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ABSTRACT

In this paper, first, we introduce the notion of weakly compatible maps for coupled maps and then prove a coupled fixed
point theorem under more general -norm(H-type norm) in Menger spaces. We support our theorem by providing a suit-

able example. At the end, we obtain an application.
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1. Introduction

In 1942, Menger [1] introduced the notion of a probabil-
istic metric space (PM-space) which was, in fact, a gener-
alization of metric space. The idea in probabilistic metric
space is to associate a distribution function with a point
pair, say (p.,q), denoted by F(p,q,t) where >0
and interpret this function as the probability that distance
between p and g is less than ¢, whereas in the met-
ric space, the distance function is a single positive num-
ber. Sehgal [2] initiated the study of fixed points in
probabilistic metric spaces. The study of these spaces
was expanded rapidly with the pioneering works of Sch-
weizer-Sklar [3].

In 1991, Mishra [4] introduced the notion of compati-
ble mappings in the setting of probabilistic metric space.
In 1996, Jungck [5] introduced the notion of weakly
compatible mappings as follows:

Two self-mappings S and T are said to be weakly
compatible if they commute at their coincidence points,
ie., Tu=Su forsomeuec X, then TSu=STu .

Further, Singh and Jain [6] proved some results for
weakly compatible in Menger spaces.

Fang [7] defined ¢ -contractive conditions and proved
some fixed point theorems under ¢ -contractions for
compatible and weakly compatible maps in Menger PM-
spaces using f-norm of H -type, introduced by Hadzic
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[8].

Recently, Bhaskar and Lakshmikantham [9], Lakshmi-
kantham and Ciri¢ [10] gave some coupled fixed point
theorems in partially ordered metric spaces.

Now, we prove a coupled fixed point theorem for a
pair of weakly compatible maps satisfying ¢ -contrac-
tive conditions in Menger PM-space with a continuous
¢t -norm of H -type. At the end, we derive a result for w-
compatible maps, introduced by Abbas, Khan and Re-
denovi ¢ [11].

2. Preliminaries

First, recall that a real valued function f defined on the
set of real numbers is known as a distribution function if
it is non-decreasing, left continuous and inf f(x)=0,
sup f(x)=1. In what follows, H(x) denotes the dis-
tribution function defined as follows:

0, if x<0,

H(x)= {l,

Definition 2.1. A probabilistic metric space (PM-
space) is a pair (X,) where X is a set and F is a
function defined on X x X into the set of distribution
functions such that if x,y and z are points of X,
then

(F-1) F(x,y;O) =0,

(F-2) F(x,y;t) :H(t) iff x=y,

if x> 0.
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(F-3) (x,y:1)=F(y,x:1),

(F-4) if F(x,y;s) =1 and F(y,z;t) =1, then
F(x,z;s+t) =1 forall x,y,ze X and s,620.

Foreach x and y in X and for each real number
>0, F (x, y;t) is to be thought of as the probability
that the distance between x and y islessthan ¢.

It is interesting to note that, if (X ,d ) is a metric
space, then the distribution function F (x, y;t) defined
by the relation F(x,y;t)= H(t—d(x,y)) induces a
PM-space.

Definition 2.2. A t-norm ¢ is a 2-place function,
t: [0,1] x [0,1] - [O,l] satisfying the following:

1) ¢(0,0)=0,

2) t a,l) =a,

3) ¢ a,b)=t(b,a),

4)if a<c, b<d,then t(a,b)St(c,d),

5) t(t(a,b),c) = t(a,t(b,c)) foralla, b, cin[0,1].

Definition 2.3. A Menger PM-space is a triplet (X,t)
where (X F ) is a PM-space and ¢ is a ¢-norm with
the following condition:

(F-5) (F(x,zs+1)2t(F(x,:5),F (y,z:t)), for all
x,y,z€ X and s,620.

This inequality is known as Menger’s triangle inequal-
ity.

