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ABSTRACT 

This paper studies the composition of the Paretian allocation set in the context of a finite number of agents and a finite 
number of indivisible goods. Each agent receives at most one good and no monetary compensation is possible (typically 
called the house allocation problem). I introduce the concept of a cycle which is a sequence of allocations where each 
allocation is linked to the following allocation in the sequence by the same switch of goods between a subset of agents. 
I characterize the profiles of agent preferences when the Paretian set has cycles. 
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1. Introduction 

The house allocation problem consists of the assignment 
of indivisible goods to a set of agents who can receive 
only one object in the final allocation. Such problems are 
very common: allocation of rooms between roommates, 
lectures between professors, offices between colleagues, 
etc.  

This class of problems was introduced by [1]. For this 
paper, agents own all goods collectively. While authors 
prove the existence of a competitive equilibrium, [2] 
shows that this competitive equilibrium is unique when 
preferences are strict over the set of goods. Reference [3] 
proves that this unique solution can be implemented by a 
strategy-proof allocation mechanism. Furthermore, there 
is a unique strategy-proof, individually rational and Pare- 
to optimal allocation mechanism leading to the unique 
core allocation [4]. Reference [5] shows the equivalence 
between the competitive allocation from random en-
dowments and the random serial dictatorship while [6] 
proves that all mechanisms that are strategy-proof, non-
bossy and neutral must be serially dictatorial. Reference 
[7] models the case where there exists at the same time 
tenants and new comers on the same market. They intro-
duce the top trading cycles mechanism in this set-up and 
show that it is Pareto efficient, individually rational and 
strategy-proof. Reference [8] introduces the possibility of 
having weak preferences over the set of goods and shows 
some restrictions on agent preferences for which effi-

ciency and coalitional strategy-proofness are compati-
ble1.  

The purpose of this paper is to look at rationalizability 
in the context of the house allocation problem. In other 
words, I am interested in answering the following ques-
tions: is it possible to say if, for a given set of allocations, 
there is a preference profile which supports this set as a 
Paretian allocation set? An example is students’ seats in 
class. For every lecture, there is an allocation of seats. 
Considering the set of allocations, it is possible to test the 
rationality of students’ preferences over seats by studying 
observed allocations.  

In existing papers on the house allocation problem, 
only the [9] mentions explicitly the composition of the 
Paretian allocation set. They show that for any two allo-
cations in the Paretian set, there exists a sequence of al-
locations belonging to the Paretian set such that they are 
pairwise connected, i.e. there are only two agents swi- 
tching their goods and all others stay with the same good. 
This means that a set with two allocations that are not 
pairwise connected cannot be rationalized.  

The main difficulty of using direct inference, i.e. test-
ing each possible preference profile if it supports the al-
location set as a Paretian allocation set, is linked to 
number of such preference profiles. As an example, if the 
number of goods is 5, then the number of possible allo-

1This list of papers treating of the house allocation problem is not ex-
haustive.
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cations is 120 but the number of preference profiles is 
close to 25 billion2. Consequently, it seems reasonable to 
find a quickest method to study rationalizability.  

In this paper, I introduce the concept of a cycle. A cy-
cle is a subset of allocations in which a subset of agents 
switches their goods according to a specific scheme. The 
presence of cycles in a given set of allocations which is 
presumingly a Paretian set gives us information on the 
potential preference profiles which would support this set 
as a Paretian allocation set. With the concept of a cycle, I 
derive some conditions regarding the number of alloca-
tions that have to belong to an allocation set in order for 
it to be a Paretian allocation set.  

The paper is organized as follows. In Section 2, I pre-
sent the house allocation problem and I define the con-
cept of a cycle. Section 4 talks about the properties of the 
cycle and Section 5 presents the implication of the pres-
ence of cycles in the Paretian allocation set. Section 6 
concludes. 

