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ABSTRACT 

The paper presents occurrence of rainfall using principles of fuzzy set theory and principles of reliability analysis. Both 
the abstract and the rest of the paper are discussed from these two points of view. First, a fuzzy inference model for pre- 
dicting rainfall using scan data from the USDA Soil Climate Analysis Network Station at Alabama Agricultural and 
Mechanical University (AAMU) campus for the year 2004 is presented. The model further reflects how an expert would 
perceive weather conditions and apply this knowledge before inferring a rainfall. Fuzzy variables were selected based 
on judging patterns in individual monthly graphs for 2003 and 2004 and the influence of different variables that caused 
rainfall. A decrease in temperature (TP) and an increase in wind speed (WS) when compared between the ith and (i − 1)th 
day were found to have a positive relation with a rainfall (RF) occurrence in most cases. Therefore, TP and WS were 
used in the antecedent part of the production rules to predict rainfall (RF). Results of the model showed better perform- 
ance when threshold values for 1) Relative Humidity (RH) of ith day; 2) Humidity Increase (HI) between the ith and (i 
− 1)th day; and 3) Product (P) of decrease in temperature (TP) and an increase in wind speed (WS) were introduced. 
The percentage of error was 12.35 when compared the calculated amount of rainfall with actual amount of rainfall. This 
is followed by prediction of rainfall using principles of reliability analysis. This is done by comparing theoretical prob- 
abilities with experimental probabilities for the occurrence of two main events, namely, Relative Humidity (RH) and 
Humidity Increase (HI) being in between specified threshold values. The experimental values of probability are falling 
in between µ − σ and µ + σ for both RH and HI parameters, where µ is the mean value and σ is the standard deviation. 
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1. Introduction 

First fuzzy set concepts are discussed followed by prin- 
ciples of reliability analysis. This work is an extension of 
the work done by Hasan et al. [1]. In predicting weather 
conditions, factors in the antecedent and consequent parts 
that exhibit vagueness and ambiguity are being treated 
with logic and valid algorithms by Hasan et al. [2]. Use 
of fuzzy set theory has been proved by scientists to be 
applicable with uncertain, vague and qualitative expres- 
sions of the system. Application of fuzzy set theory in 
soil, crop, and water management is still in its infant 
stage due to the lack of awareness of the potentials of  

fuzzy set theory. Weather forecasting is one of the most 
important and demanding operational responsibilities car- 
ried out by meteorological services worldwide. It is a 
complicated procedure that includes numerous special- 
ized technological fields. The task is complicated in the 
field of meteorology because all decisions are made within 
a visage of uncertainty associated with weather systems. 
Chaotic features associated with atmospheric phenomena 
have also attracted the attention of modern scientists. The 
drawback of statistical models is a foundation, in most 
cases, upon several tacit assumptions regarding the sys- 
tem mentioned by Wilks [3]. Carrano et al., [4] com-  
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pared non-linear regression modeling and fuzzy knowl- 
edge-based modeling, and explained that fuzzy models 
were most appropriate when subjective and qualitative 
data were utilized and the numbers of empirical observa- 
tions were small. Brown-Brandl et al. [5] used four mod- 
eling techniques to predict respiration rate as an indicator 
of stress in livestock. Four modeling techniques con- 
sisted of two multiple regression and two fuzzy inference 
systems. Fuzzy inference models offered better results 
than the two multiple regression models (Brown-Brandl 
et al. [5]). Fuzzy inference models yielded a lower per- 
centage of error when compared to the linear multiple 
regression model (Hasan et al., [2]). Similar research by 
Wong et al. [6] compared the results of fuzzy rule based 
rainfall prediction with an established method which 
used radial basis function networks and orographic effect. 
They concluded that fuzzy rule based methods could pro- 
vide similar results from the established method. How- 
ever, the method has an advantage of allowing the ana- 
lyst to understand and interact with the model using fuz- 
zy rules. Lee et al. [7] considered two smaller areas 
where they assumed precipitation was proportional to ele- 
vation. Predictions of those two areas were made using a 
simple linear regression based on elevation information 
only. Comparison with the observed data revealed that 
the radial basis function (RBF) network produced better 
results than the linear regression models. Hence, consid- 
ering the advantage of using the concept of fuzzy logic 
for predicting rainfall as stated by other researchers was 
justifiable. The advantage of fuzzy inference modeling 
can reflect expert knowledge and yield results with pre- 
cision and accuracy. In fuzzy rule basics, knowledge 
acquisition is the main concern for building an expert 
system. Knowledge in the form of IF-THEN rules can be 
provided by experts or can be extracted from data. Each 
rule has an antecedent part and a consequent part. The 
antecedent part is the collection of conditions connected 
by AND, OR, NOT logic operators and the consequent 
part represents its action (Pant and Ashwagosh [8]). In a 
fuzzy inference engine, the truth-value for the premise of 
each rule is computed and applied to the conclusion part 
of each rule. This result is one fuzzy subset being as- 
signed to each output variable for each rule. For compos- 
ite rules, usually, min-max inference technique is used. 

Defuzzification is used to convert fuzzy output sets to 
a crisp value. The widely used methods for defuzzifica- 
tion are center of gravity and mean of maxima. 

Generating production rules for fuzzy inference mod- 
eling is cumbersome if they are not derived as they are 
being perceived by an expert. Production rules have the 
form: 

IF  is 1 AND  is 1 THEN  is 1X A Y B Z C       (1) 

IF  is 2 AND  is 2 THEN  is 2X A Y B Z

Here X, Y represent two antecedent variables (the con- 
ditional part of the production rule, like TP and WS as 
explained above), and Z is the variable yielding the 
consequent part of the production rule. A1, A2, B1, B2, 
C1, C2 are the linguistic and vague expressions with 
ambiguities. Focusing this idea of production rule, an 
example for such production rule that can be employed in 
the present research is shown as:  

IF WP is very high AND TP 

is lower THEN RF is moderate
         (3) 

Equation (3) shows the qualitative form of explanation, 
such as very high, lower and moderate, which are all 
fuzzy in nature. These are explained linguistically with- 
out specific quantity or as a crisp value. The relationship 
of the variables between antecedent and consequent parts 
represents a production rule in Equation (3) based on 
valid logic. In the complex reality of the world, it is usu- 
ally not easy to construct rules due to the limitations of 
manipulation and verbalization of experts, Abe and Ming- 
Shong [9]. This method is termed as the Fuzzy Adaptive 
System (FAS). 

