

Coupled Fixed Point Theorem for Weakly Compatible Mappings in Menger Spaces

Manju Grewal¹, Manish Jain², Ramesh Vats¹, Sanjay Kumar^{3*}

Received October 15, 2013; revised November 15, 2013; accepted November 23, 2013

Copyright © 2013 Manju Grewal *et al.* This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

In this paper, first, we introduce the notion of weakly compatible maps for coupled maps and then prove a coupled fixed point theorem under more general *t*-norm(*H*-type norm) in Menger spaces. We support our theorem by providing a suitable example. At the end, we obtain an application.

Keywords: Menger Spaces; w-Compatible Maps; Phi-Contractive Conditions

1. Introduction

In 1942, Menger [1] introduced the notion of a probabilistic metric space (PM-space) which was, in fact, a generalization of metric space. The idea in probabilistic metric space is to associate a distribution function with a point pair, say (p,q), denoted by F(p,q,t) where t>0 and interpret this function as the probability that distance between p and q is less than t, whereas in the metric space, the distance function is a single positive number. Sehgal [2] initiated the study of fixed points in probabilistic metric spaces. The study of these spaces was expanded rapidly with the pioneering works of Schweizer-Sklar [3].

In 1991, Mishra [4] introduced the notion of compatible mappings in the setting of probabilistic metric space. In 1996, Jungck [5] introduced the notion of weakly compatible mappings as follows:

Two self-mappings S and T are said to be weakly compatible if they commute at their coincidence points, i.e., Tu = Su for some $u \in X$, then TSu = STu.

Further, Singh and Jain [6] proved some results for weakly compatible in Menger spaces.

Fang [7] defined ϕ -contractive conditions and proved some fixed point theorems under ϕ -contractions for compatible and weakly compatible maps in Menger PM-spaces using t-norm of H-type, introduced by Had $\check{z}ic$

Lo].

Recently, Bhaskar and Lakshmikantham [9], Lakshmikantham and Ćirić [10] gave some coupled fixed point theorems in partially ordered metric spaces.

Now, we prove a coupled fixed point theorem for a pair of weakly compatible maps satisfying ϕ -contractive conditions in Menger PM-space with a continuous t-norm of H-type. At the end, we derive a result for w-compatible maps, introduced by Abbas, Khan and Redenovi \dot{c} [11].

2. Preliminaries

First, recall that a real valued function f defined on the set of real numbers is known as a distribution function if it is non-decreasing, left continuous and $\inf f(x) = 0$, $\sup f(x) = 1$. In what follows, H(x) denotes the distribution function defined as follows:

$$H(x) = \begin{cases} 0, & \text{if } x \le 0, \\ 1, & \text{if } x > 0. \end{cases}$$

Definition 2.1. A probabilistic metric space (PM-space) is a pair (X,) where X is a set and F is a function defined on $X \times X$ into the set of distribution functions such that if x, y and z are points of X, then

(F-1)
$$F(x, y; 0) = 0$$
,
(F-2) $F(x, y; t) = H(t)$ iff $x = y$,

Open Access AM

^{*}Corresponding author.

(F-3) (x, y;t) = F(y, x;t),

(F-4) if F(x, y; s) = 1 and F(y, z; t) = 1, then F(x,z;s+t)=1 for all $x,y,z\in X$ and $s,t\geq 0$.

For each x and y in X and for each real number ≥ 0 , F(x,y,t) is to be thought of as the probability that the distance between x and y is less than t.

It is interesting to note that, if (X,d) is a metric space, then the distribution function F(x, y;t) defined by the relation F(x, y, t) = H(t - d(x, y)) induces a PM-space.

Definition 2.2. A t-norm t is a 2-place function, $t:[0,1]\times[0,1]\to[0,1]$ satisfying the following:

- 1) t(0,0)=0,
- 2) t(a,1) = a
- 3) t(a,b) = t(b,a),
- 4) if $a \le c$, $b \le d$, then $t(a,b) \le t(c,d)$,
- 5) t(t(a,b),c) = t(a,t(b,c)) for all a, b, c in [0,1].

Definition 2.3. A Menger PM-space is a triplet (X,t)where (X,F) is a PM-space and t is a t-norm with the following condition:

(F-5) $(F(x,z;s+t) \ge t(F(x,y;s),F(y,z;t))$, for all $x, y, z \in X$ and $s, t \ge 0$.

