles: the Argyris triangle [1], 
the Bell reduced triangle [2], the family of Morgan-Scott 
triangles [3], the Hsieh-Clough-Tocher macrotriangle [4], 
the reduced Hsieh-Clough-Tocher macrotriangle [5], the 
family of Douglas-Dupont-Percell-Scott triangles [6], 
and the Powell-Sabin macrotriangles [7]. The Fraeijs de 
Veubeke-Sander quadrilateral [8] and its reduced version 
[9] are also composed of triangles. As for single, non- 
composite rectangles, the Bogner-Fox-Schmit (BFS) 
element [10] is the most popular and simplest one in the 
family of elements discribed by Zhang [11]. All these 
elements are widely used in the conforming finite ele-
ment method for the biharmonic equation and other 
equations of the fourth order (see for example [12-18] 
and references therein) along with mixed statements of 
problems and a nonconforming approach [12,14,17]. 

A direct application of the BFS-element is restricted to 
the case of a simple domain that is composed of rectan-
gles or parallelograms whose sides are parallel to two  

different straight lines. This condition fails even in the 
case of a simple polygonal domain where the intersection 
of the boundary with rectangles results in triangular cells 
(cf. Figure 1). Of course, one can construct the special 
triangulation compatible with the boundary as some iso- 
parametric image [19] of a domain composed of rectan-
gles with sides parallel to the axes. This way requires 
solving some additional boundary value problems for the 
construction of such a mapping that is smooth over the 
whole domain. 

In this paper we suggest to use the BFS-elements in 
the direct way (without an isoparametric mapping) for a 
couple with the proposed triangular Hermite elements 
with 13 degrees of freedom. These triangular elements 
supplement BFS-elements in the following sense. They 
are used only near the boundary of a polygonal domain 
and provide inter-element continuous differentiability 
between finite elements of these two types. Thus, due to 
the joint use of these elements on a polygonal domain 
 , the approximate solution of finite element method 
belongs to the class  1C   of functions which are con-
tinuously differentiable on the closure   of the do-
main. 
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Figure 1. A subdivision of a domain. 

2. Triangulation of a Domain and the 
Bogner-Fox-Schmit Element 

Let  be a convex polygon with a boundary 2R  .  
Assume that we can construct a triangulation h  of    
subdividing it into closed rectangular and triangular cells 
so that the most of them are rectangles and only a part of 
the cells adjacent to the boundary may be rectangular 
triangles. Besides, any two cells of h  may not have a 
common interior point and any two triangular cells may 
not have a common side. In addition, the union of all the 
cells coincides with 



.  A simple example of the trian-
gulation is shown in Figure 1. We also assume that all 
sides of the rectangular cells and the catheti of the trian-
gular cells are parallel to the axes.  

Denote by  the maximal diameter of all meshes 

h . On rectangular cells we use the Bogner-Fox- 
Schmit element [1]. It is defined by the triple 

h
e

 1 1, ,e ee P    

where  is the rectangle with vertices   e  , ,e e ea a a1 1,1 1,2

 2 2,1 1,2, ,e e ea a a   and  3 2,1 4,2,e e ea a a  ,  4 1,1 4,2,e e ea a a
e e e

  

and with side lengths 1 and   1 2,1 1, 2 4,2 1,2

Besides,  is the space of bicubic polynomi-
als on  and  is the set of linear functionals (de-
grees of freedom or nodal parameters) of the form [12] 

e e eh a a  .h a a 
 1

3eP Q e
; 1

ee

       
       



1
,1 ,2 1

,3 2 ,4 1,2

1

,

, ,

1, , 4, .

e
e i i i i

e e
i i i

e

p p a p p a

p p a p p a

i p P

 

 

    

   

 

,e

i    (1) 

The dimension of  1
3eP Q e



 (the number of the co-
efficients of a polynomial) is equal to 16 and coincides 
with the number of the degrees of freedom. For this ele-
ment we have the Lagrange basis in  that consists of 
the functions 

1
eP

,
e
i j x   satisfying the con-

dition 
 , 1,i j   , 4

 , , , , for , , , 1, , 4,e e
i j k l i k j l i j k l           (2) 

where   is the Kronecker delta. These functions can be 
written in the explicit form with the help of the one-di- 
mensional splines 

   2 3 2
0 1
ˆ ˆ1 3 2 and 2 .

