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ABSTRACT 
Single nucleotide polymorphism (SNP) array is a recently developed biotechnology that is extensively used in the study 
of cancer genomes. The various available platforms make cross-study validations/comparisons difficult. Meanwhile, 
sample sizes of the studies are fast increasing, which poses a heavy computational burden to even the fastest PC. Here, 
we describe a novel method that can generate a platform-independent dataset given SNP arrays from multiple platforms. 
It extracts the common probesets from individual platforms, and performs cross-platform normalizations and summari- 
zations based on these probesets. Since different platforms may have different numbers of probes per probeset (PPP), 
the above steps produce preprocessed signals with different noise levels for the platforms. To handle this problem, we 
adopt a platform-dependent smoothing strategy, and produce a preprocessed dataset that demonstrates uniform noise 
levels for individual samples. To increase the scalability of the method to a large number of samples, we devised an 
algorithm that split the samples into multiple tasks, and probesets into multiple segments before submitting to a parallel 
computing facility. This scheme results in a drastically reduced computation time and increased ability to process ultra- 
large sample sizes and arrays. 
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1. Introduction 
SNP array is a recent advancement in the high through- 
put biomedical measurements at the molecular level [1]. 
Each array is a finger-tip sized and one-sample-only bio- 
chip, on which millions of grids can be found. Each grid 
contains millions of identical copies of short single- 
stranded DNA sequences that are to be bound with the 
DNAs from the measuring sample. Each grid is called a 
probe, and a number of probes (usually 6, 12 or 20), re- 
ferred to as a probeset, may be needed to detect (in a 
process known as summarization) the signal of an allele 
(of a locus) in the DNA. In a study, often multiple sam- 
ples are used on separate arrays. As a result, the levels of 
DNAs in each sample, though quantified before experi- 
ment, may vary and the probe signal benchmarks in each 
array vary as well. A process known as normalization is 
usually conducted to reduce this bias [2]. Ultimately, 
given N  samples and N  arrays, each with J  bi- 
allelic (namely, A/B alleles) probesets, for a sample

{1,.., }i N∈ , there will be J  ordered-pairs of signals, 
denoted as , ,( , ) {1,.., }i j i j

A BS S j J∈ , where ,i j
AS  and ,i j

BS  
are the A and B allele signals, respectively. The summa- 
rized signals , ,( , )i j i j

A BS S  can be used for a variety of 
purposes, such as calling the genotypes of a SNP locus  

[3], estimating the copy numbers of a gene [4-6], or pre- 
dicting the LOH likelihood of a region [6]. This genetic 
information, especially for a disease sample, has strong 
biological meanings attached to them. Therefore, the pro- 
per preprocessing of SNP arrays from probe level signals 
to summarized signals are very important for correctly 
identifying the disease-susceptible loci. 

Recent years have witnessed the rise of cross-institu- 
tional collaborations in biomedical studies, where large 
numbers of samples can be harvested and measured in 
different batches by different platforms. Furthermore, 
similar studies may be conducted using different plat- 
forms, making the cross-study comparison extremely 
difficult. For example, 1N  samples may be in Affyme- 
trix Human Mapping 250 K arrays, while other 2N  
samples are in Affymetrix SNP6.0. This presents a prob- 
lem because the former array contains about a quarter of 
a million probesets, while the latter contains close to two 
million probesets (half of which are SNP/allelic and the 
other half are non-allelic probesets). Researchers may 
either choose to use samples of only one array, say the 
one with more probesets, or choose to use the probesets 
common to both arrays and have a larger sample size. 
The latter is often more desirable since it will increase 
the statistical power of a finding. Furthermore, SNP ar- 
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rays contain far more probesets than the number of genes 
in the genome, and hence using the common probesets 
are often good enough in precision. This is particularly 
true in copy number inference, where the width of copy 
number events is believed to be usually larger than that 
between two probesets. By compromising the precision 
by using the common probests, there can be a strong in- 
crease in sample size. This idea is illustrated by the 
two-platform example in Figure 1, where each entry 

,i j  in   is the ordered pair , ,( , )i j i j
A BS S  mentioned 

above. 
Though important and highly demanded, this idea to 

merge multiple platform SNP arrays is not well discussed 
in the literature, perhaps owing to the relatively new SNP 
array itself. Two recent works related to this topic by 
Bengtsson et al. [7,8] proposed to merge multiple-plat- 
form measurements on one sample to produce a full res- 
olution copy number estimate for that particular sample 
only, as opposed to our proposed objective of merging 
smaller datasets for a larger one. Multiple-platform com- 
parison and merging of the gene expression microarrays 
are discussed in [9-11]. Some of the techniques used in 
these literatures inspired our current approach. 