This inequality is known as Menger's triangle inequal-

We consider (X, F, t) to be a Menger PM-space along with condition (F-6) $\lim F(x, y, t) = 1$, for all x, y in X.

Definition 2.4 [4]. Let $\sup_{0 < t < 1} \Delta(t, t) = 1$. A t-norm Δ

is said to be of H -type if the family of functions $\left\{\Delta^{m}\left(t\right)\right\}_{m=1}^{\infty}$ is equicontinuous at t=1, where $\Delta^{1}\left(t\right) = \Delta t$, $\Delta^{m+1}\left(t\right) = \Delta\left(\Delta^{m}\left(t\right)\right)$,

 $m = 1, 2, \dots, t \in [0, 1]$.

The t-norm $\Delta_M = \min$ is an example of t-norm of

Remark 2.1. Δ is a H-type t-norm iff for any $\lambda \in (0,1)$, there exists $\delta(\lambda) \in (0,1)$ such that $\Delta^{m}(t) > (1-\lambda)$ for all $m \in N$, when $t > (1-\delta)$.

Definition 2.5. A sequence $\{x_n\}$ in a Menger PM space (X, F, t) is said

1) to converge to a point x in X if for every $\epsilon > 0$ and $\lambda > 0$, there is an integer n_0 such that $F(x_n, x, \epsilon) > 1 - \lambda$, for all $n \ge n_0$.

2) to be Cauchy if for each $\epsilon > 0$ and $\lambda > 0$, there is an integer n_0 such that $F(x_n, x_m, \epsilon) > 1 - \lambda$, for all $n, m \ge n_0$.

3) to be complete if every Cauchy sequence in it converges to a point of it.

Definition 2.6 [3]. Define $\Phi = \{ \phi : R^+ \to R^+ \}$, where $R^+ = [0, +\infty)$ and each $\phi \in \Phi$ satisfies the following conditions:

 $(\phi - 1)\phi$ is non-decreasing;

 $(\phi - 2)\phi$ is upper semicontinuous from the right;

$$(\phi - 3) \sum_{n=0}^{\infty} \phi^n(t) < +\infty$$
 for all $t > 0$, where

 $\phi^{n+1}(t) = \phi(\phi^n(t)), n \in \mathbb{N}.$

Clearly, if $\phi \in \Phi$, then $\phi(t) < t$ for all t > 0.

Definition 2.7 [3]. An element $x \in X$ is called a common fixed point of the mappings

 $f: X \times X \to X$ and $g: X \to X$ if

$$x = f(x, x) = g(x)$$

Definition 2.8 [6]. An element $(x, y) \in X \times X$ is called a

1) coupledfixed point of the mapping $f: X \times X \to X$ if f(x, y) = x, f(y, x) = y.

2) coupled coincidence point of the mappings $f: X \times X \to X$ and $g: X \to X$ if f(x,y) = g(x)f(y,x)=g(y).

3) common coupled fixed point of the mappings $f: X \times X \to X$ and $g: X \to X$ if

x = f(x, y) = g(x), y = f(y, x) = g(y)

Definition 2.9 [3]. The mappings $f: X \times X \to X$ and $g: X \to X$ are called commutative if

g(f(x,y)) = f(gx,gy), for all $x,y \in X$.

Abbas, Khan and Redenović [1] introduced the notion of w-compatible maps for coupled mappings as follows.

The mappings $F: X \times X \to X$ and $g: X \to X$ are called w-compatible if

$$g(F(x,y)) = F(gx,gy)$$
 whenever $F(x,y) = g(x)$,
 $F(y,x) = g(y)$.

In a similar mode, we state weakly compatible maps for coupled maps as follows:

Definition 2.10. The maps $f: X \times X \to X$ and $g: X \to X$ are called weakly compatible if

f(x,y) = g(x), f(y,x) = g(y) implies g(f(x,y)) = f(gx,gy), g(f(y,x)) = f(gy,gx), for all $x, y \in X$.

We note that w-compatible are obviously weakly compatible maps.

3. Main Results

For convenience, we denote

$$\left[F(x,y,t)\right]^n = \underbrace{F(x,y,t) * F(x,y,t) * \cdots * F(x,y,t)}_{n}, \text{ for }$$

all $n \in N$.