We consider (X,F,t) to be a Menger PM-space
along with condition (F-6) limF (x, y,t)=l , for all
x,y in X. i

Definition 2.4 [4]. Let sup A(z,¢)=1. A t-norm A

0<t<1
is said to be of H -type if the family of functions
A" (1) _, is equicontinuous at ¢ =1, where

A()EAr, A" (1) = A(A’" (t))
m=12,---,te [0,1] .

The #-norm A,, =min. is an example of ¢-norm of
H type.

Remark 2.1. A is a H -type ¢-norm iff for any
A€(0,1) , there exists &(4)e(0,1) such that
A"(t)>(1-2) forall meN,when ¢>(1-5).

Definition 2.5. A sequence {x,} in a Menger PM
space (X,F,t) issaid

1) to converge to a point x in X if forevery >0
and A>0 , there is an integer n, such that
F(x,,x,€)>1-4, forall n>n,.

2) to be Cauchy if for each ¢ >0 and 4> 0, there is
an integer n, such that F(x,,x,,c)>1-A, for all
n,mz2n.

3) to be complete if every Cauchy sequence in it con-
verges to a point of it.

Definition 2.6 [3]. Define ®={¢:R" — R'}, where
R = [O, +oo) and each ¢e® satisfies the following
conditions:

o— 1) @ is non-decreasing;
o— 2) @ is upper semicontinuous from the right;
$-3)>" 4" (t) <+ for all ¢>0 , where
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¢ (t)=¢(#"(¢))neN.
Clearly, if ¢ €@, then ¢(t) <t forall ¢>0.
Definition 2.7 [3]. An element xe X is called a
common fixed point of the mappings
f:XxX—>X and g: X > X if

x:f(x,x) =g(x)

Definition 2.8 [6]. An element (x,y)e XxX is
called a

1) coupledfixed point of the mapping f: XxX > X
if f(x,y)=x, f(y,x):y.

2) coupled coincidence point of the mappings
f:XxX—>X and g:X—>X if f(xy)=g(x)
f(yx)=g(y).

3) common coupled fixed point of the mappings
fXxX—>X and g: X > X if
x=f(xy)=g(x), y=/(rx)=2(y)

Definition 2.9 [3]. The mappings f:XxX > X
and g:X — X are called commutative if

g(f(x,y)):f(gx,gy),forall x,yeX .

Abbas, Khan and Redenovic¢ [1] introduced the notion
of w-compatible maps for coupled mappings as follows.

The mappings F:XxX > X and g: X > X are
called w-compatible if

g(F(x,y)) = F(gc,gy) whenever F(x,y) = g(x) ,
F(y.x)=g(»).

In a similar mode, we state weakly compatible maps
for coupled maps as follows:

Definition 2.10. The maps f:XxX —> X and
g:X —> X are called weakly compatible if
fgx,y) = g(x) , f(y,x) = g(y) implies
g(/(xy)=r(gng). g(f(y.x))=r(g.gx), for
all x,yelX.

We note that w-compatible are obviously weakly
compatible maps.

3. Main Results

For convenience, we denote

3.1
[F(x,y,t)]" :F(x,y,t)*F(x,y,t)*---*F(x,y,t) , for

all neN.

Now we prove our main result.

Theorem 3.1. Let (X,F,*) be Menger PM-Space,
* being continuous ¢ — norm of H -type. Let
f:XxX—>X and g:X — X be two mappings and
there exists ¢ €® such that followings hold:

3.2)
F(f(x.2).f (.v),0(1)) 2 F(gx.gu.t)* F (0, 2v.1),
forall x,y,u,v in X and #>0 and

1) Suppose that f (X xX)c g(X),

2) pair ( /s g) is weakly compatible,

3) range space of one of the maps f or g is complete.
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Then f'and g have a coupled coincidence point. More-
over, there exists a unique point x in X such that
=f(xy)=2g(x).