A brief discussion of principles of reliability analysis 
as related to prediction of rainfall is discussed in the pa- 
per. 

A large set of data for rainfall have been collected for 
various years from several sources as various locations. 
These are—AAMU 2004, WATARS 2004, BRAGG 2004, 
AAMU 2005, WATARS 2005 and BRAGG 2005. It has 
been established that there are mainly two parameters— 
Relative Humidity (RH) and Humidity Increase (HI) after 
the occurrence of rainfall. Hence, these two variables are 
the main random variables (RV) in this study. Since the 
data set is large, it can be reasonably assumed, from cen- 
tral limit theorem, that both RH and HI follow normal 
distribution. Normal distribution is a 2-parameter distri- 
bution as N(µ, σ), where µ is mean value of the random 
variable and σ is standard deviation of the variable under 
consideration. 

2. Definitions 

2.1. Fuzzy Set 

Fuzzy sets are collection of objects with the same prop- 
erties, and in crisp sets the objects either belong to the set 
or do not. In practice, the characteristic value for an ob- 
ject belonging to the considered set is coded as 1 and if it 
is outside the set then the coding is 0. In crisp sets, there 
is no ambiguity or vagueness about each object belongs 
to the considered set. On the other hand, in daily life hu- 
mans are always confronted with objects that may be 
similar to one other with quite different properties. There- 
fore uncertainty always arises concerning the assessment 
of membership values 0 or 1. Logically, of course, some  C       (2) 
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of the similar objects may partially belong to the same 
set, therefore, an ambiguity emerges in the decision of 
belonging or not. In order to alleviate such situations [10] 
generalized the crisp set membership degree as having 
any value continuously between 0 and 1. Fuzzy sets are a 
generalization of conventional set theory. The basic idea 
of fuzzy sets is easy to grasp. An object with membership 
function 1 belongs to the set with no doubt and those 
with 0 membership functions again absolutely do not 
belong to the set, but objects with intermediate member- 
ship functions partially belong to the same set. The great- 
er the membership function, the more the object belongs 
to the set [11]. 

The membership function of a fuzzy set is a generali- 
zation of the indicator function in classical sets. In fuzzy 
logic, it represents the degree of truth as an extension of 
valuation. Degrees of truth are often confused with prob- 
abilities, although they are conceptually distinct, because 
fuzzy truth represents membership in vaguely defined sets, 
not likelihood of some event or condition. 

For the universe Χ and given the membership-degree 
function  0,1µ   the fuzzy set is defined as: 

   , A A x x x X            (4) 

The following holds good for the functional values of 
the membership function  A x  

  0,  ,A x x X                (5) 

 
Sup

1Ax X x                  (6) 

2.2. Fuzzy Levels 

Range between the minimum (Min) and maximum (Max) 
value of any fuzzy variable is divided into suitable num- 
bers which are denoted in ascending order starting from 
the minimum (Min) to maximum (Max) value of a fuzzy 
set. Figure 1 shows the range and the fuzzy levels for a 
fuzzy set of objects, in a triangular functional diagram. 
Here the range has been divided into five fuzzy levels 
which are NL, NS, ZE, PS, and PL. A fuzzy inference 
model consists of 3 modules. Figure 2 shows a sche- 
matic diagram of steps involved in fuzzy rule based sys- 
tem. Definitions and methods of calculations are pre- 
sented below. 

2.3. Fuzzification 

As per Lee [12], fuzzification is a process which involves 
the following: 

1) measures the values of input variables, 
2) performs a scale mapping that transfers the range of 

values of input variables into a corresponding universe of 
discourse, 

 

Figure 1. Triangular functional diagram and method for 
calculating membership function (μ) and corresponding 
fuzzy levels. 

 

 

Figure 2. General scheme of a fuzzy sastem. 
 

3) performs the function that converts input data into 
suitable linguistic values which may be viewed as labels 
of fuzzy sets. 

Figure 1 shows a value of a fuzzy variable x inter- 
secting the triangles with fuzzy levels of ZE and NS and 
their respective membership functions  µ  of 0.3 and 
0.7. Hence, Fuzzification is the process that involves: 

1) inputting the value of the fuzzy variable in the uni-
verse of discourse, 

2) obtaining the intersecting points on the arms of the 
triangles to calculate the fuzzy levels, and 

3) obtaining the corresponding membership functions 
 µ . 

2.4. Min-Max Composition 

From Figure 1, it is observed that one fuzzy variable (x) 
yields two membership functions (0.3 and 0.7) and their 
respective fuzzy levels are NS and ZE. Hence, if there 
are two fuzzy variables in the antecedent part, an in- 
crease in wind speed and a decrease in temperature when 
compared between the ith day and (i − 1)th day, hereafter 
denoted as WS and TP, respectively as in Equations (7) 
and (8) below, there will be four membership functions 
and four respective fuzzy levels obtained after fuzzifica- 
tion. The mathematical method followed by fuzzification 
is termed as “min-max composition”. Considering WS 
and TP as the two fuzzy variable inputs and rainfall, 
hereafter denoted as RF as the output in each of the pro- 
duction rules: 

IF is s and is

THEN is

WS trong TP lower

RF moderate
       (7) 
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IF is s and is

THEN is

WS trong TP moderate

RF moderate
      (8) 