Now we prove our main result.

Theorem 3.1. Let (X,F,*) be Menger PM-Space, * being continuous t – norm of H -type. Let $f: X \times X \to X$ and $g: X \to X$ be two mappings and there exists $\phi \in \Phi$ such that followings hold:

(3.2)

 $F(f(x,y),f(u,v),\phi(t)) \ge F(gx,gu,t)*F(gy,gv,t),$ for all x, y, u, v in X and t > 0 and

- 1) Suppose that $f(X \times X) \subseteq g(X)$,
- 2) pair (f,g) is weakly compatible,
- 3) range space of one of the maps f or g is complete.

AMOpen Access

Then f and g have a coupled coincidence point. Moreover, there exists a unique point x in X such that = f(x, y) = g(x).

Proof. Let x_0, y_0 be two arbitrary points in X. Since $f(X \times X) \subseteq g(X)$, we can choose x_1, y_1 in X such that $g(x_1) = f(x_0, y_0)$, $g(y_1) = f(y_0, x_0)$.

Continuing in this way we can construct two sequences $\{x_n\}$ and $\{y_n\}$ in X such that

 $g(x_{n+1}) = f(x_n, y_n)$ and $g(y_{n+1}) = f(y_n, x_n)$ for all $n \ge 0$.

Step 1. We first show that $\{gx_n\}$ and $\{gy_n\}$ are Cauchy sequences.

Since * is a t-norm of H-type, for any $\varepsilon > 0$, there exists $\delta > 0$ such that

(3.3)
$$\underbrace{(1-\delta)*(1-\delta)*\cdots*(1-\delta)}_{p} \ge (1-\epsilon)$$
, for all

 $p \in N$.

Since $\lim_{t\to\infty} F(x,y,t) = 1$, for all x,y in X, there exists $t_0 > 0$ such that

 $F(gx_0, gx_1, t_0) \ge (1 - \delta)$ and $F(gy_0, gy_1, t_0) \ge 1 - \delta$.

Since $\phi \in \Phi$ and using condition $(\phi -3)$, we have $\sum_{n=1}^{\infty} \phi^n(t_0) < \infty$. Then for any > 0, there exists $n_0 \in N$ such that

(3.4)
$$t > \sum_{k=n_0}^{\infty} \phi^k(t_0)$$
.
From (3.2), we have

$$F(gx_1, gx_2, \phi(t_0)) = F(f(x_0, y_0), f(x_1, y_1), \phi(t_0))$$

$$\geq F(gx_0, gx_1, t_0) * F(gy_0, gy_1, t_0)$$

$$F(gy_1, gy_2, \phi(t_0)) = F(f(y_0, x_0), f(y_1, x_1), \phi(t_0))$$

$$\geq F(gy_0, gy_1, t_0) * F(gx_0, gx_1, t_0).$$

Similarly, we can also get

$$F(gx_{2}, gx_{3}, \phi^{2}(t_{0})) = F(f(x_{1}, y_{1}), f(x_{2}, y_{2}), \phi^{2}(t_{0}))$$

$$\geq F(gx_{1}, gx_{2}, \phi(t_{0})) * F(gy_{1}, gy_{2}, \phi(t_{0}))$$

$$F(gy_{2}, gy_{3}, \phi^{2}(t_{0})) = F(f(y_{1}, x_{1}), f(y_{2}, x_{2}), \phi^{2}(t_{0}))$$

$$\geq [F(gy_{0}, gy_{1}, t_{0})]^{2} * [F(gx_{0}, gx_{1}, t_{0})]^{2}.$$

Continuing in this way, we can get

$$F(gx_{n}, gx_{n+1}, \phi^{n}(t_{0}))$$

$$\geq \left[F(gx_{0}, gx_{1}, t_{0})\right]^{2^{n-1}} * \left[F(gy_{0}, gy_{1}, t_{0})\right]^{2^{n-1}}$$

$$F(gy_{n}, gy_{n+1}, \phi^{n}(t_{0}))$$

$$\geq \left[F(gy_{0}, gy_{1}, t_{0})\right]^{2^{n-1}} * \left[F(gx_{0}, gx_{1}, t_{0})\right]^{2^{n-1}}.$$