2. Definitions and Notations 

Let 1, 2, ,N  
2

 denote the set of agents with 
  . The set of goods is  1 2, , , X x x x   where all 
goods are different. I define an allocation 

 1 2, , ,a a a a   where ia X  is the good allocated 
to agent i  with i j  for . For any set of 
agents  and for any set of goods 

a  a i j
N N X X  with 

N X  ,  ,A N X   denotes the set of all possible al-
locations of goods in  to agents in .  X N

Agent ’s preferences are represented by a binary re-
lation i  which is complete, transitive and antisymmet-
ric (strict preference). Given 1 2

i
P

,x x X , 1 i 2x P x  means 
that agent  strictly prefers i 1x  to 2x . Also, 

i jY Y
 means agents  and P  P i j  have the same pre- 

ferences over the set of goods . I define a profile as Y
 1, ,P P P  


 and the domain of all possible profiles is 

denoted by ,N X .  
Definition 1: An allocation  is Pareto optimal for a 

given profile  if 
a

P  â A ,N X  such that  

ˆ for at least one

ˆ ˆor 1,2, ,
i i i

j j j j j

a Pa i N

a P a a a j 


   
 

 PO P



 denotes the set of all Paretian allocations 
when the profile is . Then,  must be an ele-
ment of  which is the set of all non-empty 
subsets of 

P


 PO P
 ,N X
 ,A N X . It is important to note here that, for 

all preference profiles , the set  is never 
empty. This means that, for every preference profile , 
there is at least one allocation which is not Pareto domi-
nated by another allocation.  

P  PO P
P

Definition 2: A set  is rationalizable if there is pre- 

ference profile  such that the Paretian allocation set 
for  is , i.e. 

S

P
P S  S PO P



. 

3. Cycles 

Since direct inference is at least difficult, it seems natural 
to look at the structure of the Paretian set to identify 
some patterns that can be used to find one associated 
preference profile. Two groups of Paretian sets are trivi-
ally easy to rationalize. First, consider a Paretian set with 
only one allocation. Any preference profile where every 
agent has the allocated good as his most preferred good 
rationalizes this Paretian set. The second case is the other 
extreme case where the Paretian set is composed be all 
possible allocations. In such case, any preference profile 
where agents have the same preferences rationalizes this 
set.  

However, intermediate cases are more difficult to infer 
directly. To solve this problem, I propose the concept of 
cycle.  

Definition 3: Let the set  and N N X X  with 
N X     . Let  , n1 2, ,n n n       with  

1 2 ,n N , ,n n  and     1 2, , , ex x x x       with 

1 2, , ,x x x X     . A set  has a cycle  ,N XS A
 ,C n x   if  a S1 2, , ,S a a 

s  

1 2

1 2

1 2

1 2

1 1
1 2

2 2
2 3

1 1

, ,

, ,

, ,

, ,

n n

n n

n n

n n

a x

a x

a x

a x

 
 

 

 

 such that 
1

2
1

1
1 2

1 1

,

,

,

,

n

n

n

n

a x

a x

a x

a x














 



a x

a x

a x

a x

 



























 









 

 

 

 

 

 

 
  

 
 

  

  

 

  



S

 



For example, if the set  has the cycle 
    1 2 , this means there are three alloca-

tions  and  belonging to  such that 
3x x

3

1 1
1 1 2

2 2
1 2 2

3 3
1 3 2

, ,

, ,

a x a x

a x

a x a x

 

1, 2,3 ,C
1,a a

,
2

,x
a S

1
2 3 3

2
3 3

3
1 3 2

, ,

a x

a x a x

a x



 1 

 

 

It is important to underline that  and n x  are vectors 
and not subsets of  and N X  respectively. The reason 
is that the order of appearance within the vector is im-
portant to the definition of the cycle. To illustrate the 
importance of this distinction, consider the two following 
sets:  

      
 

2 3 2

1 3 1

, , , ,

, , , ,

x x x x

x x x x    
3 1 3 1 2

3 2 3 2 1

, , , ,

, , , ,

x x x x

x x x x

1 1

2

x

x2

S

S





S

 

The set 1  has the cycle     1 2 31, 2,3 , , ,C x x x  and 

2  the cycle S     1 32,3 , , ,C 2 . But those two cy-
cles are different. For this reason, vectors must be used to 
define a cycle.  

