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ABSTRACT 

This paper investigates the problem of seeking minimum of API (Auxiliary Performance Index) in parameters of Data 
Model instead of parameters of Adaptive Filter in order to avoid the phenomenon of over parameterization. This prob- 
lem was stated by Semushin in [2]. The solution to the problem can be considered as the development of API approach 
to parameter identification in stochastic dynamic systems. 
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1. Introduction 

The recent papers [1,2] gave a survey of the field of ad- 
aptation in stochastic systems as it has developed over the 
last four decades. The author’s research in this field was 
summarized and a novel solution for fitting an adaptive 
model in state space (instead of response space) was given. 

In this paper, we further develop the Active Principle 
of Adaptation for linear time-invariant state-space sto- 
chastic MIMO filter systems included into the feedback 
or considered independently. 

We solve the problem of seeking minimum of Auxil- 
iary Performance Index (API) in parameters of Data 
Source Model (DSM) instead of parameters of Adaptive 
Filter (AF) in order to avoid difficulties known as Phe- 
nomenon of Over Parameterization (PhOP). The PhOP 
means that the number of parameters to be adjusted in 
AF is usually much greater than that in DSM. The solu-
tion of this problem will enable identification in the space 
of lower dimension and at the same time provide esti-
mates of the given system state vector according to Origi-
nal Performance Index (OPI). We verify the obtained 
theoretical results by two numerical simulation examples. 

2. Parameterized Data Models  D   
Following the previous results of [1,2], we assume that 

all data models  D  forming a set D  are param- 
eterized by an -component vector l  . Each particular 
value of   (which does not depend on time) specifies a 

 D . Hence 

  l   D D R            (1) 

where   is the compact subset of . A given physi- 
cal data model (PhDM) is described by the following 
equations: 

lR
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where Z  denotes nonnegative integers,  strictly 
positive integers, and  all integers. 

1Z
Z

Every model  D  (2) is assumed to be acting be- 
tween adjacent switches as long as it is sufficient for ac- 
cepting as correct the basic theoretical statement (BTS) 
that all processes related to the  D  are wide-sense 
stationary. This statement amounts to the following as- 
sumptions. The random 0x  with  2

0
<x E  is or- 

thogonal [3] to  and , the zero-mean mutually 
orthogonal wide-sense stationary orthogonal sequences  

tw tv

with     0T
t tE w w Q    and     > 0T

t tE v v R   for  

all tZ ; 
TT Tw v    is orthogonal to jx  and ju  for 
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all ; t  is a given signal; it is an “external input” 
when considering the open-loop case or a control strat- 
egy function 

j t u

 1
1, ,t t

tu u t y u  X 



               (3) 

when considering the closed-loop setup. 
Stackable vectors of previous values  

 


1 1 1
1

1 2 0

, , ,
:

, , ,

t
t t

t
t t

y y y y

u u u u



 







X          (4) 

constitute the experimental condition  (cf. Ljung [4]). X
By assumption,  is generated by the com- 

pletely observable PhDM (2), so we can move from the 
physical state variables  in (2) to another 

m
ty R

x nR x  
through the similarity transformation x W x

 . Such 
transformation uniquely determines a new state repre- 
sentation 

       * *
1 * * *

*
* 1

,

,
t t t t

t t t

x x u w t

y H x v t

       
  

D
Z

Z
* :  (5) 

of the standard observable data model (SODM) (cf. Se- 
mushin [2]). 

For convenience in the below we shall omit the sub- 
script   for all the matrices describing PhDM or 
SODM. 

3. Parameterized Innovations 

As before, the above data model of a time-invariant data 
source will be referred to as the conventional model, no 
matter whether it is PhDM (2) or SODM (5). Here we 
use another innovation model, that differs from the time- 
invariant (due to BTS) innovation model, presented in 
[2]: 

  1 1

1 1

:
t tt t t t t t

t t t t t

x x u G

y Hx

1



 

 

   

 


M       (6) 

with 1, the initial tZ 0 01 0x x u   , and  0 0x E x ,  

which is the well-known (not necessarily steady-state) 
Kalman filter with the innovation process 1t t  , the op- 
timal state predictor 1t tx  , the gain 

  1

1 1 ,T T
t t t t t

t t

K H H H R

G K



    

 
       (7) 

and 1t t  satisfying the discrete Riccati iterations [5] 

  1

1 1 1 1

1 .