So, from (3.3) and (3.4), for $m > n \ge n_0$, we have

$$F(gx_{n}, gx_{m}, t) \ge F(gx_{n}, gx_{m}, \sum_{k=n_{0}}^{\infty} \phi^{k}(t_{0}))$$

$$\ge F(gx_{n}, gx_{m}, \sum_{k=n}^{m-1} \phi^{k}(t_{0}))$$

$$\ge F(gx_{n}, gx_{n+1}, \phi^{n}(t_{0})) * F(gx_{n+1}, gx_{n+2}, \phi^{n+1}(t_{0})) * \cdots$$

$$*F\left(gx_{m-1}, gx_{m}, \phi^{m-1}\left(t_{0}\right)\right) \ge \left[\left[F\left(gx_{0}, gx_{1}, t_{0}\right)\right]^{2^{n-1}} *\left[F\left(gy_{0}, gy_{1}, t_{0}\right)\right]^{2^{n-1}}\right]$$

$$*\left[F\left(gx_{0}, gx_{1}, t_{0}\right)\right]^{2^{n}} *\left[F\left(gy_{0}, gy_{1}, t_{0}\right)\right]^{2^{n}}\right] * \cdots *\left[F\left(gx_{0}, gx_{1}, t_{0}\right)\right]^{2^{m-2}} *\left[F\left(gy_{0}, gy_{1}, t_{0}\right)\right]^{2^{m-2}}\right]$$

$$= \left[F\left(gx_{0}, gx_{1}, t_{0}\right)\right]^{2^{n-1}\left(2^{m-n}-1\right)} *\left[F\left(gy_{0}, gy_{1}, t_{0}\right)\right]^{2^{n-1}\left(2^{m-n}-1\right)}$$

$$\ge \underbrace{\left(1-\delta\right) * \left(1-\delta\right) * \cdots * \left(1-\delta\right)}_{2^{n}\left(2^{m-n}-1\right)} \ge \underbrace{\left(1-\epsilon\right)}$$

which implies that

 $F(gx_n, gx_m, t) \ge (1 - \epsilon)$, for all $m, n \in N$ with $m > n \ge n_0$ and t > 0.

So, $\{gx_n\}$ is a Cauchy sequence. Similarly, we can get that $\{gy_n\}$ is a Cauchy sequence.

Step 2. To show that f and g have a coupled coincidence point.

Without loss of generality, we assume that g(X) is complete, then there exists points x, y in g(X) so that $\lim_{n\to\infty} g(x_{n+1}) = x$, $\lim_{n\to\infty} g(y_{n+1}) = y$.

Again $x, y \in g(X)$ implies the existence of p, q in X so that g(p) = x, g(q) = y and hence $\lim_{n \to \infty} g(x_{n+1}) = \lim_{n \to \infty} f(x_n, y_n) = g(p) = x$,

$$\lim_{n\to\infty} g(y_{n+1}) = \lim_{n\to\infty} f(y_n, x_n) = g(q) = y.$$
 From (3.2),

$$F(f(x_n, y_n), f(p,q), \phi(t))$$

$$\geq F(gx_n, g(p), t) * F(gy_n, g(q), t)$$

Taking limit as $n \to \infty$, we get $F(g(p), f(p,q), \phi(t)) = 1$ that is, f(p,q) = g(p) = x.

Similarly, f(q, p) = g(q) = y.

But f and g are weakly compatible, so that f(p,q) = g(p) = x and f(q,p) = g(q) = y implies gf(p,q) = f(g(p),g(q)) and gf(q,p) = f(g(q),g(p)), that is g(x) = f(x,y)

Open Access

and g(y) = f(y,x).

Hence f and g have a coupled coincidence point.

Step 3. To show that g(x) = y and g(y) = x.

Since * is a t-norm of H-type, any $\epsilon > 0$, there exists $\delta > 0$ such that

$$\underbrace{(1-\delta)*(1-\delta)*\cdots*(1-\delta)}_{p} \ge (1-\epsilon) \text{ for all } p \in N.$$

Since $\lim_{t\to\infty} F(x,y,t) = 1$, for all x,y in X, there exists $t_0 > 0$ such that

 $F(gx, y, t_0) \ge (1 - \delta)$ and $F(gy, x, t_0) \ge (1 - \delta)$.