Indeed, the direct calculations show that the basis has 
the form 

     1 1 1 1 1 1 2 20 0ˆ ˆe e e e ex a h y a h       , 

     1 2 1 1 1 1 2 21 0ˆ ˆ ,e e e e ex a h y a h        

     1 3 1 1 1 1 2 20 1ˆ ˆ ,e e e e ex a h y a h        

     1 4 1 1 1 1 2 21 1ˆ ˆ ,e e e e ex a h y a h        

     2 1 2 1 1 1 2 20 0ˆ ˆ ,e e e ea x h y a h       e  

     2 2 2 1 1 1 2 21 0ˆ ˆ ,e e e ea x h y a h       e  

     2 3 2 1 1 1 2 20 1ˆ ˆ ,e e e ea x h y a h       e  

     2 4 2 1 1 1 2 21 1ˆ ˆ ,e e e ea x h y a h       e  

     3 1 1 1 1 4 2 20 0ˆ ˆ ,e e e e ex a h a y h        

     3 2 1 1 1 4 2 21 0ˆ ˆ ,e e e e ex a h a y h        

     3 3 1 1 1 4 2 20 1ˆ ˆ ,e e e e ex a h a y h        

     3 4 1 1 1 4 2 21 1ˆ ˆ ,e e e e ex a h a y h        

     4 1 2 1 1 4 2 20 0ˆ ˆ ,e e e ea x h a y h       e  

     4 2 2 1 1 4 2 21 0ˆ ˆ ,e e e ea x h a y h       e  

     4 3 2 1 1 4 2 20 1ˆ ˆ ,e e e ea x h a y h       e  

     4 4 2 1 1 4 2 21 1ˆ ˆ .e e e ea x h a y h       e  

3. The “Reference” Triangular Hermite 
Element 

First we construct the “reference” triangular element 
 2 2

ˆ ˆˆ, ,e ee P   with the specified properties. We consider 
the right triangle  which has 4 nodes ê ˆ , 1, , 4,ia i    
with the coordinates (0, 0), (1, 0), (0.5, 0.5), and (0, 1), 
respectively (Figure 2). 

We define the space  of functions and the set 2
êP 2

ê  
of degrees of freedom as follows: 




   
       
    

2 2 2 3
ˆ 1 2 1 2 1 2 1 2

2 2 2 2 3 3
1 2 1 2 1 2 1 2 1 2

2
ˆ ,1

,2 1 ,3 2

2
ˆ,4 1,2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1, , , , , , , ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , ,

ˆ ˆ ˆ ˆ , 1, , 4,

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ ˆ, 1,2,4, .

e

e i i

i i i

i i

P span x x x x x x x x

x x x x x x x x x x

p p a i

p p a p p a

p p a i p P



 





   

   

   

  

3

i

e

   (3) 

3x x x x x x x        
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Figure 2. The “reference” triangular element. 
 

Observe that at each of the nodes , and 
there are 4 degrees of freedom and at the 
is only one degree. Besides, the degrees om
the nodes , and  coincide with
nodes of the FS-elem

Lemma 1. The triple 

1 2ˆ ˆ,a a
node 
of free
 thos

4â  
 there 

 for 
r the 

3â
d

e fo1 2ˆ ˆ,a a
 B

4â
ent (1). 
 2 2

ˆ ˆˆ, ,e ee P   is a finite element. 
Pro  with 
e num rove  

un s su to  

of. The dimension of the space 2
êP  coincides

ber of elements of the set 2  Hence, to pth ˆ .e

iisolvence of the couple  2 2
ˆ ˆ,e eP  , it fficient  

construct the Lagrange basis {   2
ˆ, 1 2ˆ ˆ ˆ, ,i j ex x P   where 

1, , 4j    for i = 1, 2, 4 and j = 1 for 3i  } on ê  
satisfying the condition [12] 

