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ABSTRACT 

In this paper, we find a new large scale instability displayed by a stratified rotating flow in forced turbulence. The tur- 
bulence is generated by a small scale external force at low Reynolds number. The theory is built on the rigorous as- 
ymptotic method of multi-scale development. There is no other special constraint concerning the force. In previous pa- 
pers, the force was either helical or violating parity invariance. The nonlinear equations for the instability are obtained 
at the third order of the perturbation theory. In this article, we explain a detailed study of the linear stage of the instabil- 
ity. 
 
Keywords: Large Scale Vortex Instability; Coriolis Forse; Buoyancy; Multi-Scale Development; Small Scale 

Turbulence 

1. Introduction 

Large scale instabilities are very important in fluid dy- 
namics. They generate vortices which play a fundamental 
role in turbulence and in transport processes. The char- 
acteristic dimensions of the large scale structures are 
greater than the typical scale of the turbulence. The tur- 
bulence is often simulated using a small scale external 
force. In this case, the large scale vortices are much 
greater than the scale of the external force. Large scale 
vortices are well observed in planetary atmospheres [1, 
2], in numerical simulations, and in laboratory experi- 
ments [3-10]. The generation process of large scale insta- 
bilities has been studied in several papers [11-19]. In 
these papers, the turbulence which generates these co- 
herent large scale structures cannot be homogenous, iso- 
tropic, or mirror invariant. A series of papers have shown 
that the essential mechanism which leads to the genera- 
tion of large scale vortices is the lack of reflection in- 
variance. This mechanism was called the hydrodynamic 
α-effect by analogy with the similar mechanism of gen- 
eration of large scale magnetic fields. 

Turbulence lacking reflection invariance is helical and 
a pseudo-scalar 0ot v r v  appears. Nevertheless, the 
helicity of turbulence by itself can not generate large 

scale vortices. Other factors which lack reflection inva- 
riance are necessary, such as, for instance, compressibil- 
ity [16,19] or temperature gradients [17,18]. Large scale 
instability can also appear if the turbulence lacks parity 
invariance (AKA effect) [12]. The helicity of the turbu- 
lence can be defined in a phenomenological way, but 
helicity can also be generated by an internal mechanism 
like rotation or buoyancy [13,15,20]. 

Large scale instabilities in a stratified rotating flow 
were studied in [21,22]. In [21], it was shown that a ro- 
tating incompressible flow with a constant temperature 
gradient can not display a large scale instability. In [22] 
the author presented large scale instabilities with a quad- 
ratic temperature gradient. In both papers, the authors 
used the functional averaging method. This method has 
some inconveniences. Especially it is impossible to make 
a strict hierarchy of orders as in perturbation theory. This 
means that it is impossible to identify the orders in which 
the instability appears and the ones in which it is absent. 
That is why the fact that the instability is absent when 
using the functional averaging method can not exclude 
its occurrence when using the rigorous asymptotic me- 
thod of multi-scale development. 

The occurrence of large scale instability in helical stra-
tified turbulence was confirmed by the multi-scale de-
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velopment method in [23]. In that paper it was shown 
that the instability appears at the third order in the 
asymptotical development built on the small value of the 
Reynolds number. But in the first papers on this subject, 
using the functional averaging method, it was not clear in 
which order the instability would appear. 