Since $\phi \in \Phi$ and using condition $(\phi -3)$, we have $\sum_{n=1}^{\infty} \phi^n(t_0) < \infty$. Then for any t > 0, there exists $n_0 \in N$ such that

$$t > \sum_{k=n_0}^{\infty} \phi^k \left(t_0 \right)$$

Using condition (3.2), we have

$$F(gx, gy_{n+1}, \phi(t_0)) = F(f(x, y), f(y_n, x_n), \phi(t_0))$$

$$\geq F(gx, gy_n, t_0) * F(gy, gx_n, t_0),$$

letting $n \to \infty$, we get

$$F(gx, y, \phi(t_0)) \ge F(gx, y, t_0) * F(gy, x, t_0),$$

By this way, we can get for all $n \in N$,

$$F(gx, y, \phi^{n}(t_{0})) \ge F(gx, y, \phi^{n-1}(t_{0})) * F(gy, x, \phi^{n-1}(t_{0}))$$

$$\ge \left[F(gx, y, t_{0})\right]^{2^{n-1}} * \left[F(gy, x, t_{0})\right]^{2^{n-1}}$$

thus, we have

$$F(gx, y, t) \ge F\left(gx, y, \sum_{k=n_0}^{\infty} \phi^k(t_0)\right) \ge F\left(gx, y, \phi^{n_0}(t_0)\right) \ge \left[F\left(gx, y, t_0\right)\right]^{2^{n_0-1}} * \left[F\left(gy, x, t_0\right)\right]^{2^{n_0-1}}$$

$$\ge \underbrace{(1-\delta)*(1-\delta)*\cdots*(1-\delta)}_{2^{n_0}} \ge (1-\epsilon).$$

So, for any $\epsilon > 0$, we have $F(gx, y, t) \ge (1 - \epsilon)$, for all t > 0.

This implies g(x) = y. Similarly, g(y) = x.

Step 4. Next we shall show that = y.

Since * is a *t*-norm of H -type, for any $\epsilon > 0$, there exists $\delta > 0$ such that

$$\underbrace{\left(1-\delta\right)*\left(1-\delta\right)*\cdots*\left(1-\delta\right)}_{p} \ge \left(1-\epsilon\right), \text{ for all } p \in N.$$

Since $\lim_{t\to\infty} F(x,y,t) = 1$, for all x,y in X, there exists $t_0 > 0$ such that $F(x,y,t_0) \ge (1-\delta)$

Also, since $\phi \in \Phi$, using condition (ϕ -3), we have $\sum_{n=1}^{\infty} \phi^n(t_0) < \infty$. Then for any t > 0, there exists $n_0 \in N$ such that

$$t > \sum_{k=n_0}^{\infty} \phi^k \left(t_0 \right).$$

Using condition (3.2), we have

$$F(gx_{n+1}, gy_{n+1}, \phi(t_0)) = F(f(x_n, y_n), f(y_n, x_n), \phi(t_0))$$

$$\geq F(gx_n, gy_n, t_0) * F(gy_n, gx_n, t_0)$$

Letting $n \to \infty$, we get

$$F(x, y, \phi(t_0)) \ge F(x, y, t_0) * F(y, x, t_0)$$
. Thus we have

$$F(x,y,t) \ge F\left(x,y,\sum_{k=n_0}^{\infty} \phi^k(t_0)\right) \ge F\left(x,y,\phi^{n_0}(t_0)\right)$$

$$\ge \left[F(x,y,t_0)\right]^{2^{n_0-1}} * \left[F(y,x,t_0)\right]^{2^{n_0-1}}$$

$$\ge \underbrace{(1-\delta)*(1-\delta)*\cdots*(1-\delta)}_{2^{n_0}} \ge (1-\epsilon)$$

which implies that x = y. Thus, we have proved that f

and g have a common fixed point x in X.

Step 5. We now prove the uniqueness of x.

Let z be any point in X such that $z \neq x$ with g(z) = z = f(z, z).

Since * is a t-norm of H-type, for any $\epsilon > 0$, there exists $\delta > 0$ such that

$$\underbrace{(1-\delta)*(1-\delta)*\cdots*(1-\delta)}_{p} \ge (1-\epsilon), \text{ for all } p \in N.$$

Since $\lim_{t\to\infty} F(x,y,t) = 1$, for all x,y in X, there exists $t_0 > 0$ such that $F(x,z,t_0) \ge 1 - \delta$.