1, x x x
2The number of possible allocation is given by  while the number !n

of possible preference profiles is .  ! n
n
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Also, it should be noted that it is possible to write the 
same cycle in many ways. Lemma 1 gives the number of 
ways to write the same cycle3. 

Lemma 1: Any cycle of   elements can be written 
in   2card R   ways where  

    1, 2, , 1 with 0R mod            

where mod is the modulo operator and  card R  re-
turns the number of elements in R  (cardinality of 
R )4.  

The following example illustrates the lemma.  
Example 1:  Suppose I have the set 

     1 2 3 2 3 1 3 1 2, , , , , , , ,S x x x x x x x x x


 . Then, by Lem- 
ma 1, there are   2

33 3card R 18  ways to write the 
cycle: 

         
         
        
         
        
        
    

1 2 3 2 3 1

3 1 2 1 2 3

2 3 1 3 1 2

1 2 3 2 3 1

3 1 2 3 2 1

2 1 3 1 3 2

3 2 1

1,2,3 , , , 1, 2,3 , , ,

1,2,3 , , , 2,3,1 , , ,

2,3,1 , , , 2,3,1 , , ,

3,1,2 , , , 3,1,2 , , ,

3,1,2 , , , 3,2,1 , , ,

3,2,1 , , , 3,2,1 , , ,

2,1,3 , , , 2,1,

C x x x C x x

C x x x C x x

C x x x C x x

C x x x C x x

C x x x C x x

C x x x C x x

C x x x C    






x

x

x

x

x

x


         
         

2 1 3

1 3 2 3 2 1

2 1 3 1 3 2

3 , , ,

2,1,3 , , , 1,3,2 , , ,

1,3,2 , , , 1,3,2 , , ,

x x x

C x x x C x x

C x x x C x x

x

x

 

It must be noted that  card R  is always higher or 
equal to 2 when   is higher or equal to 3. The number 
1 and 1    always belong to R .  

Since the number of ways to write the same cycle can 
be large5, I propose using the lexicographic ordering to 
have a unique notation for a given cycle.  

Definition 4: For two vectors  and  of l  com- 
ponents,  is lexicographically dominated by w  if  

v w
v

1 1

1 1 2 2

1 1 2 2

or

, or

, , , l l

w v

w v w v

w v w v w v


 

  




 

The first step is to choose from all possibilities of 
writing a given cycle the ways for which the vector  is 
lexicographically dominated by (or equal to) the others. 
Secondly, from those variants, I choose the one for which 
the component subscripts of 

n

x  are lexicographically 
dominated by the other vector x .  

Let’s apply this process to the cycle in Example 1. The 
first step tells us to select the vector  which is lexico-
graphically dominated by the others. This vector is 

n

 1,2,3 . Then, from the different ways to write the cycle 
with  1,2,3n , which are     1 2 31, 2, , ,C x x3 , x , 

    2 33 , , ,x 1  and 1, 2,C x x     3 1 21, 2, , ,C x x3 , x , we 
select the one which has the vector x  whose component 
subscripts are lexicographically dominated by the com-
ponent subscripts of the other x ’s. I find that the unique 
solution is     1 2 3

I most emphasize that the definition of a cycle is inde-
pendent of what other agents get. For example, consider 
the two following sets:  

1, 2,3 ,C , ,x x x .  

      

      

1

1 2 3 4 5 1 2 4 5 3 1 2 5 3 4

2

2 1 3 4 5 2 1 4 5 3 1 2 5 3 4

, , , , , , , , , , , , , ,

, , , , , , , , , , , , , ,

S

x x x x x x x x x x x x x x x

S

x x x x x x x x x x x x x x x




 

These sets have the same cycle 
    3 4 53, 4,5 , , ,C x x x  even if they do not have the 

same allocations.  
An interesting question is how many different cycles 

could the set  have for set of agents  and a given 
subset of goods ? There are 

S N
X !  different vectors n  

and 


!  different possible vectors x . There are  2
!  

possibilities. But, I have already shown that there are 
  car 

2d R    ways to write the same cycle. So there  

are 
 

 
21 !