Direct numerical simulation of the Boussinesq Equa- 
tion confirmed the existence of large scale vortex genera- 
tion in stratified and rotating flows [24,25]. Sometimes 
the appearance of large scale vortex structures is accom- 
panied by an inverse cascade of energy both in the three- 
dimensional case (AKA-effect [26]), and in the quasi 
two-dimensional case [4,7,9,10]. One may say that the 
inverse cascade itself is also one of the mechanisms of 
the generation of large scale structures [5,27]. One of the 
important large scale instabilities in an incompressible 
fluid is the AKA effect (Anisotropic Kinetic Alpha effect) 
which was found in the work of Frisch, She and Sulem 
[11]. In this paper, the large scale instability appears un- 
der the impact of a small scale force in which parity is 
broken (with zero helicity). In a later paper [12], the in- 
verse cascade of energy and the nonlinear mode of insta- 
bility saturation were studied. Despite the fact that the 
broken parity is a more general notion than helicity, in 
fact, the helicity 0rot v v  is the widespread mecha- 
nism of symmetry breaking in hydrodynamical flows. 
The injection of a helical external force into a hydrody- 
namic system has been studied in several papers [16,19]. 
As a result, it was understood that a small scale turbu- 
lence that is able to generate large scale perturbations can 
not be simply homogeneous, isotropic, and helical [28], 
but must have additional special properties. In some cas-
es, the existence of a large scale instability has been 
shown (a vortex dynamo or the hydrodynamic  -effect). 
In the magneto hydrodynamics of a conductive fluid, the 
 -effect is well known [29]. In particular, in [17] it was 
shown that a large scale instability exists in convective 
systems with small scale helical turbulence. These papers 
as well as the results of numerical modelling are de- 
scribed in detail in the review article [30], which is fo- 
cused essentially on possible applications of these results 
to the issue of tropical cyclone origination. In this paper, 
we develop an analytical theory of the new large scale 
instability which generates large scale vortices in a strati- 
fied rotating flow with a constant temperature gradient 
under the action of a small scale external force which 
does not have any particular properties (especially it is 
nonhelical and it does not lack parity invariance). The 
force only maintains turbulent fluctuations. In other 
words, this force cannot display any instability. But the 
situation changes when both the Coriolis force and the 
buoyancy are added to this force. The joint action of 
these forces generates an internal helicity, which in turn 
generates an instability. The theory of this instability is 

developed rigourously using the method of asymptotic 
multi-scale development similar to what was done by 
Frisch, She and Sulem for the theory of the AKA effect 
[11]. This method allows finding the equations for large 
scale perturbations as the secular equations of perturba- 
tion theory, to calculate the Reynolds stress tensor and to 
find the instability. Our paper is organised as follows: In 
Section 2, we formulate the problem and the equations 
for the Coriolis force and the stratification in the Boussi- 
nesq approximation; In Section 3, we examine the prin- 
cipal scheme of the multi-scale development and we 
give the secular equations. In Section 4, we describe the 
calculations of the Reynolds stress. In Section 5, we 
discuss the instability and the conditions for its realiza- 
tion. The results obtained are discussed in the conclu- 
sions given in Section 6. The Reynolds stress and in- 
ternal helicity are calculted in Appendices A and B, 
respectively. 

2. The Main Equations and Formulation of 
the Problem 

Let us consider the equations for the motion of an in- 
compressible fluid with a constant temperature gradient 
in the Boussinesq approximation: 
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the temperature, 0 .Const  , and 0T A  l . The ex- 
ternal force 0F  has zero divergence. Let 0 0 0 0, , ,t f v  
be, respectively, the characteristic scale, time, amplitude 
of the external force, and velocity of our system. We 
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number. We introduce the dimensionless temperature  
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 , and obtain the system of equations 
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scale 0 . Furthermore, for the purpose of simplification, 
we will consider the case Pr 1 . We pass to the new  

temperature 
T

T
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We will consider as a small parameter of an asymp-  

totic development the Reynolds number 0 0 1
v

R



    

on the scale 0 . Concerning the parameters Ra  and 
D , we do not choose any range of values for the mo- 
ment. Let us examine the following formulation of the 
problem. We consider the external force as being small 
and of high frequency. This force leads to small scale 
fluctuations in velocity and temperature against a back- 
ground of equilibrium. After averaging, these quickly 
oscillating fluctuations vanish. Nevertheless, due to small 
nonlinear interactions in some orders of perturbation 
theory, nonzero terms can occur after averaging. This 
means that they are not oscillatory, that is to say, they are 
large scale. From a formal point of view, these terms are 

secular, i.e., they create the conditions for the solvability 
of a large scale asymptotic development. So the purpose 
of this paper is to find and study the solvability equations, 
i.e., the equations for large scale perturbations. Let us 
denote the small scale variables by  0 0 0,x t x , and the 
large scale ones by  ,X T X . The small scale  

partial derivative operation 
00

,
i tx

 
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, and the large scale 

ones ,
T

 
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 are written, respectively, as , ,i t i     

and T . To construct a multi-scale asymptotic develop- 
ment we follow the method which is proposed in [11]. 