T T
t t t t t t t t

T T
t t
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
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   (8) 

Concurrently, another form 
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1
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:
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tt t t t
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x x u t
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M

Z
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Z

,         (9) 

with the initial 00 0x x , which is equivalent to (6), can 
be used where t tx  is the optimal “filtered” estimator for 

tx  based on experimental condition  (4). When X   
ranges (or switches) over   as in (1), we obtain the set 
of Kalman filters 

  .l   M M R            (10) 

We consider the mean-square criterion 

o
1 1

1

2
T

t t t t tJ e e


  E                  (11) 

defined for a one-step predictor 1
ˆ

t tg   through its error 

11 1tt t t t ˆe x g    in the Kalman filter. Thus in the basis 
forming the state-space,  M  (9) is the model mini- 
mizing the Original Performance Index (OPI) o

tJ  (11) 
at any , which is large enough for BTS to hold, so that 
writing  or 

t
t 1t   as well as any other finitely shifted 

time in (11) makes no difference. 

4. Uncertainty Parameterization 

In contrast to our previous work [2], we do not consider 
the four levels of uncertainty. Assume that system (2) 
(and also the SODM (5)) is parameterized by an l - 
component vector   of unknown system parameters, 
which needs to be identified. This means that the entries 
of the matrices   ,   ,   ,  Q  ,  H  , 
 R   are functions of  D  . However, for the 

sake of simplicity we will supress the corresponding no- 
tations below, i.e. instead of   ,   ,   , 
 Q  ,  H  ,  R   we will write , ,    , , Q

H , . We make the same assumptions about the 
SODM. 

R

5. The Set  of Adaptive Models A  ˆM   

Let us consider the set of adaptive models 

  ˆ ˆ l   M RA          (12) 

Here we emphasize the fact that we construct adaptive 
models in the same class as  belongs to with the 
only difference that the unknown parameter 

M
  in 

 M  is replaced by ̂  to obtain  ̂M . In so doing, 
each particular value of ̂ , an estimate of  , leads to a 
fixed model  ̂M . In accordance with The Active 
Principle of Adaptation (APA) [1], only when ̂  ranges 
over   in search of †  for the goal  †M  or 

 †M  as governed by a smart, unsupervised helms- 
man equipped by a vision of the goal in state space and 
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able to pursue it, we obtain a model  ̂M
ˆ

 of active  

type within the set  (12). In this case, A   will act as  
a self-tuned model parameter and so should be labeled by 
 , the time instant of model’s inner clock, in order to get 
thereby the emphasized notations ̂  and  ̂M

 ˆ

 in 
describing parameter identification algorithms (PIAs) to 
be developed. From this point on M  becomes an 
adaptive estimator. 

Remark 1 Note in passing that pace of   may differ 
from that of t . We shall need to discriminate between 
  and  later when developing a PIA. t

Remark 2 If we work in the context of SODM, the set 

  l Rˆ ˆ   MA         (13) 

instead of (12) should be used. 
At this junction, we identify the following tasks as 

pending: 
1) Express  ̂M  or  ̂M  in an explicit form. 
2) Build up APIs that could offer vision of the goal. 
3) Examine APIs’ capacity to visualize the goal. 
4) Develop a PIA that could help pursuing the goal. 
Consider here the first three points consecutively. 

5.1. Parameterized Adaptive Models 

Reasoning from (6), (9), we set the adaptive model 

       
 

1 1 1

1 1

ˆˆ ˆ
ˆ :

ˆ ˆ

t t t t t t

t t t t t

g g

y H g

   


 

  

 

  

 
M

t

ˆ ˆ
t tu G

 (14) 

or equivalently (due to ) the model tG K 

 
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 

 

M         (15) 

as a member of  (12). Here A ̂  is the self-tuned pa- 
rameter intended to estimate (in one-to-one correspond- 
dence) parameter θ. In parallel, reasoning from  M , 
we build the adaptive model 

       * ˆ
t tu * *1 1 1

* 1 1

ˆ ˆˆ ˆ
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 

 

M         (17) 

where H  does not depend on ̂ . Matrices  ˆtG   

are evaluated according 

aptor 

and  ˆtK   to (7), (8). 