card R


 different cycles for a given subset of  



agents  and a subset of goods .  N X
Also, it is possible that a Paretian set contains more 

than one cycle. In particular, it could happen that the 
Paretian set  PO P  has two cycles:  ,C n x   and 
 ,C n x  with N N   and X X  . To examine this 

case, I define the concept of subcycle.  
Definition 5: Suppose that the set  has 

a cycle 
 ,S A X N 

 ,C n x  . The cycle  , xC n  is a subcycle of 
 ,C n x   if N N   and X X  .  
Example 2 illustrates the concept of subcycle.  
Example 2: Suppose that the set  has a cycle S
    1 2 3 41, 2,3, 4 , , , ,C x x x x . Let s  is the set of 

allocations 
S  S

sa  belonging to  such that  S

1 1 2 2 3 3 4 4

1 2 2 3 3 4 4 1

1 3 2 4 3 1 4 2

1 4 2 1 3 2 4 3

, , ,

, , ,

, , ,

, , ,

s s s s

s s s s

s s s s

s s s s

a x a x a x a x

a x a x a x a x

a x a x a x a x

a x a x a x a x

   

   

   

   

or

or

or
 

3All proofs are in Appendix. 
4For ,   , mod   is the remainder of the division of  by 

 . 
5For example, if , then we can write the same cycle in 200 dif-
ferent ways. 

5m 

Then, this cycle contains 4 different subcycles:  

    1 31,3 , ,C x x ,     2 41,3 , ,C x x , 

    1 32, 4 , ,C x x  and     2 42, 4 , ,C x x   
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To know if the cycle  ,C n x   has subcycles, I study 
the set R . The next lemma tells us the condition nec-
essary for  ,C n x   to have subcycles.  

Lemma 2: If   1card R   , then  ,C n x   has 
subcycles.  

Example 3: Suppose a set  has the cycle S  ,C n x 
4 5 6, , ,

 
with  and  1,2,3,4,5,6n   1 2 3, , x x x x x

1 6, ,a a
x x . 

This means there are 6 allocations  belonging 
to  such that: S

1 1 1 1 1 1
1 1 2 2 3 3 4 4 5 5 6 6

2 2 2 2 2 2
1 2 2 3 3 4 4 5 5 6 6

6 6 6 6 6 6
1 6 2 1 3 2 4 3 5 4 6

, , , , ,

, , , , ,

, , , , ,

a x a x a x a x a x a x

a x a x a x a x a x a x

a x a x a x a x a x a x

     

     

     


1

5



 

Set . Then, cycle 6 2,3,4,6R   ,C n x  with 
 1,n  4  and  1 4,x x x  is a subcyle of  ,C n x .  

The last definition about cycles is the following:  
Definition 6: The set  has a complete 

cycle 
 ,S A X N 

 ,cC N X   with  and N N X X  where 

   card XN card   if for all  1 2 , n, ,nn n       with 

1 2, , ,n n n N      and  1 2, , ,x x x x      with 

1 2, , ,x x x     X ,  contains the cycle S  ,C n x  .  
In other words, the set  has a complete cycle T
 ,cC N X   if there is at least one allocation that belongs 

to A  for all possible permutations of goods belonging 
to  between agents belonging to .  X N

4. Properties of Cycles and Complete Cycles 

The presence of a cycle  ,C n x   in a Paretian set 
 PO P  gives information about the preferences of 

agents. The first insight given by a cycle is about pairs of 
goods which are neighbors in the vector x .  

Proposition 1: If  has a cycle  PO P  ,C n x  , then 
  ,i j N  

1 1

1 1

, ,

, ,
and

k k k k

i jx x x x

i jx x x x

P P

P P

 

 





 
 

1, 2,3, , 1k    . 
Consequently, if the Paretian set has a cycle, then all 

agents belonging to the cycle have same preferences over 
any pairs of neighbor goods in that cycle. With this 
proposition, some information on the associated profile 

 is provided by the presence of a cycle in the Paretian 
set. However, information on preferences is only over 
each pair 

P

 1,k kx x   and the pair  1 ,x x . No informa-
tion about the preferences over all pairs of goods be-
longing to the set  can be extracted from the cycle. 
The following example demonstrates the problem.  