Proof. Let x,,y, be two arbitrary points in X .
Since /(X xX)c g(X), we can choose x,y, inX
such that g(xl) =/ xorYo) > g(y1)= f(y()sxo) ‘

Continuing in this way we can construct two se-
quences {x,} and {y,} in X such that

g(xn+l)=f(xn3yn) and g(yn+l)=f(yn’xn) fOI' all
nz0.

Step 1. We first show that {gxn} and {gyn} are
Cauchy sequences.

Since * is a ¢t-norm of H -type, for any £>0,
there exists & >0 such that

(33) (1-8)*(1-8)*---=

P

(1—5)2(1—6) , for all

pPEN.
Since lim,_,, F(x,y,t)=1
exists t, >0 such that
F(gxy,8%,1,) 2 (1-5) and
F(gy,gv,t,)21-6 .
Since ¢pe® and using condition (¢ -3), we have
D" 4" (t,) <oo. Then for any >0, there existsn, € N
such that

(3.4) t>zk" ( ).

From (3.2), we ‘have
F(g5852:8(0)) = F (£ (50:30) £ (5 1).6 (1))
> F (g%, 8%, ) * F (860, €051 )

, for all x,yinX , there

n-1

*F(gxm—l’gxm s¢mil (to )) 2 H{[F(gxo»gxl»to ):|2

ET AL.

F(291.87228(1)) = F (f (503 )- f (37123).8(1))
> F (Vs @11 ) * F (8%, 8%1y )

Similarly, we can also get
F(gx,,80.8" (1)) = F(f (x1,30): f (%.3,).8° (1))
> F(g.%.4(1)))* F (201,27, (1,))
F(gvy.g0 8 (0)) = F (£ (7:3)s f (7253,).8° (1))
2 [F(gyo,gyl,to )]Z *[F(gxo»gxl”o )]2

Continuing in this way, we can get

F(g%,8%,.1.6" (1))

2 [F(gxo,gxl »Ly )]2"71 * [F(gymgyl’to ):|2nil
F(2, 054" (1))
>[F(@no)] [Flevnemn)] -

So, from (3.3) and (3.4), for m >n = n,, we have

F(gxn’gxm’t) = F(gxn’gxm’zzo:no ¢k (to))

>F (gxn,gxm,mﬂfk (to)j

k=n

2 F(gxngnﬂ ’¢n (tO ))* F(gxm—l ’gxn+2’¢n+1 (tO )) e

*[F(gyo,gyl,to )TH }

{ (g%, 8%, ] [F 0> V151, )]2”}*"'*{[F(gxmgxnfo)]zm2*[F(gyo,gyl,to)}zmz}ﬂ

|: gxoagxla :|2)H(2m n 1) *[F(gymgyl’ ):|2ﬂ l(

>(1-0)#(1-0)*--#(1-0) > (1-
2(2m)

which implies that

F(gx,.gx,.t)=(1-¢) for all
m>nzn, and ¢>0.

So, { gxn} is a Cauchy sequence. Similarly, we can
get that { gyn} is a Cauchy sequence.

Step 2. To show that f and g have a coupled coinci-
dence point.

Without loss of generality, we assume that g(X) is
complete, then there exists points x,y in g(X)so that
limnaw g(xn+1 ) =X, limn»w g(yn+l) =y.

Again x,ye g(X) implies the existence of p,q in
X so that ggp) =x, g(q8 =y and hence
lim, ., g(%,.,)=lim,, f(x,.»,)=g(p)=x,

m,ne N  with

Open Access

-1(gmen 71)

limn%oc g(ynH ) =
From (3.2),

F(f(x,3,)5/(p:49):4(1))

> F(gv,.g(p)1)*F(2,.2(q).1)

Taking limitas n — oo, we get

F(g(p),f%p,q),¢(t)):l that is,
f(p.g)=2(p)=x.

Similarly, f(q,p)=g(q)=y.