Fuzzifying any of these production rules will yield 
fuzzy levels and membership functions as shown in Fig- 
ure 3. Here the values of WS and TP are the two fuzzy 
variables representing the antecedent part of a production 
rule yielding RF as its consequence that is shown inside 
Figure 3. Suppose a value of WS yields the membership 
function values of 0.2 and 0.8 belonging to the fuzzy 
levels of ZE and PS, respectively. Similarly, TP, another 
fuzzy variable in the antecedent part, yields membership 
functions values of 0.3 and 0.7 for the fuzzy levels of ZE 
and NS, respectively. Inferring fuzzy level for RF is NS 
which is shown in the production rule table of Figure 3. 
The following equation holds good:  

IF WS is ZE and TP is NS THEN RF is NS  (9) 

Figure 3 shows that a value of membership function µ 
for WS equals 0.2 with its fuzzy level of ZE. This figure 
further shows another value of membership function µ 
for TP equals 0.7 with its fuzzy level of NS. A value of 
membership function for RF is taken to be 0.2 as it is the 
minimum value of µ between 0.2 and 0.7. A similar 
mathematical approach for the same fuzzy variables of 
ZE for 3 other production rules inside the table are pre- 
sented for RF in Figure 3. Hence, the three minimum 
values 0.7, 0.2, and 0.3 for the same fuzzy levels of ZE 
are obtained. Finally, the maximum value 0.7 is taken out 
of the three minimum values of 0.7, 0.2, and 0.3 for the 
next step of the calculation process for defuzzification. 
Let us give an example to show the generalized form of 
the equation for min-max composition. Considering two 
equations for the four production rules presented in the 
table written here as follows: 

 

 

Figure 3. Triangular functional diagram and method for 
calculating membership functions (μ) and corresponding 
fuzzy levels. 

IF WS is LW1 and TP is LT1 then RF is ZE (10) 

IF WS is LW2 and TP is LT2 then RF is ZE (11) 

Equations (10) and (11) have the same fuzzy levels of 
ZE for RF. Hence, the general form of the equation for 
calculating the membership function  having 
the same fuzzy levels ZE for the consequent part can be 
shown as:  

  ZE RF 

           
3

1

ii iiLW TPZE

i

RF WS LT  


       (12) 

Here,  is the membership function for RF 
for fuzzy level ZE,  is the fuzzy level for WS,  
is the fuzzy level for TP, and  indicates selecting the 
minimum value of membership function out of  

 and .  indicates selecting the 
maximum value of the calculated minimum membership 
function values. i is the number of production rules hav- 
ing the same fuzzy levels (here it is ZE). Equation (12) is 
valid only when i > 1. 

  ZE RF

 WS 





 

LW

 iTP

LT


 LWi  LT

If the fuzzy levels of RF are not the same, then the 
membership functions of RF can be calculated by the 
following equation: 

          i iLW TPLV RF WS LT         (13) 

Here, LV, the abbreviation for fuzzy level for RF, is 
different for various production rules. In these cases, 
only the minimum value of the membership functions 
between  and  is considered.   LWi WS   iTP LT

2.5. Defuzzification 

Defuzzification is the calculation method to yield the 
quantified value for the consequent part of a fuzzy state- 
ment described by production rule. Defuzzification per- 
forms the following functions: 

1) a scale mapping which converts the range of values 
of output variables into corresponding universe of dis- 
course, and 

2) yields a non-fuzzy control action from an inferred 
fuzzy control action. 

Figure 4 illustrates the mathematical procedure fol- 
lowed to calculate the center of gravity for the defuzzifi- 
cation method. The following are the possible cases: 

Case 1. fuzzy levels of the inference part of production 
rules belong to NL and NS with their corresponding val-
ues of membership functions  µ , 

Case 2. fuzzy levels of the inference part of production 
rules are in the region from NS to PS range with their 
corresponding values of membership functions  µ , and 

Case 3. fuzzy levels of the inference part of production 
rules belong to PS and PL with their corresponding val-
ues of membership functions  µ , 

Considering Figure 4(a) as a description of the mathe- 
matical procedure for calculating center of gravity for  

Open Access                                                                                           AJCM 



M. HASAN  ET  AL. 341

 
(a) 

 
(b) 

 
(c) 

Figure 4. (a) Calculation method for defuzzification if the 
fuzzy levels for inference part of the rule table belong to NL 
and NS; (b) Calculation method for defuzzification if the 
fuzzy levels for inference part of the rule table are between 
NS to PS; (c) Calculation method for defuzzification if the 
fuzzy levels for inference part of the rule table belong to PS 
to PL. 

 
Case 1, the point of intersections may be defined as 

, ,  1 1,0P X  2 1, 2P X Y  3 3, 3P X Y , P4(X4, Y4) and 
. Let the co-ordinate of center of gravity for 

the area bounded by the above five co-ordinates be 
. There are two triangles, one which can be  

5 5,0P X

 ,P X Y



shown by the co-ordinates , P2(X1, Y2) and 1 1,0P X 
 3 3, 3P X Y ; and the other triangle can be shown by the 

co-ordinates P1(X1, 0),  and P5(X5, 0). 4 4, 4P X Y 
Now, the average of X values in triangle formed by 
 1 1,0P X ,  2 1, 2P X Y , and  is  3 3, 3P X Y

 1 1 1 3 3.XC X X X   0         (14) 

and the Y value in the same triangle formed by P1(X1, 0), 
 2 1, 2P X Y , and  3 3, 3P X Y  is 

 1 0 2 3 3.0YC Y Y            (15) 

Similarly, X value in triangle formed by  1 1,0P X , 
 4 4, 4P X Y  and  5 5,0P X  is 

 2 1 4 5 3XC X X X   .0        (16) 

and the Y value in the same triangle formed by P1(X1, 0), 
 4 4, 4P X Y  and  5 5,0P X  is 

 2 0 4 0 3.0YC Y           (17) 

Area formed by  1 1,0P X , , and P3(X3, 
Y3) is 

2 1, 2P X Y 

        
Area 1

1 1 3 0 3 1 2 0 2.X X Y X X Y        0
 (18) 