Also, since $\phi \in \Phi$, using condition $(\phi - 3)$, we have $\sum_{n=1}^{\infty} \phi^n \left(t_0 \right) < \infty$. Then for any t > 0, there exists $n_0 \in N$ such that $t > \sum_{k=n_0}^{\infty} \phi^k \left(t_0 \right)$.

Using condition (3.2), we have

$$F(x,z,\phi(t_0)) = F(f(x,x),f(z,z),\phi(t_0))$$

$$\geq F(g(x),g(z),t_0) * F(g(x),g(z),t_0)$$

$$= F(x,z,t_0) * F(x,z,t_0) \lceil F(x,z,t_0) \rceil^2.$$

Thus, we have

$$F(x,z,t) \ge F\left(x,z,\sum_{k=n_0}^{\infty} \phi^k \left(t_0\right)\right) \ge F\left(x,z,\phi^{n_0}\left(t_0\right)\right)$$

$$\ge \ge \left(\left[F\left(x,z,t_0\right)\right]^{2^{n_0-1}}\right)^2 = \left(F\left(x,z,t_0\right)\right)^{2^{n_0}}$$

$$\ge \underbrace{\left(1-\delta\right)*\left(1-\delta\right)*\cdots*\left(1-\delta\right)}_{2^{n_0}} \ge \left(1-\epsilon\right),$$

AM

Open Access

which implies that x = y.

Hence, f and g have a unique common fixed pointin

Next, we give an example in support of the Theorem

Example 3.1. Let X = [-2, 2), a * b = ab for all

$$a,b\epsilon[0,1]$$
 and $\varphi(t) = \frac{t}{t+1}$. Then $(X,F,*)$ is a

Menger space, where
$$F(x, y, t) = [\varphi(t)]^{|x-y|}$$
, for all x, y in X and

t > 0.

Let
$$\emptyset(t) = \frac{t}{2}$$
, $g(x) = x$ and the mapping $f: X \times X \to X$ be defined by $f(x, y) = \frac{x^2}{16} + \frac{y^2}{16} - 2$.

It is easy to check that

$$f(X \times X) = [-2, -1] \subseteq [-2, 2) = g(X)$$
. Further,

 $f(X \times X)$ is complete and the pair (f,g) is weakly compatible. We now check the condition (3.2),

$$\begin{split} F\left(f\left(x,y\right), f\left(u,v\right), \varnothing(t)\right) &= F\left(f\left(x,y\right), f\left(u,v\right), \frac{t}{2}\right) = \left[\varphi\left(\frac{t}{2}\right)\right]^{|f(x,y)-f(u,v)|} \\ &= \left[\frac{t}{t+2}\right]^{|x^2+y^2-u^2-v^2|/16} \geq \left[\frac{t}{t+2}\right]^{|x^2+y^2-u^2-v^2|/8} \\ &\geq \left[\frac{t}{t+1}\right]^{|x-u|+|y-v|} = \left[\frac{t}{t+1}\right]^{|x-u|} \left[\frac{t}{t+1}\right]^{|y-v|} = F\left(x,u,t\right) * F\left(y,v,t\right), \end{split}$$

for every t > 0.

Hence, all the conditions of theorem 3.1, are satisfied. Thus f and g have a unique common coupled fixed point in X. Indeed, $x = 4(1-\sqrt{2})$ is a unique common coupled fixed point of f and g.

Theorem 3.2. Let (X, F, *) be Menger PM - Space, being continuous t – norm of H-type. Let $f: X \times X \to X$ and $g: X \to X$ be two mappings and there exists $\phi \in \Phi$ satisfying (3.2).

Then there exists a unique point x in X such that x = f(x,x) = g(x).

Proof. It follows immediately from Theorem 3.1.

Next we give an application of Theorem 3.1.

4. An Application

lowing conditions:

Theorem 4.1. Let (X,F,*) be a Menger PM-space, *being continuous t-norm defined by $a*b = \min \{a,b\}$ for all a,b in X. Let M,N be weakly compatible self maps on X satisfying the fol-

 $(4.1) \ M(X) \subseteq N(X),$

(4.2) there exists $\phi \in \Phi$ such that

 $F(Mx, My, \phi(t)) \ge F(Nx, Ny, t)$ for all x, y in Xand t > 0.

If range space of any one of the maps M or N is complete, then M and N have a unique common fixed point in X.