X

Example 4: Suppose the cycle 
   1 2 3 41, 2,3, 4 , , , ,C x x x
 PO P

1 2 3 4

1 3 1 3

3 1 3 1

2 2 2 2

4 4 4 4

P P P P

x x x x

x x x x

x x x x

x x x x

 

Then when the good 3x  is allocated to someone who 
belongs to  1,3 , the good 1x  is allocated to the other 
agent in that set. The cycle does not contain an allocation 
where the good 1x  is allocated to someone in  1,3  
and the good 3x  to someone in . This means that 
agents in 

 2,4
 1,3  could have different preferences over 

the set  1 3,x x  than agents in . The same is true 
for the set of goods 

 2,4
 2 4,x x .  

To analyze preferences over a pair of goods which are 
not neighbors to each other in the vector x , I use the 
concept of subcycle. In Section 2, I showed that a subcy-
cle is a cycle. So, if a cycle has subcycles, Proposition 1 
can be used to infer agents’ preferences.  

Proposition 2: Suppose  has a cycle  PO P
 ,C n x  . For R   ,  

   , ,i i
y y y y

n nx x x x
P P

  
    

 
1, 2, , , 1, 2, ,i y            

Let’s apply this proposition to the following example.  
Example 5: Suppose  has a cycle  PO P  ,C n x   

with  1,2,3,4,5,6n   and  , , ,1 2 3 4 5 6, ,x x x x x x x .  
Then, this means there are six allocations 

 1 2 3 4 5 6, , , , ,a a a a a a PO P
1 1

 such that 
1

1 1 2 2 6 6

2 2 2
1 2 2 3 6

3 3 3
1 3 2 4 6

4 4 4
1 4 2 5 6

5 5 5
1 5 2 6 6

6 6 6
1 6 2 1 6

, , ,

, , ,

, , ,

, , ,

, , ,

, , ,

a x a x a x

a x a x a x

a x a x a x

a x a x a x

a x a x a x

a x a x a x

  

1

2

3

4

5

  

  

  

  

  













 

Consider goods 1x  and 4x . Then, 
1 1
1 1 4 4

4 4
1 4 4

,

,

a x a x

a x a x1

 

 
 

Then agents 1 and 4 have same preferences over the 
 1 4,x x . If we continue, we find that  

1) Agents in  1,2,3,4,5,6  have the same prefer-
ences over sets  1 2,x x 2 ,,  3x x ,  3 4,x x ,  4 5,x x , 
 5 6,x x  and  1 6,x x .  

2) Agents in  1,3,5  have the same preferences over 
sets  1 3,x x ,  2 4,x x ,  3 5,x x ,  4 6,x x ,  51,x x  
and  2 6,x x .  

3) Agents in  2,4,6  have the same preferences over 
sets  1 3,x x ,  2 4,x x ,  3 5,x x ,  4 6,x x ,  51,x x  

x  belongs to the Paretian set 
. Then the following profile supports the cycle.  
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and  2 6,x x .  
4) Agents in  1,4  have the same preferences over 

sets  1 4,x x ,  2 5, x x  and  3 6,x x .  
5) Agents in   have the same preferences over 

sets 
2,5

 1 4,x x ,  2 5, x x  and  3 6,x x .  
6) Agents in   have the same preferences over 

sets 
3,6

 1 4,x x ,  2 5, x x  and  3 6,x x .  
This result gives additional information about the pro-

file  since it provides information on preferences over 
pairs of goods which are not neighbors in the cycle. 
Subcycles can be analyzed on their own since they are 
themselves distinct cycles, but they could be supported 
by different preference profiles across agents than the 
larger cycle. However, by using subcycles, it is only pos-
sible to show that agents which are neighbors in a subcy-
cle have the same preferences over all pairs of goods 
which are neighbor in this subcycle and it is possible that 
two distinct subsets of agents in the cycle hold different 
preferences over the same subset of goods.  

P

While Proposition 2 gives us information about pref-
erences over pairs of goods that are neighbors in a sub-
cycle, Proposition 3 deals with the other pairs.  