Similarly, area formed by  1 1,0P X , P4(X4, Y4)and 
 5 5,0P X  is 

        
Area 2

4 1 0 0 5 1 4 0 2.0X X X X Y       
 (19) 

Therefore,      (20) Total area area 1 area 2 

and the area covered by , , and  1 1,0P X 2 1, 2P X Y 
 3 3, 3P X Y  is 

 
Fraction 1

area 1 area 1 area 2 area 1 total area  
 (21) 

and the area covered by ,  and  1 1,0P X  4 4, 4P X Y
 5 5,0P X  is 

 
Fraction 2

area 2 area 1 area 2 area 2 total area  
 (22) 

Therefore, the co-ordinate for center of gravity is 

 1 Fraction 1 2 Fraction 2X XC XC      (23) 

and  1 Fraction 1 2 Fraction 2Y YC YC      (24) 

Considering Figure 4(b) as describing the mathemati- 
cal procedure for calculating the center of gravity for 
Case 2, the point of intersections may be defined as 

 0 2, 0P X Y ,  1 1,0P X , ,  2 2, 2  P X Y  3 3, 3P X Y , 
 4 4, 4P X Y  and  5 5P X

at total area 

,0

under the th

. Let the co-ordinate of the 
center of gravity of the area bounded by the above five 
co-ordinates represented by thick lines be . Let  ,P X Y

ick lines is con-us consider th
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sisting of three small triangles which are as follows: 
triangle 1 which is formed by the co-ordinates (P0, P1, 

an
 2 which is formed by the co-ordinates (P0, P2, 

an
ich is formed by the co-ordinates (P0, P4, 

an
-ordinates for triangle 1 are P0(X2, 0), P1(X1, 

0)

d P2), 
triangle
d P3), and  
triangle 3 wh
d P5). 
The co
, and  2 2, 2P X Y ; triangle 2 consisting of P0(X2, 0), 
2 2,P X 2Y  and  3 3, 3X Y ; and triangle 3 shown 

-ordina 2,0 ,  4 4, 4P X Y  and 
 5 5,0P X . 

e 

P
e co te

, th average 

with th

Now

s 0P X

of X value in triangle formed by 
 0 2,0X ,  1 1,0P X , and  2 2, 2P X Y  is P

 1 2 1 2 3.XC X 0X       (25) 

and the Y value in the same triangle formed

X     

 by P0(X2, 0), 
 1 1,0P X , and  2 2, 2P X Y  is 

 1 0 0 2Y 3.0YC              (26) 

Similarly, X value in triangle formed by  0 2,0P X , 
 2 2, 2X Y  and P  3 3, 3P X Y  is 

 2 3XC  2 2 3.0X X X          (27) 

and the Y value in the same triangle formed by P0(X2, 0), 
 2 2, 2P X Y  and  3 3, 3P X Y  is 

 2 0 2 3 3.0Y YC Y          (28) 

Similarly, X value in triangle formed by  0 2,0P X , 
 4 4, 4X Y  and P  5 5,0P X  is 

 2 2 4XC  5 3.0X X X        (29) 

and the Y value in the same triangle formed by P0(X2, 0), 
 4 4, 4P X Y  and  5 5,0P X  is 

 2 0 4 0YC  3.0Y             (30) 

Area formed by 
Y2

 0 2,0P X , 1P X 1,0 , and P0(X2, 
) is 

        
Area 1

1 2 2 0 2 2 0 0 2.0X X Y X X       
 (31) 

Similarly, area formed by  0 2,0P X ,  2 2, 2P X Y  
and  3 3, 3P X Y  is 

        
Area 2

2 2 3 0 3 2 2 0 2.0X X Y X X Y       
(32) 

Similarly, area formed by  0 2,0P X ,  4 4, 4P X Y  
and  5 5,0P X  is  

        
Area 3

4 2 0 0 5 2 4 0 2.0X X X X Y       
 (33) 

Hence, 

      (34) 

area covered by 

Total area area 1 area 2 area 3    

 0 2,0P X ,  1 1,0P X , and P2(X2, Y2) 
is 

Fraction 1 area 1 total area         (35) 

area covered by  0 2,0P X , 2 2, 2P X Y   and P3(X3, 
Y3) is 

Fraction 2 area 2 total area        (36) 

and area covered by  0 2,0P X , P4(X4, Y4) and P5(X5, 
0) is 

Fraction 3 area 3 total area        (37) 

Therefore, the co-ordinate for center of gravity is  


3 Fraction 3 XC 

 
1 Fraction 1 2 Fraction 2X XC XC   

   (38) 

and  




1 Fraction 1 2 Fraction 2 

3 Fraction 3

Y YC YC

YC

   

 
  (39) 

Considering Figure 4(c) for describing the mathe- 
matical procedure for calculating the center of gravity for 
Case 3, the point of intersections may be defined as 

 1 1,0P X ,  2 2, 2 ,P X Y   3 3, 3P X Y , P4(X4, Y4) and 
 5 4,0P X

of the area
. Let the co-ordinate of the center of gravity 
 bounded by the above five co-ordinates rep- 

resented by thick lines be  ,P X Y . There are two tri- 
angles one of which can be by the co-ordinates  shown 

 1 1,0P X ,  2 2, 2 ,P X Y  and P5(X4, 0)and the other 
n be h the co-ordinates P3(X3, Y3), 

P4(X4, Y4) and 
triangle ca  shown wit

 5 4,0P X . 
Now, the ave varage of X lue in triangle formed by 
 1 1,0X , P  2 2, 2 ,P X Y  and  5 4,0P X  is 

 1 1 2X     4 3.0XC X X      (40) 

and the Y value in the same triangle formed by P1(X1, 0), 
 2 2, 2 ,P X Y  and  5 4,0P X  is 

 1 0 2 0YC  3.0Y            (41) 

Similarly, X value in triangle formed by  3 3, 3P X Y , 
 4 4, 4X Y  and P  5 4,0P X  is 

 2XC X  3 4 4 3.0X X          (42) 

and the Y value in the same triangle formed by P3(X3, 
Y3),  4 4, 4P X Y  and  5 4,0P X  is 