, ,ˆ ˆ .i j , ,k l i k j l                 (4) 

The direct calculations show that the Lagrange basis 
has the following form: 

2 3 2 3

2
1,2 2

2 3 2 2
1,3 2 1 2 1 2 2 2 1 2

2 3 2
1,4 1 2 1 2 1 2 1 2 1 2 1 2

,

ˆ ,

ˆ ˆ ˆ ˆ2 2 ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2

x x x x

1,1 1 1 2 2

2 3 2 3 2
1 1 1 1 2 1 2 1

2 3

ˆ ˆ ˆ ˆ ˆ1 3 2 3 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 3 2 2

ˆ ˆ ˆ ˆ ˆ ˆ3 2

x x x x

x x x x x x x x x

x x x x x
3 2 2ˆ ˆ ˆ ˆ2 ,

2
2,2 1ˆ ˆ ˆ

x x x x x x x x







 

    

2 2
2,3 1 2 1 2 1 2

2 3 2 2
2,4 1 2 1 2 1 2

2 2
3,1 1 2

2 3 2 2
4,1 2 2 1 2

2 3 2 2
4,2 2 2 1 2

2 3 2 2
4,3 1 2 1 2 1 2

4,4 1 2

ˆ ˆ3 2 4 ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ16 ,

ˆ ˆ ˆ ˆ ˆ3 2 18 ,

ˆ ˆ ˆ ˆ ˆ2 ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ3 2 4 ,

ˆ ˆ ˆ

x x

x x x x x x

x x

x x x x

x x x x

x x x x x x

x x















   



  

   

  

  2 3 2 2
1 2 1 2ˆ ˆ ˆ ˆ .x x x x  

x x x x

x    3 2 2
1 1 2

2 3

ˆ ˆ2 ,

ˆ ˆ ˆ ˆ ˆ

x x x

x x x x



 





    

    

   

  (5) 

Let be an arbitrary function. Along the side 
polynomial of degree 3 in

2
ˆˆ ev P  

 it is a 1 2ˆ ˆ ,a a  1̂.x

 1,2 2ˆ ˆv a  and of nodal parameters. On the side   

similar statements are valid within the replacement of 

 1 4ˆ ˆa a

1̂x  
by 2ˆ .x  

Thus, on the sides  and the values
function of and its f order rtial derivatives are 
uniquely deter ined by a odal parameters of 

1 2ˆ ˆa a
irst-

 the v

1 4ˆ ˆa a  
 pa

lues of n

 of a 
2

êP  
m

2
ê  at the n on the spondi . 
On th ilar pro  does not hold. 

Generally spea he element  is n
the class from fact that the first- 
order pa e of the 
the node do nish on the . However, 
further we u  that the side of a r element 
of 

odes 
e side 

 corre
a sim

ng side
perty2 4ˆ ˆa a  

king, t
. This follows 

rivatives 
 not va

me

 2 2
ˆ ˆˆ, ,e ee P   

the 
basis functions related to 

side 2 4ˆ ˆa a
ny triangula

ot of 
1C

rtial d

1̂a  
 ass

h  
of

bein
 the bo

g the age of the h  is a 
part u  and can not of 
two meshes. Hence, this feature has no influence on in-
terelemental continuity inside the domain. 

heck the
no

 im
ndary

ypotenuse 
be a comm

2 4ˆ ˆa a
on side 

To c  interpolation properties, we use the usual 
tations for Sobolev spaces. Here  0H   is the Hil-

bert space of functions, Lebesgue measurable on ,  
equipped with the inn oduct er pr

  0, d , , ,u v uv u v H
 

    

and the finite norm 



   1 2 0

0,
, , .u u u u H


    

For integer nonnegative ,k   kH   is the Hilbert 
spac f e o functions  0u H   w eak derivatives 
up to order k  inclusive belong to  0H  . The norm 
in this space is defined by the formula 

hose w

1 22s ru 
,

0 1 2

.
s rk

s r k

u
x x

  