Ad  ̂A  using (14)-(15) (or alternatively, 
 ̂A

offer th

* ng ( -( usi 17)) is supposed to contain a PIA to 
e prospect of convergence. For convergence in 

parameter space, we anticipate almost surely (a. s.) con- 
vergence, as it is the case for MPE identification methods 
[3,4]. It actuates either or both of the two other types of 
convergence. The type of convergence in state space, as 
well as in response space, is induced by the type of 
Proximity Criterion, PC (cf. [2], Figures 1-3). As seen 
from (11), we are oriented to the PC, which is quadratic 
in error; this being so, it would appear reasonable that 
these convergences would be in mean square (m. s.). 
Thus we anticipate the following properties of our esti- 
mators: 
 

16)
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Figure 1. The values of o
tJ  and a

tJ  versus the estimates 

of parameter 1f  (Example E1). 
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Figure 3. The values of o
tJ  and a

tJ  versus the estimates 

of parameter β (Example E1). 
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With the understanding that errors for PC 

11 1
ˆ ˆ,t tt t t t t t t te x g e x g    

   

1 1 1
ˆ ˆ,t t t t t t t t t t t tr x g r x g

 

 

     
      (19) 

are fundamentally invisible for any m
search for a function 

easurement, we 

   1 1
ˆ ˆ t s tt s n

t t t tf y y  


of the difference in two terms: outputs

  R           (20) 

 1t
t sy 


by Data Source described in any appropr
 generated 

iate form (2), (5),  

(6), or (9), and their estimates 1
ˆ t s t

t ty 
  ge ated by the  

 ˆ
ner

adaptive model M  (or  ̂M ). For  ˆt   in  

(20), we will also use notations 1t t   or t t , thus bring-  
lationing them into corre  with 1t te   or t te  (co nd-  rrespo

ingly, with 1t tr   or t tr ) from (1 hen 9). T

      ˆ=t tJ Ja a 1 Tˆ ˆ
2 t tE    


       (21) 

will be taken as the PC and determined with 
True (Unbiased) System Identifia

the key aim: 
bility 

   a ˆ ˆmin tJ    M
̂

     † †ˆ    M M M  

Here, the equivalence symbol  needs clarification. 

Its sense correlates with the above concept of conve  
gence (18). Necessary refinements will be done (i
Th



r-
n 

eorem 1). 

5.2. API Identifiability of  †M   

Let the auxiliary process r the API (21) as (20) be built fo

   1
ˆ s 11 1

ˆt s t
t tt t t ty g u  
         (22)    S F

or, equivalently, as 

       1t su1
ˆ ˆˆt s

t tt t t ty g       (23)      S B

x transformations are used (see the 
section “Ancillary Matrix Transformations” of [2]

Theorem 1 Let 

where special matri
). 

 ˆt   (20) be a vector-valued n-  

component function of 1
t s t
t t 
 . If  ˆt   is defined by  

(2 ) (23  n2) or (equivalently i  order to form the API (21), 
en minimum in ˆ

)
th   of the 

fficie nditi
API fixed out at any instant t 

is the necessary and su nt co on for adaptive 
model  ̂M  to be consistent estimator of  †M  
in mean square,  

   
m.s.

†ˆ:t   
  M MZ , that is 

True (Unbiased) m.s. System Identifiability 

   2

0t
a

1 1ˆ

ˆ ˆmin t t t tJ E x g  


    

in the followi
Setup 1 (Random Control Input) 

ng three setups: 
 tu  is a preassigned 

zero-mean orthogonal wide-sence stationary process 
orthogonal to  ,t tw v  but in c t toontras   tw  and 
 t , known and serving as a testing nal; 

Setup 2 (Pure Filtering) : 0tt u  Z , and 

Setup 3 (Clo  Control) with  , w does 
epend on 

v  sig

se-loop hich 
not d  . 