 2 3.0Y 3 4 0YC Y            (43) 

Area formed by  1 1,0P X , 2 2,P X 2Y  and P5(X4, 
0) is 

        
Area 1

1 4 2 0 2 4 0 0 2.0X X Y X X       
 (44) 

Similarly, area formed by P4(X4, Y4) 
and 

  3 3, 3P X Y , 
 5 4,0P X  is 
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        
Area 2

4 Y
 (45) 

3 4 0 4 4 3 0 2.0X X X X Y      

Therefore,    

and the area d by

Total area area 1 area 2   (46) 

 covere   1 1,0P X ,  2 2, 2P X Y  and 
 5 4,0P X  is 

 
Fraction 1

area 1 area 1 area 2 area 1 total area  
 (47) 

and the area covered by 
 is  

 3 3, 3P X Y ,  4 4, 4P X Y  and 
 5 4,0P X

 
Fraction 2

area 2 area 1 area 2 area 2 total area    
 (48) 

Therefore, the co-ordinate for center of gravity is 

9) 

and 

 1 Fraction 1 2 Fraction 2X XC XC       (4

 1 Fraction 1 2 Fraction 2Y YC YC      (50) 

3. Study Area 

This manuscript presents a fuzzy inference model for 
predicting RF using meteorological scan data from the 
United States Department of Agriculture (USDA) Soil 
Climate Analysis Network Station at Alabama Agricul- 
tural and Mechanical University (AAMU) campus. Me- 
teorological data for 2003 and 2004 were collected and 
analyzed to determine the variables that are involved in 
rainfall occurrences. The Alabama Mesonet (ALMNet) 
has been the apex representing fourteen combinations of 
meteorological/soil profile stations and twelve soil pro- 
file stations distributed in 11 counties in southern Ten- 
nessee and north and central Alabama. The combination 
stations are also part of the USDA and Natural Resources 
Conservation Service (NRCS) scan network. Alabama 
Mesonet (ALMNet) is controlled and run by the Center 
for Hydrology, Soil Climatology and Remote Sensing 
(HSCaRS) of Alabama Agricultural and Mechanical Uni- 
versity (AAMU). 

4. Model Development 

n data were collected for 
the model was developed 

 2004 using data from the AAMU cam- 
pus. Based on the observations of the graphs prepared for  

Although meteorological sca
two years, 2003 and 2004, 
based on year 2004 data. These data were very well or- 
ganized including soil related parameters. Data for Bragg 
Farm and Winford A. Thomas Agricultural Research Sta- 
tion (WTARS) were also collected, monthly data spread 
sheets were prepared, and graphs plotted to assist with 
pre-assessment of analysis and to generate ideas on cli- 
matic behavior. 

Figure 5 shows the characteristics of rainfall for the 
month of August

 

Figure 5. Rainfall pattem, wind and temperature (USDA 
scan data from AAMU campus for August 2004). 

 

 value of 
WS and another value of TP hen compared between the 

 wind 
sp

idity (RH) when compared between the ith and 
(i 

riables were taken into consideration 
an

nal variation as shown in tabular form in Figure 7. 
Th

every month during the years 2003 and 2004 for AAMU, 
Bragg and WTARS farms, it was apparent that a

 w
ith and (i − 1)th day mostly resulted in a rainfall occur- 
rence. Usually, the characteristic of rainfall occurrence 
usually takes place at the first or second day of the phe- 
nomena of increasing of wind speed and decreasing of 
temperature. Hence, the degree of association between 
WS and TP when compared between the ith and (i − 1)th 
day causing RF occurrences was established. Based on 
analysis, it was observed that a RF occurrence has a 
positive relation with TP and WS. The observation fur-
ther revealed that the relation of RF occurrence with TP 
and WS reflects expert knowledge. Hence, the values of 
WS and TP between ith and (i − 1)th day and using them 
in the fuzzy inference model for the antecedent part of 
production rules was considered to be feasible. Figure 6 
shows the fuzzy inference model structure and the steps 
followed to determine the time and amount of RF. 

This figure has been prepared by incorporating the 
consideration of threshold values as described in Figure 
7. In the initial step of calculation, temperature,

eed, and Relative Humidity were converted to yield the 
average daily values dividing by 24 (1 day = 24 h) to 
produce average temperature, average wind speed and 
average Relative Humidity. 

A preliminary analysis showed that the variables de- 
scribed below had a significant influence over RF occur- 
rences: 

1) Relative Humidity (RH) of the ith day, 
2) Humidity Increase (HI) is which is increase in Rela- 

tive Hum
− 1)th day, and 
3) Product (P) of decreasing of TP and increasing of 

WS. 
These three va
d shown in Figure 6 in the calculation process with 

seaso
is variation was considered with two threshold values  
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Figure 6. Model structure and steps in predicting timing 
and amount of Rainfall (RF). 

 

1) Jan 1 to Apr 31 

ec 31 
es were selected based on the cal-

cu
were 6 days out of 132 total rainy 

da
f data range, and to 

av

for minimum and maximum limits as indicated by A and 
B in Figure 7: 

2) May 1 to Sep 30, and 
3) Oct 1 to D
The threshold valu
lation of results of the model. 
In year 2004, there 
ys when the actual amount of RF was more than 50 

mm. Considering the uniformity o
oid very unusual phenomena, the highest volume of 

RF was considered to be 50 mm for the maximum value 
of predicted RF for defuzzification process (refer Figure 
4). The error was calculated using the following equa- 
tion: 

 
1i

e, n is the number of days of rainfall occurrences, 
is actual amount of rainfall, and is the calcu- 

ount of rainfall. 