But f and g are weakly compatible, so that
f(p.q)=2g(p)=x and_ f(q,p)=2(q)=y implies
gf(p,qg=fgggp),g(qgg and
g (¢-p)=f(2(q).g(p)). thatis g(x)=1(x,y)

limn%oc f(yn’xn) :g(q):y .
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and g(y)=/1(».x).

Hence f and g have a coupled coincidence point.

Step 3. To show that g(x)=y and g(y)=x.

Since * is a ¢-norm of H -type, any € >0, there
exists 0 >0 such that

(1-8)*(1=8)*---*(1-5)>(1—¢) forall peN.

r

Since lim,,, F(x,y,t)=1, forall x,y in X, there
exists t, >0 such that

F(gx,y,lo) 2(1—5) and F(gy,x,lo)z (1—5) .

Since ¢e® and using condition (¢ -3), we have
> #"(t,)<oo . Then for any ¢>0, there exists
n, € N such that

t> Z::nﬂ ¢ (1)

F(gx,y,t)z F(gx,y, i¢k (to )] > F(gx,y,¢"°

k=ng

(1)) 2 [F(gr.0.0)]

ET AL. 1717

Using condition (3.2), we have
F(80.8,0:0(6)) = F (f (x.2). f (50x,).6(1,))
> F(gx,gv,.10)* F(gv,8%,.4),
letting n — o, we get
F(gx,y,¢(t0)) > F(gx, 3,1, )* F (g,x.1,),
By this way, we can get forall ne N,
F(gx, 34" (to)) > F(gx,y, ¢! (to)) *F(gy, x4 (to))

> [F (gx, AN )]znil * [F(gy, X, t, )TH

thus, we have

no-1

*[F(gy,x,to )}

2/107[

2(1-8)*(1-8)*--*(1-5) = (1-¢).

2"0

So, for any €>0, we have F(gx,y,1)>(1-¢), for
all £>0.

This implies g(x) =y . Similarly, g(y)=x.

Step 4. Next we shall show that =y .

Since * isat-norm of H -type, for any € >0, there
exists ¢ >0 such that

(1-8)*(1=5)*---*(1-5)>(1—¢), forall peN.

r
Since lim,,, F(x,y,t)=1, for all x,y in X, there
exists 7, >0 suchthat F(x,y,5,)>(1-0)
Also, since ¢ € ®, using condition (¢-3), we have
> #"(t,) <o . Then for any >0, there exists
n, € N such that

t> Z::no ¢k (to) :
Using condition (3.2), we have
F(gxn+1’gyn+l’¢(t0)):F(f(xn’yn)’f(yn’xn)7¢(t0))
2F(gxn’gyn’t())*F(gyn’gxnﬂto)

Letting n — o, we get
F(&)’:‘ﬁ(%)) > F(x,,8,)*F(y,x1,) . Thus we have

(to )J > F(x, y,0" (to))

> [F(x, pAN )]2 ’ *[F(y,x, t )]Wl
> (1=8)#(1=8) %% (1-5) 2 (1—¢)

210

F(x,y,t)> F(x,y, i(ék

k=ng

which implies that x=y. Thus, we have proved that /'

Open Access

and g have a common fixed point x in X .

Step 5. We now prove the uniqueness of x .

Let z be any point in X such that z=x with
g(z) =z zf(z,z) .

Since * is a t-norm of H -type, for any €>0,
there exists & >0 such that
(1—5)*(1—5)*---*(1—5) 2 (l—e), forall peN.

r

Since lim, F(x,y,t) =1, forall x,y in X, there
exists 7, >0 suchthat F(x,z,)>1-6.