3. The Multi-Scale Asymptotic Development 

Let us search for the solution to Equations (4) and (5) in 
the following form: 

      2
1 0 0 1 2

3
3

1
,

,

t X x R R
R

R

   

 

V x W v v v

v

     (6) 

     1 0 0

2 3
1 2 3

1
,

,

T t T X T x
R

RT R T R T

 

   

x
            (7) 

       

    
3 2 13 2

0 0 1 1

2 3
2 3

1 1 1
,

,

P t P X P X P X
RR R

P x R P P X

R P R P

    

  

   

x

  (8) 

Let us introduce the following equalities: 2
0RX x  

and 4
0T R t  which lead to the expression for the space 

and time derivatives: 
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Using indicial notation, the system of the equation can 
be written as 
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Substituting these expressions into the initial equations 
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(4) and (5) and then gathering together the terms of the 
same order, we obtain the equations of the multi- scale 
asymptotic development and write down the obtained 
equations up to order 3R  inclusive. In the order 3R  
there is only the Equation 
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In order 2R  we have the equation 
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The system of Equations (17) and (18) gives the secu-
lar terms 
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These equations give one secular Equation: 
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Let us consider the equations of the first approxima-
tion R: 
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In the second order 2R , we obtain the equations 
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It is easy to see that there are no secular terms in this 
order.. 

Let us come now to the most important order 3R . In 
this order we obtain the equations 
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From this we get the main secular Equation: 
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linear alpha-effect is Equation (36). In order to obtain 
these equations in closed form, we need to calculate the 
Reynolds stresses  0 0

k i
k v v . First of all we have to 

calculate the fields of zero approximation 0
kv . From the 

asymptotic development in zero order we have 
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where ikM  is the operator given by 

2
0 0

ˆ ˆ
.

ˆ ˆ
ip ipp k j

ik ik pjk

P P
M Ra l l D l

D D
         (46) 

We must now determine the inverse operator 1,kjM 

 
. .,i e : 1 .ik kj ijM M    

After some calculation, we find 

1
332

0 0

2
0

ˆ1 ˆ1
ˆ ˆ

ˆ
.

ˆ

kp n
kj kj pjn

kp p j
kj

PRa
M P D l

D D

P
Ra l l

D

 




 

      


  



       (47) 

Here, 

  

 

2 2
2

11 33 11 33 1322 4
0 00

ˆ ˆ ˆ ˆ ˆ1
ˆ ˆ

det

D Ra D Ra
P P P P P

D DD

M

     



  (48) 

and 

 2
11 33 133

0

33 133 3
0 0

2 2

13 112 2
0 0

ˆ ˆ ˆ0 0
ˆ

ˆ ˆ0
ˆ ˆ

ˆ ˆ0
ˆ ˆ

DRa
P P P

D

DRa DRa
P P

D D

D D
P P

D D



 
 
 
 
  
 
 
  
 

 

Consequently, the expression for the velocity 0
kv  takes 

the form 

33
0 2

0 0

0
2
0 0

ˆˆ1
1

ˆ ˆ

ˆ
.