Proof. By taking f(x,y) = M(x) and g(x) = N(x) for all $x, y \in X$ in Theorem 3.1, we get the desired result.

Taking $\phi(t) = kt, k \in (0,1)$, we have the following: Cor. 4.2. Let (X,F,*) be a Menger PM-space, *

being continuous t-norm defined by $a*b = \min \{a,b\}$ for all a,b in X. Let M,N be weakly compatible self maps on X satisfying (4.1) and the following condi-

(4.3) there exists $k \in (0,1)$ such that

 $F(Mx, My, kt) \ge F(Nx, Ny, t)$ for all x, y in X

If range space of any one of the maps M or N is complete, then M and N have a unique common fixed point in X.

Taking N = I, the identity map on X, we have the following:

Cor. 4.3. Let (X,F,*) be a Menger PM-space, *being continuous t-norm defined by $a*b = \min \{a,b\}$ for all a,b in X. Let M,N be weakly compatible self maps on X satisfying (4.1) and the following condition:

(4.4) there exists $k \in (0,1)$ such that

 $F(Mx, My, kt) \ge F(x, y, t)$ for all x, y in X and

If range space of the map M is complete, then Mand N have a unique common fixed point in X.

5. Acknowledgements

One of authors (Sanjay Kumar) is highly thankful to University Grants Commission, New Delhi-11016, IN-DIA for providing Major Research Project under F. No. 39-41/2010 (SR).

REFERENCES

[1] K. Menger, "Statistical Metrices," Proceedings of the Na-

Open Access AM

- tional Academy of Sciences of USA, Vol. 28, 1942, pp. 535-537. http://dx.doi.org/10.1073/pnas.28.12.535
- [2] V. M. Sehgal and A. T. Bharucha-Reid, "Fixed Points of Contraction Mappings on Probabilistic Metric Spaces," *Mathematical Systems Theory*, Vol. 6, No. 1-2, 1972, pp. 97-102. http://dx.doi.org/10.1007/BF01706080
- [3] B. Schweizer and A. Sklar, "Probabilistic Metric Spaces," North Holland Series in Probability and Applied Mathematics, Vol. 5, 1983.
- [4] S. N. Mishra, "Common Fixed Points of Compatible Mappings in PM-Spaces," *Mathematica Japonica*, Vol. 36, 1991, pp. 283-289.
- [5] G. Jungck, "Common Fixed Points for Non-Continuous Non-Self Maps on Non-Metric Spaces," Far East Journal of Mathematical Sciences, Vol. 4, No. 2, 1996, pp. 199-215.
- [6] B. Singh and S. Jain, "A Fixed Point Theorem in Menger Space through Weak Compatibility," *Journal of Mathe-matical Analysis and Applications*, Vol. 301, 2005, pp. 439-448. http://dx.doi.org/10.1016/j.jmaa.2004.07.036
- [7] J. X. Fang, "Common Fixed Point Theorems of Compati-

- ble and Weakly Compatible Maps in Menger Spaces," *Nonlinear Analysis: Theory, Methods and Applications*, Vol. 71, No. 5-6, 2009, pp. 1833-1843.
- [8] O. Hadźić and E. Pap, "Fixed Point Theory in Probabilistic Metric Spaces, Vol. 536 of Mathematics and Its Applications," Kluwer Academic, Dordrecht, 2001.
- [9] T. G. Bhaskar and V. Lakshmikantham, "Fixed Point Theorems in Partially Ordered Metric Spaces and Applications," *Nonlinear Analysis: Theory, Methods and Applications*, Vol. 65, No. 7, 2006, pp. 1379-1393. http://dx.doi.org/10.1016/j.na.2005.10.017
- [10] V. Lakshmikantham and L. Ćirić, "Coupled Fixed Point Theorems for Nonlinear Contractions in Partially Ordered Metric Spaces," *Nonlinear Analysis: Theory, Methods and Applications*, Vol. 70, No. 12, 2009, pp. 4341-4349.
- [11] M. Abbas, M. Ali Khan and S. Redenović, "Common Coupled Fixed Point Theorems in Cone Metric Spaces for W-Compatible Mappings," *Applied Mathematics and Computation*, Vol. 217, No. 1, 2010, pp. 195-202. http://dx.doi.org/10.1016/j.amc.2010.05.042

Open Access AM