5.
T

5.1. Selection of Variables 

(i − 
1)t  good choices for the development of a 

lity, fuzzy inference mod- 

Selection of the fuzzy levels in the inference part of the 
d 

error bles for the 

e AAMU campus USDA 
Soil Climate Analysis Network weather station had only 

 mm RF in 2004. The 

 

1
100 

i i i

n

a c aabs RF RF RF
n

        (51) 

Her

iaRF
lated am

icRF  

 Results and Discussions for Fuzzy Set  
heory 

Fuzzy variables of WS and TP between the ith and 
h day were

model for predicting RF. In rea
els involve with variables which are perceived by experts 
as responsible for the consequence part of the production 
rule. This means a fuzzy inference model reflects the 
scenario of thinking and decision-making process by ex- 
pert knowledge. The fuzzy variables were chosen fol- 
lowing the assessment on graphs prepared on the basis of 
monthly data from AAMU for 2003 and 2004. Selection 
of variables of TP and WS between the ith and (i − 1)th 
day was considered for this model as a better approach. 
The final results indicated that the selection of these two 
variables was suitable for the development of the model 
and that they showed a good agreement when used in the 
antecedent part of the production rule.  

5.2. Selection of Fuzzy Levels for the Inference 
Part of the Production Rule Table 

production rules is a cumbersome process by trial an
 method. Twenty five (5 × 5) fuzzy varia

inference part were shown in the table in Figure 3. A 
method for iterating the fuzzy variables for RF was fol- 
lowed in the computer program that selected the one 
yielding the lowest percentage of error based on Equa- 
tion (51). Depending on the scenario of the system, fuzzy 
levels in the inference part of the production rule must 
have either an ascending or a descending nature. Skill 
and logical approachability are required for determining 
fuzzy variables for the consequent part with respect to 
the fuzzy variables in the antecedent part of the produc- 
tion rule. The production rule table shown in Figure 6 
was the best set of fuzzy levels for RF that yielded the 
lowest error value of 12.35%. 

5.3. Maximum Value of RF 

Real RF data showed that th

6 occurrences of more than 50
maximum RF was 93 mm which is very unusual and rare 
for the same location. Moreover, if the actual amount of 
RF is considered to be more than 50 mm, the region of 
maximum RF [around PL of Figure 4(c)] will have un- 
ealistic and lesser density of number of data compared to 
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Figure 7. Threshold values and ranges of the factors for predicting RF for the improved model. 
 

density of data in the region of NL, NS, ZE, and PS. 
Hence, consid
among the ranges of NL, NS, ZE, PS, and PL the maxi- 

 
 

betw (i − 1)th day may result in RF, their 

 

sidered that there would be no RF occurre Introduc- 
sideration of 

three different seasons as described in Figure 7, the model 
ering the uniformity of data distribution ing these three threshold values with con

nce. 

mum value of predicted RF to be 50 mm was justifiable. 

5.4. Selection of Threshold Values for Predicted 
Value of RF 

Based on the fundamental logic of this research that a
value of WS and another value of TP when compared

een the ith and 
fuzzy levels, production rules, and ranges of variables, 
showed dependency on three other possible factors. 
These factors need to be considered with their threshold 
values for matching the actual and calculated amount of 
RF. These factors are 1) average daily Relative Humidity 
(RH); 2) Humidity Increase (HI) between the ith and (i − 
1)th day; and 3) Product (P) of TP and WS between the 
ith and (i − 1)th day. Figure 7 represents two boundary 
values (A) and (B) for RH. The zone between (A) and (B) 
is the range for a possible RF and the zone beyond (B) is 
the zone for RF regardless of any other consideration, 
whereas the RH of less than (A) is the zone for no RF. 
When the value of HI is more than 10 and it is within the 
boundary values of (A) and (B) then it becomes the zone 
for RF. The zone for the value of HI of less than 10 is 
again the zone for a possible RF occurrence. This possi- 
bility is further considered to occur when the value of 
product (P) of TP and WS is greater than 4. But if the 
value of P of TP and WS is less than 4, then it was con- 

showed good agreement between the actual amount of 
RF and predicted value for RF. Figures 8 to 10 show the 
actual and predicted values of RF using 2004 scan data 
from the USDA Soil Climate Analysis Network Station 
at the AAMU campus. These figures illustrate the actual 
amount of RF and predicted value of RF during three 
different seasons as considered in this model and ex- 
plained in Figure 7. The figures further show that the 
timeliness of the actual amount of RF and predicted 
value of RF almost perfectly match, but the amount of 
RF needs further research to yield better agreement be- 
tween actual and predicted values of RF. Therefore, fur- 
ther research planned to develop an approach for au- 
to-generation of the production rules by iteration method 
and selecting the particular production rule table that 
yields the lowest percentage of error. 

6. Methodology for Reliability Analysis 

It consists of following steps: 
Step 1- Calculate mean value  x  and standard de- 

viation  x  for each of the parameters affecting rain- 
fall, namely, relative humidity (RH) and humidity in- 
crease (HI) from the following equations: 

   ix

n
x                 (52) 
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Where, n = number of samples 

 2

 
1

i
x

x x

n








           (53) 

This step is done for all the sets o
sources at various locations-AAM
W RAGG 2005 and WA- 
TA

Step 2- Calculate the following theoretical p
ties for RH (assuming normal distrib
mation in step 1 as follows: 

f data from various 
U 2004, BRAGG 2004, 

ATARS 2004, AAMU 2005, B
RS 2005. 

robabili- 
ution) from infor- 

 1 70 85thP P X    for January 1 to April 30 
 2 80 90thP P X    for May 1 to September30 
 3 75 90thP P X    for October 1 to December 31 

X represents the random variable (Relative Humidity). 
W

ty for Event 2 for RH 
Pth3 = theoretical prob
Step 3- Count number ge 

for each event (1-3) and
pe

here, 
Pth1 = theoretical probability for Event 1 for RH 
Pth2 = theoretical probabili

ability for Event 3 for RH 
 of samples falling in the ran
 calculate the corresponding ex- 

rimental probabilities as follows: 

1 1  e teLP n n  

2 2 2e te P n n  

3 3 3 e teP n n  

Where, 
n1 = number of samples within the range of 70 - 85 

(between January 1-April 30) 
nte1 = total number of samples for event 1 (January 1- 