 
   
  

We also use the seminorm 

0,



 
1 22

,
1 2 0,

, .
s r

k
s rk

s r k

u
u u H

x x




  

    
   
  

Let û  be an arbitrary function of  4 ˆ .H e  By a 
Sobolev embedding theorem,  4 ˆH e  is continuously 
embedded into  2 ˆC e  [20], hence,  ˆu C e . Thus, 
we can construct its interpolant 2ˆ

2

ˆ .
ˆ

I eu P  Denote by 
, 1, , 4,im i    the number of degrees of freedom related 

to a node ˆ .ia  We have 

     
4

1
1 2 , , 1 2

1 1

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, ,
im

I i j i j
i j

u x x u x x 
 

   .
 Together 

it is uniquely determined by the 

1 , and  of nodal 
derivative ng 

with the derivative 
es  ˆ ˆv a

eters. In
nom

1 ˆ,v  
1 2 ˆ, ,a 

dition,
degree 3 in

valu
param
is a poly

  1ˆ ˆ ˆv v a
 ad  the 

ial of  

 1 2

v̂  alo
ˆ ˆv a

2 1 2ˆ ˆa a  

1̂x  as well and is uniquely 
 determined by th es e valu    2 1ˆ ˆv a , 2 1 1,ˆ â 2 ˆ  2ˆ, ,v av

Theorem 1. Let  4ˆ ˆ .u H e  Then for any integer 
4m   we have the estimate 

1ˆ ˆ, 4
ˆ ˆ ˆI m e
u u c           (6) 

with constant 1c  in f û  (and h ). 

,e
u    

dependent o
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Proof. The maximal order of partia tives equals 
2 in the definition of the set 2

ˆ .e

 l deriva
  As mentioned above, 

the space  4 ˆH e  is embedde nto  Besides, 
from (3) it follows that 

d i

3P P
  2 ˆ .C e

e  where  2
ˆ ˆe  3 ˆP e

 3. 
 is 

the sp ials 
Thus, all the hypotheses of the Theorem 3.1.5 in [12] 

ar mate (6).  

4. Combination of Rectangular and 
Triangular Elements 

Le ent (Fi

ace of polynom of  no mdegree ore anth

e fulfilled, which implies the esti

t he  be an arbitrary triangular elem gure 3) 
with vertices  1 1,1 1,2, ,e e ea a a   2 1,2, ,e ea a a  

 4 1,1 4,2,e e ea a a  a e lengths 1h a

2 4,2 1,2 .e e eh a a   The affine mapping 


2,1

e

e e and sid 2,1 1,1,e  

   1 2 1 2ˆ ˆ ,e, ,x x f x x  
 «reference» element ê  into е, has the 

form 
that maps the

1 1 1 1,1 2 2 2 1,2ˆ ˆ, .e e e ex h x a x h x a            (7) 

We specify the space of functions and the set 

  

2
eP  2

e  
of  as f ws

1,

(8) 

consist uncti

 degrees of freedom : 

 2span 1, , , , ,x x x x x x

ollo



2 2 3 3
1 2 1 2 1 2 1 2

2 2 2 2 3 3
1 2 1 2 1 2 1 2 1 2

2

, , ,

, , , , ,

eP x x

x x x x x x x x x x

a







       
        

2
,1 ,2 1

,3 ,4 1,2

, 1, , 4, ,

, , 2, 4 .

e e e e
e i i i i

e e e e
i i i i

p p a i p p a

p p p p a i

 

 

    

   



The Lagrange basis in e s of the f ons 
 e

i

2P  

, j x , where 1, , 4j    for i = 1,2,4 and j = 1 for i = 
3 being the images of the basis (5) under the mapping (7) 
and satisfying the condition 

 , , , , .e e
i j k l i k j l           

Thus, the triple  2 2, ,e ee P   

      (9) 

is a finite element that is 
ely equaffin ivalent to the «reference» element  2 2

ˆˆ, ,e P̂e e  
[12]. 