Also, since ¢e®, using condition (¢-3), we have

29 (tg) <o

myeN suchthat t>3 " ¢ (1) -

Then for any ¢>0, there exists

Using condition (3.2), we have
F (2 (1)) = F (£ (5:). £ (2.2).9(1,)
>F(g(x).g(2).1)*F(g(x).g(2).1,)

= F(x,2,0,)* F (0,2, )[F (x.2.,) ] -

Thus, we have

F(x,2,6)> F[x,z, i#‘ ( )] > F(x,2,¢" (1))

k=ng

0

>> ([F(x,z,to)]zw )2 =(F(x.z4))
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which implies that x=y.

Hence, f and g have a unique common fixed pointin
X.

Next, we give an example in support of the Theorem
3.1

Example 3.1. Let X = [—2,2),(1 *b=ab for all

a,be[0,1] and go(t):ttj. Then (X,F,*) is a

Menger space, where
F(x,y,t)= [go(t)]‘x_’v‘ ,forall x,y in X and

F(f(x2).f (w:v).2(1))

‘A_z +y2 _u2?

t+2

=

{ }XU‘F}’V {
forevery ¢>0.

Hence, all the conditions of theorem 3.1, are satisfied.
Thus f and g have a unique common coupled fixed point
in X.Indeed, x=4(1-+2 ) is a unique common cou-
pled fixed point of fand g.

Theorem 3.2. Let (X, F,*) be Menger PM - Space,

being continuous ¢ — norm of H-type. Let
f:XxX—>X and g:X —> X be two mappings and
there exists ¢ € @ satisfying (3.2).

Then there exists a unique point x in X such that
x= f(x,x) = g(x).

Proof. It follows immediately from Theorem 3.1.

Next we give an application of Theorem 3.1.

t

t+1

[\

*

4. An Application

Theorem 4.1. Let (X,F,*) be a Menger PM-space, *
being continuous ¢ -norm defined by

a*b=min.{a,b} for all a,b in X. Let M,N be
weakly compatible self maps on X satisfying the fol-
lowing conditions:

(4.1) M(X)c N(X),

(4.2) there exists ¢ € @ such that

F(Mx,My,¢(t))2F(Nx,Ny,t) for all x,y in X
and >0.

If range space of any one of the maps M or N is
complete, then M and N have a unique common
fixed pointin X .

Proof. By taking f(x,y) = M(x) and
g(x)=N(x) forall x,yeX in Theorem 3.1, we get
the desired result.

Taking ¢(7)=kt,k €(0,1), we have the following:

Cor. 4.2. Let (X,F,*) be a Menger PM-space, *

Open Access

F(f(x,y),f(u,v)
‘/16

ET AL.

t>0.

Let @(t):% , g(x)zx and the mapping
2 2

f:XxX —> X be defined by f(x,y)zg i}—6—

It is easy to check that
f(XxX)=[-2,-1]c[-2,2) =g(X). Further,
f(XxX) is complete and the pair (f,g) is weakly
compatible. We now check the condition (3.2),

|/ (o)1 ()]
Jot3)]

¢ ] s

L+2}
e

t+1
being continuous ¢ -norm defined by a*b=min.{a,b}
for all a,b in X. Let M,N be weakly compatible
self maps on X satisfying (4.1) and the following condi-
tion:

(4.3) there exists k € (0,1) such that

F(Mx,My,kt)> F(Nx,Ny,t) for all x,y in X
and 7>0.

If range space of any one of the maps M or N is
complete, then M and N have a unique common
fixed pointin X .

Taking N =1, the identity map on X, we have the
following:

Cor. 43. Let (X,F,*) be a Menger PM-space, *
being continuous ¢ -norm defined by a*b =min.{a,b}
for all a,b in X. Let M,N be weakly compatible
self maps on X satisfying (4.1) and the following con-
dition:

(4.4) there exists k € (0,1) such that

F(Mx,My,kt)>F(x,y,t) for all x,y in X and
t>0.

If range space of the map M is complete, then M
and N have a unique common fixed pointin X .

t

,—

2

t

2

[ e

t

=t
t+1 } =F(xu,t)*F(y,v1),
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