ˆ ˆ

kpk n
kj pjn

j
kp p j

kj

PRaP
v D l

D D

P F
Ra l l

D D

 



 
      


  



      (49) 

In order to use these formulas, we have to specify in 
explicit form the external force 0

jF . Let us specify it by 

 0 0 1 2cos cos ,f   F i k           (50) 

where 

1 0 0 2 0 0, ,k z t k x t                (51) 

or 

1 1 0 2 2 0,  ,t t        k x k x      (52) 

   1 0 2 00,0,1 ; 1,0,0 .k k k k  

One can check that 0 0 F  and 0 0 0 F F  
Formulas (50) and (52) allow us to easily make inter- 

mediate calculations, but in the final formulas we obvi- 
ously shall take 0 0,f k  and 0  as equal to unity, since 
the external force is dimensionless and depends only on 
the dimensionless arguments of space and time. The 
force (50) is physically simple and can be realized in la- 
boratory experiments and in numerical simulations. 

The force (50) can be written in complex form: 

   
   

0 1 1

2 2

exp exp

exp exp ,

i i

i i

 

 





  

  

F A A

B B
     (53) 

where A  and B  have the forms 

0 0, .
2 2

f f
 A i B k               (54) 

The effect of the operator 0D̂  on the proper function 
 exp i t   k x  has obviously the form 

     0 0
ˆ ˆexp , expD i t D i t            k x k k x , 

where  0
ˆ ,D  k  is 

    2
0

ˆ , .D i k    k k W          (55) 

From this it follows that 

    2
0 1 1 1

ˆ , ,D i k     k k W       (56) 
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   0 1 0 1
ˆ ˆ, , ,D D    k k            (57) 

    2
0 2 2 2

ˆ , ,D i k     k k W        (58) 

   0 2 0 2
ˆ ˆ, , .D D    k k             (59) 

From Formulas (49) and (53), it follows that the field 

0
kv  is composed of four terms: 

0 01 02 03 04 ,k k k k kv v v v v              (60) 

where 

   02 01 04 03, .k k k kv v v v
 

   

Finally, we introduce the notation 

   0 0 1 1 1
ˆ , 1 1 ,D i W D     k      (61) 

 0 0 1 1
ˆ , ,D D  k                 (62) 

   0 0 2 2 2
ˆ , 1 1 ,D i W D     k     (63) 

 0 0 2 2
ˆ , ,D D  k  

where    1 2, ,x yW W W W . Taking into account these 
formulas, we can write down the velocities 0

kv  in the 
form 

 
11

01 1
1

e ,
j

ik
kj

A
v M

D


              (64) 

 
21

03 2
2

e ,
j

ik
kj

B
v M

D


              (65) 

where 

 

 
 

1
1

33
12 2

1 1 11

ˆ ˆˆ1
1

kj

kp kpn p j
kj pjn kj

M

P PRaP
D l Ra l l

D D D
  



  

  
           

 

and 

 

 
 

1
2

33
22 2

2 2 22

ˆ ˆˆ1
1

kj

kp kpn p j
kj pjn kj

M

P PRaP
D l Ra l l

D D D
  



  

  
           

 

We can now calculate the Reynolds stresses: 

0 0 01 01 03 032Re ,k i k i kv v v v v v
   

 
       (66) 

which can be decomposed into two components: 

   0 0 1 2 ,k i ki kiv v T T                   (67) 

where  1
kiT  and  2

kiT  can be expressed as follows: 

  01 01 01 011 ,ki k i k iT v v v v                 (68) 

  03 03 03 032 .ki k i k iT v v v v                 (69) 

Taking into account Formulas (64) and (65), we obtain 

11 33 13 2 2

1 1 1ˆ ˆ ˆ ˆ, , , .
2 2 2 i iP P P P       

We can write down the components  
3
1

iT  and  
3
2
iT , 

which are the ones of interest: 

 
 2 2 2

1 131
1 2 6

1

,
8

D D D Ra
T

D

 



         (70) 

 
 2 2 2

2 231
2 2 6

2

,
8

Ra D D D
T

D

 



         (71) 

 
 23

132
1 2 8

1

2
,

8

D Ra D
T

D


 


          (72) 

 
 3 3 2

2 232
2 2 8

2

.
8

DRa D D D
T

D

 
 


      (73) 

Finally, using the following relations (we have similar 
formulas for 2D  after replacing 1W  with 2W ): 

 1 11 1 ,D i W                             (74) 

 2 2

1 11 1 ,D W                           (75) 

   22
1 1 11 1 2 1 ,D W i W                     (76) 

 
24 2

1 11 1 ,D W                           (77) 

   2 33
1 1 1 11 3 1 1 3 1 ,D W i W W               (78) 

 
36 2

1 11 1 ,D W                           (79) 

 
48 2

1 11 1 ,D W                           (80) 

 

2

1 2 2
1 1

1 ,
2 2

D Ra

D D                          (81) 

 

  

2

1

4 2 2 2 2 2 4
1 1 1

4

1

4 2 2 2
.