Proof is similar to the proof of Theorem 2 in [2]. 
Remark 3 Our main goal is to identify the vector   

of unknown pa eters. The minimization of API by 
so

ram
 me PIA allows us to determine the optimal value † . 

))Th  en it must be substituted into (14)-(15) (or (16)-(17  

to get the optimal model  ̂M  (or  ̂M ). At the  

same time, we obtain the optimal estimates 1
ˆ

t tx   (or 

1t tx̂ ) according to OPI. 

5.3. Main Conceptual Novelty 

ing minimum of APSeek I in parameters of Data Model 
instead of parameters of Adaptive Filter is more profit- 
able, as: 
 It takes into account the dynamics of the discrete 

Riccati equations, which positively affects the quality 
of parameter and state vector estimates. 
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 The number of unknown parameters can be substan- 

out the con- 

 to handle the 

 new, 

OPI does; 

ton-Raphson 
m

tification of the 
sy

6.

nd order open-loop system with unknown 

tially (an order of magnitude or more) reduced thus 
helping avoid the difficulties of PhOP. 

 API gradient is calculated easily—with
struction of sensitivity model of adaptive filter. 

 It can be implemented in the case of non-stationary 
systems, which is critical, for example,
navigation data. 

Thus, the proposed variant of API method is a
thanks to the solution of its important tasks: 

1) Numerical construction of API, which has the same 
minimizing argument that the 

2) The numerical minimization of the API by conven- 
tional optimization methods such as New

ethod, and 
3) The combination of parameter iden
stem with the process of adaptive estimation of its 

states. 

 Simulation Examples 

We take two examples to simulate: 
E1 Seco

parameters  1 2, , ,f f    is given by 

 

0

1 0t t

1

0 1 0
t t

1 2
t t

t

x x u

 
w

f f

y v

 

x

 
  

 
   

      

 

Unknown parameters should be identified. Adaptive 
model parameter is the four-component vector 

 1 2
ˆ ˆˆ ˆ ˆ, , ,f f   . 

Its true value is  

 † 0.8,  0.1,  1.0,  0.4   . 

Covariances Q  and 
e equal to 0.04 and 

R
6, co

 of the noises  and 
ar 0.0 rrespondingly. 

E2 The same (but closed-loop) system 1. The 
system is designed to operate with a minimum expected 
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arameters  ,  , 1f  and 2f  should be 
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in E1. 

Simulation results of Figures 1-4 and 5-7 obtained 
fr A A  pr  d

uxiliary performance index with the original per- 
fo

 of parameters are the sam

om Julia Tsyganova’s M TL B ograms emonstrate 
equimodality (coincidence of the minimizing arguments) 
of the a

rmance index. It is seen that the minimums of OPI and 
API coincide near † . Thus, the obtained results con- 
firm applicability of the presented method. 
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Figure 4. The values of o
tJ  and a

tJ  versus the estimates 

of parameter   (Example E1). 
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Figure 5. The values of o
tJ  and a

tJ  versus the estimates 

of parameter 1f  (Example E2). 
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Figure 6. The values of o
tJ  and a

tJ  versus the estimates 

of parameter 2f  ( 2). Example E
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Figure 7. The lues of o
t va J  and a

tJ  versus the estimates 

of parameter   (Example E2). 

7. Conclusion 

The present paper gives a comprehensive solution to the
problem of seeking minimum of 

 
 a ˆ

tJ   in parameters  

̂  of Data Model  ̂D  or  ̂D  instead of 

meters of Adaptive Filter 

para-  

 ̂M  or  ̂M
erical si

. The ob-
tained results were veri two num mulation 
examples. 

Our further research is aimed at obtaining solutio
the following issues: 
 Economic feasibility, numeric stability and conver- 

gence reliability of each proposed parameter identi-
fication algorithm. 

 Numerical testing of the approach and determining

ple, in Health Care field [6]. 

ents 

tic Dynamic Sys- 
esults I,” International Journal 
rk and System Sciences, Vol. 4, 

the scope of its appropriate use in real life problems, 
for exam
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