Now denote odes of the elements 
 by  1 to 

 the set of all n

he  h  and number them from .s  With 
each node k hy   we associate the number km  equal  
 

x2 

x1 

2

eh  

1

eh
1

ea  

 

3

ea  

4ae  

 2

ea  

 

Figure 3. A triangular cell 

to  fr
Observ

he . 

 the number of degrees of eedom related to this node. 
e that m  is oc1k  curred when the node ky  is 

the midpoint of the side of a triangular element being a 
part of the boundary   and 4km   for all rem ing 
nodes of 

ain
.h  
global numThis is the beri

du g. Th
element

ng of nodes. We also intro-
ce the local numberin e couple  ,i e  is assumed 

to be a local number of the node e
ia  of an  

he  . To any local number corresponds 

fun

,i e  there 
on
troduce

e and only one global number ,k  hence, we can in-
 the ction  ,q i e  so that  , .k q i e In ad- 

dition, for ent he
 

  we denote the local ana-
e e

an elem
logue of the parame  for ter km  by im , i.e., k im m

 , .i e  k q
At each node k hy  , 1, ,k s

.
, we specify km  

numbers ,k jv j, 1, , km   Construct the function 
defined on 

hv  
  such that he   

 

4

,, ,
1 1

.
e
im

e
h iq i e je

i j

v v j
 

              (10) 

By the construction, the function is uniquely de-
fined on each 

hv  

he . Put 
1 if is a rectangle,

iangle.

e h
e

P e
P

   2 if is a tre hP e
 

Then h ee
v P  for any .he  

Lemma 2. unction hv  defined by the relation 
(10) belongs to 

The f
 1 .C   

Proof. The BFS-rec ngles a ments of the class 
1,C  i.e., the funct

ta re ele
 ion and its first-order derivatives h

tinuous on the sides common for two elements of 
this type [10]. 

Now let he

v  
are con

  be an arbitrary t angular cell and 

h

ri
e   be a rectangular cell tha s a common side t ha   
with e  (Figure 4). Because of construction, the values 
of the nodal parameters of the functions h e

v


 and h e
v


 

on   are equal. In addition, the traces of these functions 
and their first-order deriv ives with respect to 1xat  on 
  are poly of degree 3 in nomials 2x  and are 

 noda arame  
uniquely 

idedefined by the sets l p related to the s   of ters 
 . Hence, ons the functi h e

v


 and h e
v


 coincide on  

  along with their first-order derivatives.  
 

x2

x

eβ
eα 

le

1  

Figure 4. Two neighbouring e ments of different types. 
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Corollary 1.  2
h

Thus, we can define the finite element space as fol-
s: 

v H   [12,21].  

low

    1 2: .h hV v C v P e H         h e he

Let  2u C  . Define its interpolant I hu V  in the 
follow g way: 

 

in

   
4

1 2 , , 1 2
1 1

, , .
e
im

e e
I i j i j he

i j

u x x u x x e 
 

    (11) 

With the help of the Theorem 1, the following estimate 
can be proved in the usual way (see, for instance, [12,14]). 

Theorem 2. Assume that  4 .u H   And let I hu V  
be its interpolant defined by . Then  (11)

4
2, 4,

, 0 2.m
I m

u u c h u m
 

      

Here and later constants are independent of 
and 

5. Numerical Example 

We illustrate properties of the proposed finite elements 
by the following example. Let be a right triangle 
with unit catheti (see Figure 5  a boundary 

ic  h  
.u  

  
) and .  

Consider the problem 

.

in ,u f
 

0u

  
 on

with the right-hand side 

       , 2 cos 1 2 sin 1f x y x y x y xy x y        

It has the exact solution 

   , sin 1 .u x y xy x y    

Subdivide the domain  into elementary squares 
(with triangles adjacent to the hupotenuse) by drawin
families of parallel straight lines 
an


g two 

,, 1, , 1ix ih i n    
d  , 1, , 1jy jh j n    with mesh size 1 .h n  
To compare accuracy with decreasing mesh size, we 

co r algeb s of thenstruct a system of linea equation  
finite element method with the BFS-elements on the 
elementary squares and the proposed 

raic 

elements on the 
 

0 1 
0 

1 

4 and 8.n n   
difference hu u

 

Figure 5. Domain Ω with initial triangulation. 

triangles for Since the exact solution is 
known, the   betw xact and ap-

pressed in the explicit form. 
ollowing accuracy. 