4

D D Ra D D RaD Ra D

D



 

     

 
(82) 

We can then express  
31
1T ,  

31
2T ,  

32
1T  and  

32
2T : 

 

 

 

22
131

1
1

2 2 1
,

D Ra W
T

    


 

 

 

 

22
231

2
2

2 2 1
,

Ra D W
T

    

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 

 

 

23
1

32
1

1

2 1 1
,

D Ra W
T

        


 

 

 

 

22
232

2
2

2 6 1
,

DRa D W
T

     


 

where 

     

     

224 2 2
1,21 , 2

2 22
1,2 1,2

2[ 2 4 1 1

2 2 2 2 1 1 1 .

D Ra D Ra W

D Ra W W

         

             

 

5. Large Scale Instability 

Let us write down in the explicit form the equations for 
nonlinear instability: 

   
31 31

1 11 2 ,T Z ZW T T W              (83) 

   
32 32

2 21 2 ,T Z ZW T T W              (84) 

where the components  
31
1T ,  

31
2T ,  

32
1T  and  

32
2T  of the 

Reynolds stress tensor are as defined in the previous sec- 
tion. 

One can see that for small values of the variables 1W  
and 2W , Equations (83) and (84) are reduced to linear 
equations and describe the linear stage of instability: 

1 1 2 1,T Z ZW a W b W W               (85) 

2 1 2 2 ,T Z ZW c W d W W               (86) 

where the coeficients a , b , c  and d  can be written 
as 

a b c d
a b c d

   
   
   

            (87) 

with 

 
 

6 2 2 3 4 2 2

6 2

4 64 2 4

48 ,

a D D D Ra D D Ra

D D Ra

     

 
  (88) 

 
 

2 3 4 2

6 4 2

4 2

4 48 64 ,

b D Ra D Ra

D D D Ra

   

   
            (89) 

   
7 5 3 3 3

3 5 2 7 3

2 16 96

2 2 16 ,

c D D D D Ra

D D Ra D D Ra

      

   
      (90) 

   
 

3 3 5 2

7 5 3

2 2 16

2 48 32 ,

d D D Ra D D Ra

D D D D Ra

     

    
       (91) 

and 

 24 2 24 2 16 ,D Ra RaD              (92) 

which are the explicit forms of the quite bulky coeffi- 

cients. However, these coefficients can be expressed us- 
ing the internal helicity 0H  of the velocity field 0v , 
calculated in Appendix B. 

  2
2 3

2
0

16 4

4

D DRa D D Ra
H

     


. 

Therefore, we can write the constant coefficients 
, ,a b c  and d  with respect to 0H : 

2 2 2 2
0 0 0 0

4 4 4 4
, , , ,

a b c d
a H b H c H d H

   
   

   
 

where   2
2 316 4D DRa D D Ra        . 

Equations (85) and (86) can then be rewritten: 

2 2
1 0 1 0 2 1

4 4
,T Z Z

a b
W H W H W W

 
      

 
    (93) 

2 2
2 0 1 0 2 2

4 4
.T Z Z

c d
W H W H W W

 
      

 
   (94) 

These formulas show that despite the zero helicity of 
the driving force, inside the system, an internal helicity is 
generated as a result of the joint impact of the Coriolis 
and buoyancy forces. This helicity plays an important 
role in the dynamics of the perturbations. 