April 30) 
n2 = number of samples within e range of 80 - 90 

(between May 1-Sept. 30) 
tal number of samples for event 2 (May 1- 

Se
ithin the range of 75 - 90 

(b
tal number of samples for event 3 = 115 (be- 

tw
llowing theoretical probabili- 

tie
 1 as follows: 

 to September30 

bility for Event 1 - for HI 

 theoretical probability for Event 3 for HI 
Step 5- Count num e range 

for each event (1-3) ing ex- 

perimental probabiliti

 th

nte  = to2

pt. 30) 
n3 = number of samples w
etween October 1-December 31) 
nte  = to3

een October 1-December 31) 
Step 4- Calculate the fo
s for HI (assuming normal distribution) from informa- 

tion in step
X represents the random variable (HI - Humidity in- 

crease) 
 4  10thP P X   for January 1 to April 30 
  10P P X   for May 15th

 6  10thP P X   for October 1 to December 31 
Where, 
P  = theoretical probath4

Pth5 = theoretical probability for Event 2 for HI 
Pth6 =

ber of samples falling in th
and calculate the correspond

es as follows: 

4 4 4 e teP n n  

5 5 5 e teP n n  

6 6 6 e teP n n  

Where,  
n4 = number of samples of HI <= 10 (between January 

1-April 30) 
nte4 = total number of samples for HI for event 1 

(January 1-April 30) 
n5 = number of samples of HI <= 10 (between May 1- 

Sept. 30) 
 number of samples for HI event 2 (May 1- 

Se
ber of samples <= 10 (between October 1- 

D

7.

 data is quite high (more than 1). 
good quality control. 

r RH and HI for 

w

 
la

n  = totalte5

pt. 30) 
n6 = num

ecember 31) 

 Results for Reliability Analysis 

Results based on the reliability analysis are given in Ta- 
bles 1 and 2. These tables lists all the statistical parame- 
ters for the two random variables connected with rainfall 
data (“RH” and “HI”). 

8. Discussion and Results 

Tables 1 and 2 give statistical parameters (sample mean 
value, sample standard deviation and sample coefficient 
of variation (CV)) for relative humidity (RH) and humid- 
ity increase (HI). It is seen from these tables that the 
value of CV for the HI
CV is supposed to be less than 1 for 

 an 4 give probabilities foTables 3 d 
various periods. The reason for considering these two 
parameters is because these are found to effect the rain- 
fall to the maximum as discussed in this paper. Tables 3 
and 4 also show the comparison between theoretical and 
experimental probabilities for these two variables. It can 
be seen from these tables that they compare reasonably 

ell. Another point to be noted is that all the experiment- 
tal probabilities fall within 1 standard deviation (σ) from 
the mean value i.e. (µ − σ and µ + σ) which represent 
about 63% of the uncertainty which reflects well on the 
data that is collected and theoretical analysis performed. 

To calculate the probability of rainfall one can multi- 
ply the probabilities of the events for a particular period 
for RH and the same period for HI. For example for the 
period of January 1-April 30 (for RH values in the range 
of 70 - 80), the probability of rainfall is about 20%. This 
This number is calculated by multiplying the two prob- 
abilities considering they are independent events. Simi-

rly, probabilities can be calculated for other ranges of 
RH and HI. 
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Table 1. Statistical Parameters for rand  variable (RH) connected with rainfall. 

Statistical parameters 
Source of Data Name of Variable Events 

Mean  x  Standard deviation  X  Coefficient of Variation (CV)

AAMU 2004 
P (75 < RH < 90) 78.76 

0.23 
0.08 
0.14 

RH P (80 < RH < 90) 
89 

80.60 
15.55 
6.73 

P (70 < RH < 85) 67.

10.92 

BRAGG 2004 RH 
P (70 < RH < 85) 
P (80 < RH < 90) 

66.53 0.22 

W

W

P (75 < RH < 90) 
77.92 
76.13 

14.81 
7.17 
11.57 

0.09 
0.15 

ATARS 2004 RH 
P (70 < RH < 85) 
P (80 < RH < 90) 
P (75 < RH < 90) 

70.70 
81.25 
79.86 

13.76 
6.52 
11.07 

0.19 
0.08 
0.14 

AAMU 2005 RH 
P (70 < RH < 85) 
P (80 < RH < 90) 
P (75 < RH < 90) 

70.77 
78.41 
73.53 

13.96 
7.81 
11.23 

0.20 
0.10 
0.15 

BRAGG 2005 RH 
P (70 < RH < 85) 
P (80 < RH < 90) 
P (75 < RH < 90) 

69.42 
74.60 
71.07 

13.17 
8.28 
10.82 

0.19 
0.11 
0.15 

ATARS 2005 RH 
P (70 < RH < 85) 
P (80 < RH < 90) 
P (75 < RH < 90) 

73.06 
78.36 
75.35 

12.50 
7.73 
10.59 

0.17 
0.10 
0.14 

 
Table 2. Statist for ran ariable (HI) co d with rainfall. 

Statistical parameters 

ical Parameters dom v nnecte

Source of Data Nam iable  
M

e of Var Periods/Events
ean  x  XStandard deviation Coefficient of Variation (CV)

AAMU 2004 
Oct.1-December 31 3.95 

1.60 
1.54 
1.72 

HI 
January 1-April 30 

May 1-September 30
6.15 
2.62 

9.83 
4.04 
6.78 

BRAGG 2004 HI 
J  

Ma 30
5.86 

 
1.58 

W

W

anuary 1-April 30
y 1-September 

Oct.1-December 31 
2.55
4.12 

9.24 
4.27 
6.95 

1.67 
1.69 

ATARS 2004 HI 
January 1-April 30 

May 1-September 30
Oct.1-December 31 

5.66 
2.44 
4.01 

8.87 
4.09 
6.53 

1.57 
1.68 
1.63 

AAMU 2005 HI 
January 1-April 30 

May 1-September 30
Oct.1-December 31 

5.82 
2.42 
4.15 

9.79 
3.80 
7.02 

1.68 
1.57 
1.69 

BRAGG 2005 HI 
January 1-April 30 

May 1-September 30
Oct.1-December 31 

5.48 
2.34 
4.03 

9.34 
3.63 
6.66 

1.70 
1.55 
1.65 

ATARS 2005 HI 
January 1-April 30 

May 1-September 30
Oct.1-December 31 

5.33 
2.24 
3.90 

8.95 
3.63 
6.87 

1.68 
1.62 
1.76 

 
Table 3. Theoretical and Exp lities elative Hum Connected wit nfall. 