Theoretically, in the finite element method we ha e 
the estim

een e
proximate solutions can be e
As a result, we have the f

x

v
ate [12,14] 

3 ,,
, 1, 2.I mm

u u c u u m


   h 

Combining it with the estimate in Theorem 2, we ar-
rive at the following error estimate for an approximate 
solution: 

4
4 4,,m 

Comparing the last two results in Table 1, observe that 
they are close to the asymptotic values 4 and 3, respec-
tively. 

, 1,m u m  12.hu u c h       ( 2) 

6. Summary and Further Implementations 

Thus, the use of the proposed triangular finite elements 
only near a boundary extends the field of application of 
the BFS-elements at least for second order equations. In 
its turn, an approximate solution is of the class  2H   

onsid-enabling one to calculate a residual directly and c
erably simplifies a posteriori accuracy estimates for an 
approximate solution. 

In principle, to achieve the same order a
stead range 

nts on rectang
n tria

which is equal to the number of 
unknowns and the number of equations in a discrete sys-
tem

le 1. Accuracy of an approximate solution. 

ccuracy, in-
of the BFS-elements, one can use the Lag

ebicubic elem les and the Lagrange ele-
ments of degree three o ngles. But in this case a 
general advantage of Hermite finite elements in com-
parison with Lagrange ones makes itself evident in the 
number of unknowns of a discrete system. In particular, 
Table 2 shows the number of degrees of freedom for an 
approximate solution 

 of linear algebraic equations for the example from 
the above section. 
 

Tab

h  
0

h

h u u


   
1

huh u


  

0.25 2.661 × 10−6 8.664 × 10−5 

0.125 1.724 × 10−7 1.124 × 10−5 

2h h  2h h    2 2log h h    2 2log h h   

15.43 7.71 3.95 2.95 

 
Table 2. The numbers of degrees of freedom for an ap-
proximate solution. 

h  Hermite elements Lagrange elements 

0.25 33 55 

0.125 129 253 
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e3 

e1 e2 

b 

 

Figure 6. A “hanging” node b. 
 

Obs f un-
knowns , the 
number of unknowns (an  equations) asymptotically 
tends to the ratio vour of Herm ts. 

Now we notice nt inconvenie
w vercome lso useful fo
grid re ent. Th  triangulation sh n in Figure 
constructed by sting cells ectangular in the 

erving a considerable gain in the number o
, with the further refinement of triangulation

d
 of 4:9 in fa

an appare
ite elemen
nce and show a 

ingay to o  it that is a r nonconform  
finem e ow 1 is 

 adju of a r  grid 

1x - and 2x -directions. It im rictions

ing interpolant, generally speaking,
on an “uncoo ou
ratio between steps. 

Considering a typical case shown in Fi , the
no  is a so-called “hanging” node. the 
rithm c level, the challenge is solved as follows. For the 
degr of freedom at the node b, instead of the corre-
spond variational equations for an approximate solu-
tion we write 4 linear algebraic equalities which 

quantities 

poses rest  on the 

 
 

ratio of steps for a rectangular grid inside a domain. We 
show that the proposed triangular elements are sufficient
to construct a conform

 rdinated” grid with t restriction on the 

 gure 6
 At de b algo-

i
ees 

ing 
,hu

express the 
 

     1 2, ,h h hu b u b u b 
16 degrees of freedom of

2.e  This trick ensures interele-
differentiability of an interpolant 

Thus in this case one again 
of elements in the frame of

,
 in terms of  the
ng rectangle

 and may 
opos pair  the

conforming finite element method with estimate (12). 
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