5.1. Unstable and Oscillatory Modes in the Case 
of Negligible Viscosity  1k   

In order to find instabilities, we choose the velocity 

1 2,W W  in the form: 

 
 

1 1

2 2

exp ,

exp .

W i kZ T

W i kZ T





    
    

         (95) 

Injecting these solutions into (85), we obtain the sim- 
ple system of equations: 

 
 

1 2

1 2

0,

0.

ak bk

ck dk





    

    
            (96) 

Evidently we get a quadratic equation for  : 

   2 2 0,a d k ad bc k       

which allows us to obtain the dispersion equations for the 
different modes. 

5.1.1. Dispersion Equation for the Unstable Mode 
This equation is obtained by searching for solutions of 
(96) for which the discriminant is negative, namely, 
 2

4 < 0a d bc  . We show Figures 1 and 2 represent- 
ing the area (in gray) of the plane  ,D Ra  for which 
the discriminant is negative, this means that an instabil- 
ity can appear. Figure 1 shows the conditions for a 
negative temperature gradient and Figure 2, for a pos-
itive one. 



A. TUR  ET  AL. 

Open Access                                                                                           OJFD 

347

D 

-10 

Ra 

2 4

-8 

-6 

-4 

2 

4 

6 

8 

-4 

-2 

-2 

 

Figure 1. Instability condition with negative temperature 
gradient. 
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Figure 2. Instability condition with positive temperature 
gradient. 
 

Finally, we get 

   

 
0

2

2 2
0 0

, ,

4
4 4 ,

2 2

D Ra i D Ra

a d b ca d
H k i H k

   

          
 

 

where 

 
 2

2
0

4
, 4

2

a d b c
D Ra H k

       


     (97) 

(97) is the growth rate of the instability. We note that 
it is proportionnal to the square of the helicity. 

5.1.2. Dispersion Equation for the Oscillatory Modes 
This Equation is obtained by searching for solutions of 
(96) for which the discriminant is positive, namely, 
 2

4 > 0a d bc  . 
We obtain in this case two oscillatory modes, 1  and 

2 , which are, respectively, a slow and a fast mode: 

 2

2
1 0

4
4 ,

2

a d a d b c
H k

          


    (98) 

 2

2
2 0

4
4 .

2

a d a d b c
H k

          


    (99) 

It appears that both slow and fast oscillatory frequen- 
cies are proportional to the square of the helicity as well. 

5.2. Unstable and Oscillatory Modes with 
Viscosity 

In the same way as before, we get the system 

 
 

2
1 2

2
1 2

0,

0.

k i ak ibk

ick k i dk





       
       

         (100) 

We can then get a new quadratic Equation for  : 

   
 

2 2 4 3

2

2

0.

ik a d k k i a d k

ad bc k

        
  

 

Dispersion Equation for the Unstable Mode 
The discriminant of this Equation is the same as in the 
nonviscous case, so the dispersion equation for the un- 
stable mode has the same condition, namely  2

a d
 

4 < 0bc , which leads to: 

   

 

0

2
0

2

2 2
0

, ,

4
2

4
4 ,

2

D Ra i D Ra

a d
H k

a d b c
i H k k

   

 



            
 

 

where 

 
 2

2 2
0

4
, 4 .

2

a d b c
D Ra H k k

        


  (101) 

It is to be noted that the growth rate  ,D Ra  is  

maximal for  
2

20
max 4

H
k a d b c        

, which 

can be considered as the characteristic scale of the gener- 
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ated vortex structures. Below is Figure 3 showing the 
evolution of   with respect to the wave number k  for 

1D Ra  . 
It can be noted that if the discrimant is positive, we get 

an oscillation with an exponentially decreasing ampli- 
tude. 

With increasing amplitude, the instability becomes 
nonlinear and stabilizes. As a result, nonlinear vortex struc- 
tures appear. The nonlinear stage of this instability and 
the results of numerical simulations will be presented in a 
future paper. 