A few literatures also explored the problem of prepro- 
cessing large datasets of SNP arrays. For example, Xiao 
et al. [12] explored the scalability of SNP arrays in ge- 
notyping. Bengtsson et al. [13] discussed the prepro- 
cessing of large SNP datasets in bounded memory. 

This paper is organized as below. Section 2 will dis- 
cuss the proposed approach and technical derivations. 
Section 3 will present the results. Section 4 will interpret 
the approaches and results. 

2. Approach and Algorithms 
To implement the idea as depicted in Figure 1, three key 
steps need to be performed: 
• Extracting the common probesets. Let the set of pro- 

besets for Platform 1 (denoted as 1 ) be 1P , and 
those for 2  be 2P , take intersection of these sets,  

 

 
Figure 1. The overall objective is to produce a platform- 
independent dataset 1 2[ ]  = , for other analyses, e.g., 
copy number analysis. 

i.e., 1 2P P P= ∩ . Then P  is the set of common pro- 
besets, and also the set of probesets for resulting da- 
tasets 1 , 2  and  . For individual platforms, 
this set P  represents a truncation of its original 
probesets. 

• Cross-sample normalization. Let 1N  and 2N  be 
the sample sizes of 1  and 2 , respectively, and 
denote 1 2( )N N+  as N. For each sample {1,.., }i N∈ , 
obtain the perfect match (PM) probes that correspond 
to the set P . Let the set of probes in sample i  be 
{ | 1,.., }i

k i iy k K π∈  , where iK  is the total number 
of probes for i . Update i

ky  such that all iπ  follow 
the same empirical distribution. 

• Summarization for each probeset in P . For a probe- 
set j  in sample i , suppose there are A

jL  probes 
for allele A, then the purpose is to regress 

, , {1,.., }A
i i jy Lµ α β= + + + ∀ ∈
 

  and {1,.., }i N∈ . 
While iα  is regarded as the sample effect, β



 is 
regarded as the probe-specific binding affinity. Thus 
the summarized signal ,i j

AS  can be obtained by 
,i j

A iS µ α= + . Similarly, ,i j
BS  can be obtained. Re- 

peat this for all i  and j , to produce the objective 
dataset,  . 

Since the above two-platform algorithm can be easily 
generalized to multiple-platform datasets, subsequent 
discussions in the paper will base on the two-platform 
example. 

However, there are a few issues to be addressed: 
• The numbers of probes per probeset (PPP) vary from 

platform to platform. For example, in SNP250 K, 
there are on average more than 12 probes per probeset, 
while in SNP6.0, where the total number probes in an 
array is roughly the same as SNP250 K but the num- 
ber of probesets increases by 8 fold, resulting in the 
PPP being only about 6. This means that overlapping 
the probesets of two platforms does not automatically 
create a platform-independent matrix   that can be 
readily used for post-processing analyses. 

• Both the numbers of samples and the numbers of pro- 
bes per array can be huge. Since multiple-platforms 
are used, the total sample size is usually large. Fur- 
ther, even after overlapping the probesets, there may 
still be millions of probes to be handled. This may 
impose computational time and memory constraints 
that are beyond the capability a normal PC. 

To handle these problems, the following strategies are 
adopted: 
• Cross-platform normalization. Even though the plat- 

forms may have variable numbers of probes, it is as- 
sumed that this does not affect the overall binding af- 
finity. A cross-platform normalization is key to make 
sure that the probe signals are calibrated to the same 
benchmarks. 

• Division of samples into tasks, and probesets into 
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segments. This reduces the computation load for each 
individual task. The overall tasks can be fed to a pa- 
rallel computing environment to increase the scalabil- 
ity of the algorithm. 

• A platform-dependent summarization scheme. For 
example, for samples in Platform 1 (i.e., 1 ), the 
summarization by regression is limited to the samples 
in 1  only. This ensures that all samples in the re- 
gression have the same number of probes per probe- 
set. 

• Post-summarization smoothing. Since the platforms 
have different PPPs. The summarization regression 
will create inter-platform variability in noise levels. 
Specifically, in arrays with few PPP, such as SNP6.0, 
the noise levels tend to be higher. A smoothing sch- 
eme at the probeset level can be adopted to adjacent 
probesets signals, using platform-dependent parame- 
ters. 

The overall strategy is illustrated by the five-step ap- 
proach shown in Figure 2. The following sub-sections 
will elaborate on the technical issues of the key steps. 

2.1. Cross-Platform Quantile Normalization 
Given a sample 1{1,.., }i N∈  and its probe-level signals 
{ }i

ky , single-platform quantile normalization works as 
follows: 
• The set { }i

ky  is sorted in increasing order, yielding 
the sorted vector ˆ{ }i

ky  and indices { }i
kI , such that 

ˆ i
k

i i
k I

y y= .  
• Replace ˆ{ }i

ky  with a new value { }ky , which is in- 
dependent of sample i. Usually, { }ky  is the aver-  
age of all ˆ i

ky -s, i.e., 1ˆ /i
k k

i
y y N=∑ . 