Sour Events 
Theo

Proba es 

imit 1 
bility for

µ − σ 

t 1 
Probability for 

 + σ 

Is experime d theoretical  
probabilities fall between the limits?

erimental Probabi  for R idity (RH) h Rai

ce of Data 
retical  
bilities 

Experimental 
Probabiliti

L
Proba

Limi

µ

ntal an

AAMU 
P (75 < X < 90) 

2004 
P(70 < X < 85) 
P (80 < X < 90) 

0.310 
0.454 

0.243 
0.450 

0.158 
0.158 

0.841 
0.841 

Yes 
Yes 

0.483 0.560 0.158 0.841 Yes 

BRAGG 2004 
P (70 < X < 85) 
P (80 < X < 90) 

W

W

P (75 < X < 90) 

0.301 
0.340 
0.424 

0.233 
0.393 
0.461 

0.158 
0.158 
0.158 

0.841 
0.841 
0.841 

Yes 
Yes 
Yes 

ATARS 2004 
P (70 < X < 85) 
P (80 < X < 90) 
P (75 < X < 90) 

0.371 
0.486 
0.490 

0.248 
0.520 
0.562 

0.158 
0.158 
0.158 

0.841 
0.841 
0.841 

Yes 
Yes 
Yes 

AAMU 2005 
P (70 < X < 85) 
P (80 < X < 90) 
P (75 < X < 90) 

0.368 
0.351 
0.377 

0.376 
0.428 
0.345 

0.158 
0.158 
0.158 

0.841 
0.841 
0.841 

Yes 
Yes 
Yes 

BRAGG 2005 
P (70 < X < 85) 
P (80 < X < 90) 
P (75 < X < 90) 

0.364 
0.226 
0.318 

0.361 
0.294 
0.299 

0.158 
0.158 
0.158 

0.841 
0.841 
0.841 

Yes 
Yes 
Yes 

ATARS 2005 
P (70 < X < 85) 
P (80 < X < 90) 
P (75 < X < 90) 

0.427 
0.350 
0.430 

0.404 
0.432 
0.398 

0.158 
0.158 
0.158 

0.841 
0.841 
0.841 

Yes 
Yes 
Yes 
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Table 4. Theo and Exp ntal Probabilities for H y Increase (HI). 

Source of Data 
t-ical 
-lities 

-ental 
ili-ties

it 1 
lity for
 σ 

it 1 
lity for
 σ 

Is experim nd theoretical 
probabilities fall between the limits?

retical erime umidit

Events 
Theore
Probabi

Experim
Probab

Lim
Probabi

µ −

Lim
Probabi

µ +

ental a

AAMU 2004 
0 

Oct.1-

2  

Yes 

January1-April 3
May 1-Sept. 30 

December 31 
0.966 
0.814 

0.941 
0.835 

0.158 
0.158 

0.841 
0.841 

0.65 0.754 0.158 0.841 Yes
No 

BRAGG 2004 
January1-April 30 

Ma  30 
Oct.1-December 31 

W  

W  

y 1-Sept.
0.673 
0.959 
0.801 

0.765 
0.924 
0.875 

0.158 
0.158 
0.158 

0.841 
0.841 
0.841 

Yes 
No 
No 

ATARS 2004
January1-April 30 

May 1-Sept. 30 
Oct. 1-December 31 

0.688 
0.968 
0.820 

0.759 
0.931 
0.852 

0.158 
0.158 
0.158 

0.841 
0.841 
0.841 

Yes 
No 
No 

AAMU 2005 
January1-April 30 

May 1-Sept. 30 
Oct. 1-December 31 

0.665 
0.977 
0.798 

0.778 
0.944 
0.848 

0.158 
0.158 
0.158 

0.841 
0.841 
0.841 

Yes 
No 
No 

BRAGG 2005 
January1-April 30 

May 1-Sept. 30 
Oct. 1-December 31 

0.686 
0.982 
0.815 

0.776 
0.957 
0.837 

0.158 
0.158 
0.158 

0.841 
0.841 
0.841 

Yes 
No 
Yes 

ATARS 2005
January1-April 30 

May 1-Sept. 30 
Oct. 1-December 31 

0.699 
0.983 
0.813 

0.778 
0.951 
0.850 

0.158 
0.158 
0.158 

0.841 
0.841 
0.841 

Yes 
No 
No 

 
9. Conclusion 

Sel ari unda l logic o
val t to fy amou
RF and its time he co quent pa  

 model. Introducing the idea of thresh- 

dicting Rainfall by Fuzzy Set Theo
ing USDA-SCAN Data,” Agricultural Water Management
Vol. 95, No. 1
http://dx.doi.o .07.015

ection of v
ues TP and 

ables and the f menta f the 
WS was an attemp
 of occurrence as t

 identi
nse

nt of 
rt of

the fuzzy inference
old values of a) RH of the ith day, b) HI when com- 
pared between the ith and (i − 1)th day, and c) P, prod- 
uct of WS and TP appeared to be an appropriate attempt 
for the model to match the actual RF occurrences. Itera- 
tion of the fuzzy levels with logic both for antecedent 
and consequent parts was found to be efficient. Further 
research has been planned to attain the maximum possi- 
ble matches of time and amount of RF between actual 
occurrences and the one predicted by the model. A 
methodology has been developed for reliability analysis 
to predict rainfall. 
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