6. Conclusions and Discussion of the Results 

In this paper, we showed that a large scale instability can 
appear in a rotating stratified fluid which is under the 
impact of a simple small scale external force (turbulence). 
The scale of this instability is much larger than the scale 
of the external force or turbulence. It is important to em- 
phasize that, unlike previous papers about large scale 
instabilities, in the present paper, there are no special 
constraints imposed on the external force. It has a zero 
helicity and its parity needs not be violated; this means 
that this is a general force. Nevertheless, the small scale 
turbulence under the impact of the Coriolis force and the 
buoyancy force becomes helical. This helicity 0H , fi- 
nally, is responsible for the generation of large scale in- 
stabilities because the growth rate   is proportional to 

2
0H . The instability itself is oscillating while its fre- 

quency   and   have, in principle, the same order. 
This means that the instability in the general case is ape- 
riodic. The frequency of both the stable and unstable 
oscillations is also proportional to 2

0H . So we can say 
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Figure 3. Evolution of the growth rate with respect to k . 

that the oscillation modes are inertial oscillations of the 
rotating fluid strongly modified by the helicity. There are 
two oscillating modes: one slow 1  and one fast 2 . 
These oscillations decay when the viscosity is taken into 
account and in the case of instability, the maximal 
growth rate is reached at a characteristic scale of maxk . 
Thereby this scale is typical for vortex structures like 
Beltrami’s runaways. In this paper, the theory of a large 
scale instability was constructed using the method of 
multi-scale developments, which was proposed in the 
work of Frisch, She and Sulem [11]. The nonlinear secu- 
lar equations for the large scale instability were obtained 
in the third order of development on a small Reynolds 
number. In this paper, we studied in detail the linear 
stage of the instability and the conditions of its appear- 
ance. It is interesting to note that instability is possible in 
the case of both stable and unstable stratifications. More- 
over, that neither the Rayleigh number nor the Taylor 
number are assumed to be either big or small: this means 
that these numbers are out of scheme parameters. That is 
the reason why we should state that < crRa Ra , where 

crRa  is the critical Rayleigh number for the generation 
of convective instability. The unstable stratification is 
typical for atmosphere dynamics while the stable one is 
typical for ocean dynamics. We believe that the instabil- 
ity which was found in this paper could be applied to the 
issue of the generation of large scale vortices in the at- 
mosphere and the ocean, and to some astrophysical pro- 
blems as well. 
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Appendix 

Calculation of the Reynolds Stress Tensor 

In order to calculate the Reynolds stress, we begin with 
the general expression 

   0 0 1 2
k i ki kiv v T T                 (102) 

with 

  01 01 01 011
ki k i k iT v v v v                (103) 

and 

  03 03 03 032 .ki k i k iT v v v v               (104) 

Hence, 
 

         
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kj it kj it
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 
    

                    (105) 

 
and  2

kiT  has a similar expression. 
Taking into account that only the components 

1 1 3, ,A A B  and 3B  of the external force are nonzero, 

and after some factorizations, we can write the two con- 
tribution of the Reynolds stress tensor in the following 
form:  
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The same calculation for the contribution  2

kiT  gives us 
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Calculation of the Helicity 

The driving force has no helicity, but the joint action of 
the external force, Coriolis force, and the buoyancy give 
the internal helicity. 

The general helicity of the velocity field 0v  is ex- 
pressed by 

   

0 0 01 01 01 01

03 03 03 03 1 2 ,

H

H H
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v v v v v v

v v v v
   (106) 

where we choose  1H  and  2H  such that 

  01 01 01 011H     v v v v  

and 

  03 03 03 032 ,H     v v v v  

and in indicial notation: 

0 0 0 0 .k i
kui uv v  v v  

We must calculate H  with 
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 2H  is calculated in the same way, by replacing 01v  
with 03v . 

We finally obtain 
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After linearization: 
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where we recall that  24 2 24 2 16D Ra D Ra     . 

One can note that for small perturbations  1 2,W W , 
the helicity approaches the constant: 

 2 3
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16 4
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
 

which can be considered as the internal helicity of the 
field 0v  when there are no perturbations. 
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