• Each i
ky  is updated with i

k

i i
k I

y y=  before the up- 
dated { }i

ky  are used for summarization. 
• In cross-platform normalization, the platforms have 

variable numbers of probes. As a result, ky  will 
have to be estimated differently. 

To handle this, for a platform p , an auxiliary matrix 
pK N

pA ×∈ℜ  is created, where pK  is the number of 
probes of p  after truncation. Each entry of pA  is 
given by: 

, ˆ ,
ˆ ,

i
k pk i

p i
o p

y i
A

y iτ

 ∈=  ∈ ≠


 

           (2.1) 

where τ  is the index with closest quantile to k  in the 
platform o p≠ . That is,  

arg min(| / / |) {1,.., }p o ok K K Kτ τ τ= − ∀ ∈    (2.2) 

where {1, 2 \ }o p∈  is the platform of sample i , and 
oK  the number of probes in o . 
The matrix pA  contains the platform-independent 

quantile values. The average quantile values for p  can  

 
Figure 2. Approach overview. (a) Extracting the common 
probesets. Note that in the resulting datasets, since SNP6.0 
has fewer probes per probeset, it is purposely made to have 
shorter vertical axis; (b) Splitting the computational task 
into smaller units, i.e., dividing the samples into tasks, and 
the probes into segments; (c) Task-specific normalization; 
(d) Summarization in a segment-specific manner, after which 
the intermediate results are combined in (e) to produce the 
dataset  . Note that the preprocessing steps from (a) to (d) 
are based on probe-level signals. 

 

be obtained by ,

1
/

N
p k i

k p
i

y A N
=

= ∑ . The remaining proce-  

dures in quantile normalization can be done as described 
above. 

2.2. Parallelism for Scalability 
The above step confers heavy computational burdens, 
especially when hundreds of samples or more are to be 
processed. To solve this, a parallel computing scheme is 
used in the normalization step. It is divided into two steps. 
First the samples are separately processed. Second, the 
segments are separately normalized. 

2.3. Parallelism in the Samples 
The 1N  samples in 1  are divided into 1n  tasks, and 
those in 2  divided into 2n  tasks. In a parallel com- 
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puting environment, each of these 1 2( )n n+  tasks can 
be conducted as an individual process, which requires 
less memory than to process all samples together. The 
fol- lowing describes the works to be done within each 
task, i.e., process. 

The common probesets P are divided into sn  seg- 
ments. The corresponding probes are absorbed into each 
segment. As a result, the probe-level signals { }i

ky  for i 
will also be divided into sn  sets, i.e., 1{ } { ,.., }

s

i i i
k ny Y Y=  

(Figure 2(C)), where i
sY  is the set of probes in segment 

s . Similarly, the sorted probes ˆ{ }i
ky  and the indices 

{ }i
kI  are divided into sn  sets, i.e., 1̂̂ˆ{ } { ,.., }

s

i i i
k ny Y Y=  

and 1{ } { ,.., }
s

i i i
k nI =   . In a parallel environment, the 

above segment-specific information needs to be stored in 
a file-system accessible to all processes. 

2.4. Parallelism in the Segments 
To complete quantile normalization, a new parallel envi- 
ronment can be created to handle each of the segments 
by the above step. The following describes the cross- 
platform normalization within each segment s . 

For each platform p , a segment-specific auxiliary 
matrix ,p sA  is created and constructed as described in 
Equation (2.1), such that ,1 ,[ ,.., ]

s

T
p p p nA A A= . Next, use 

the segment-specific information in above step to create 
the mean quantile values p

sY , such that 1{ } { ,.., }
s

p p p
k ny Y Y= . 

Finally, update the probe-values of each sample, to ob- 
tain i

sY , such that 1{ } { ,.., }
s

i i i
k ny Y Y=  

  (Figure 2(D)). 
This step avoids the overwhelming memory con- 

straints when loading information of all probesets. 

2.5. Summarization via Median Polish 
Upon the completion of last step, probe-level signals in 
each segment have been updated with cross-platform 
quantile values. These probe level signals will be sum- 
marized to generate the outputs. To avoid the over- 
whelming memory requirements for loading these probes, 
a new parallel environment can be created to handle the 
probesets in each segment. Median polish regression as 
described above can be used to perform the summariza- 
tions. The intermediate outputs from individual segments 
can be combined to form an overall dataset  . 

2.6. Platform-Dependent Smoothing 
The previous step generates a platform-independent out- 
put dataset 1 2[ ]=   . But as mentioned above, the 
different platforms have different PPPs, resulting in the 
variability of noise levels in the summarized signals for 
samples with different sources of platforms. This is par- 
ticularly serious in copy number estimations, where the 
raw total copy number signals (in log-scale), ,i jTCN =  

, ,i j i j
A BS S+ , are used in subsequent analyses such as 

GLAD [14] and GISTIC [15]. 
Since SNP probesets are supposed to measure allele 

signals in the genome, most physically adjacent probe- 
sets are assumed to have the same copy numbers. There- 
fore, a location-based denoising scheme with source-plat- 
form-dependent parameters can be used to benchmark 
the noise levels of the samples. Specifically, the Nada- 
raya-Watson kernel estimate [16] can be used. 

3. Results 
To test the proposed algorithm, we performed a cross- 
study comparison of copy number aberrations studies on 
acute myeloid leukemia (AML). In all, two AML data- 
sets were obtained, namely, 176 AML SNP arrays in 
SNP250K-sty (Affymetrix, CA) from the gene expres- 
sion omnibus (GEO) (Accession No.: GSE15731), and 
another 226 AML Affymetrix SNP6.0 arrays from 
GSE23452. Ninety normal blood samples of European 
origins (CEU) from the HapMap project in SNP250K 
were downloaded from the HapMap website (hap- 
map.org), and will be used for reference. For conveni- 
ence, the three datasets are referred to as 250 , 6  and 
 , respectively. 

A total number of 222,673 common probesets were 
extracted, accounting for ~ 95\% and ~ 25\% of SNP 
probesets in the SNP250 and SNP6.0 platforms, respec- 
tively. A 128-process parallel environment was set up to 
perform the computing task. The 492 SNP arrays were 
divided into 124 tasks, and the 222,673 probests were 
divided into 16 segments. It took about 30 minutes to run 
the whole procedure. Figure 3 shows the plots before 
and after quantile normalization of the three datasets. It 
can be seen that without normalization, the probe-level 
signals of three datasets are at different benchmarking 
levels (Figure 3(A)), which is especially undesirable in 
copy number estimates. The normalization pulls the ar- 
rays to the same level (Figure 3(B)), facilitating the 
cross-study comparison. 

At the end of summarization as described in Section 2, 
a 222,673-by-402 AML dataset   were obtained, with 
each entry being the two-element summarized signals 

, ,( , )i j i j
A BS S  as described in Section 1; as well as a 

222,673-by-90 HapMap dataset H , with each entry de- 
noted as , ,( , )i j i j

A BH H . To estimate the copy numbers, we 
use the H  dataset as a reference. Specifically, for each 
sample in 250  and 6 , the copy number signal of pro- 
beset j is obtained as: , , , ,i j i j j i j i j j

A BC TCN R S S R= − = + − , 
where jR  is the average signal of the j-th probeset in  
 , i.e., , ,$ ( ) / 90j i j i j

A B
i

R H H
∈

= +∑


. 

Figure 4 shows the result of 5 samples from each da- 
tasets in copy number landscapes. Both datasets are cha- 
racterized with Chromosome 7 deletion (Chr7d) and           
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Figure 3. Before and after cross-platform quantile normalization. (A) Probe-level boxplots of the three datasets before nor- 
malization. Red, AML SNP250 ( 250 ); Green, HapMap CEU90 SNP250 ( ); Black, AML SNP6.0 ( 6 ); (B) Boxplots for 
the same samples after cross-platform quantile normalization. 
 
Chromosome 8 amplifications (Chr8a), which is consis- 
tent with a recent finding [17]. In Figure 4(A), where the 
TCNs are not smoothed, it can be seen that the SNP6 
samples tend to have higher noise levels. This may cause 
serious problems in copy number analysis such as GIS- 
TIC [15]. A Gaussian window filtering with platform- 
dependent parameters, i.e., the width of the window,  

yields noise of the samples that are in the same levels 
(Figure 4(B)). 

4. Conclusions 
In here we describe a scalable algorithm for merging 
cross-platform datasets of SNP arrays. It has major    
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Figure 4. Copy number landscapes of selected samples of the two AML datasets, before and after smoothing. (A) Before 
smoothing; (B) After smoothing. Horizontal axis is chromosomes. Vertical axis is the copy number signal values. The lower 5 
samples in black are from the AML SNP250 dataset ( 250 ), while the 5 green samples are from the AML SNP6.0 dataset 
( 6 ). 

 
advantages that may help the biomedical community 
perform cross-platform study and cross-study compari- 
sons. 

First, the cross-platform normalization and source- 
dependent smoothing make it possible to have a plat- 
form-independent dataset   for probeset-level ana- 

lyses such as GLAD and GISTIC. 
Second, the algorithm is carefully designed to avoid 

computational time and memory constraints. The break- 
down of the original computing task into smaller units 
vastly increases the scalability of the algorithm so that 
hundreds of arrays or more can be processed simulta- 
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neously and completed within a reasonable time frame. 
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