Proposition 3: Suppose that  has a cycle  PO P
 , x C n . For all pairs of goods ,x x     X  with 

   such that     belongs to R ,  

   , ,
,i jx x x x

P P i j
   

    
N  

It must be noted that if   is a prime number, all pairs 
of goods are treated by Proposition 3 since  1R    . 
In this case, all agents in  have the same preferences 
over the set .  

N
X

Corollary 1: If  has a cycle  PO P  ,C n x   and   
is a prime number, then ,  ,i j N  

i jY Y
P P  

This result is very strong. Only one cycle is enough to 
conclude that a subset of agents have the same prefer-
ences over a subset of goods. Unfortunately, as showed 
above, this result cannot be extended to any number of 
individuals in .  N

Another case can lead to the conclusion that agents in 
a subset of  have the same preferences over a subset 
of goods.  

N

Proposition 4: If  has a complete cycle   PO P

 ,C N X 

X
c , the agents in  have the same preferences  N

over .  
The presence of a complete cycle gives us more in-

formation about agent preferences. In fact, a cycle could 
give the same information if the number of elements in 
that cycle is a prime number. Unless it has this charac-
teristic, a cycle by itself does not give information on 
preferences over all goods. But, if a single cycle cannot 
give the same information than a complete cycle, many 

cycles can provide it.  
Proposition 5: Let the set  be a subset of  and 
 a subset of 

N N
X X  with    .car card Xd N     . Let 
  be the lowest prime number such that 0mod  . If  

 PO P  has  1 2 ! 1

         

  cycles with same  


n  and same , then the agents in  have the same 
preferences over .  

X N
X

To illustrate the idea of this proof, consider the fol-
lowing example. Suppose   6card X   and suppose 

 has the following cycles :  S
 the 6 cycles given by 

    1 2 31, 2,3, 4,5,6 , , , , , ,C x x x  
   the 6 cycles given by 

    1 2 41, 2,3, 4,5,6 , , , , , ,C x x x  
   the 6 cycles given by 

    1 2 51, 2,3, 4,5,6 , , , , , ,C x x x  
   the 6 cycles given by 

    1 2 61, 2,3, 4,5,6 , , , , , ,C x x x  
   the 6 cycles given by 

    1 3 21, 2,3, 4,5,6 , , , , , ,C x x x  
   the 6 cycles given by 

    1 4 21, 2,3, 4,5,6 , , , , , ,C x x x  
   the 6 cycles given by 

    1 5 21, 2,3, 4,5,6 , , , , , ,C x x x     
 the 6 cycles given by 

    1 6 21, 2,3, 4,5,6 , , , , , ,C x x x  
S   If  has only these cycles, this means agents 1, 3 and 

5 could have different preferences over 1 2,x x  than 
agents 2, 4 and 6. To have all agents with the same pref-
erences, I must add at least one more cycle.  

An interesting question concerning the composition of 
the Paretian set is what happens to the remaining agents. 
If the Paretian set has a cycle  ,C n x  , it is interesting to 
know if there is an allocation in  , A NN XX   such that 
agents outside the cycle get the same goods in all alloca-
tions which can constitute the cycle. In other words, if I 
define cX XX  , , the question is: “Is there a cN N N

 ,c cN X z A

z

 such that the set  composed by all 
allocations belonging to  where agents in  
get  has a cycle 

cS
 PPO cN

 ,C n x  ?” The answer is: there is no 
guarantee that the existence of such an element. Take the 
following example:  

Example 6: Suppose the preferences for 6 agents are 
given by  

1 2 3 4 5 6

1 1 1 1 6 6

3 3 3 3 2 4

2 4 2 4 5 5

4 2 5 5 1 1

5 5 4 2 3 3

6 6 6 6 4 2

P P P P P P

x x x x x x

x x x x x x

x x x x x x

x x x x x x

x x x x x x

x x x x x y
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Then 

   
   
   
   
   
   
   
   

1 2 3 4 5 6

1 2 3 4 6 5

2 3 4 1 5 6

2 3 4 1 6 5

3 4 1 2 5 6

3 4 1 2 6 5

4 1 2 3 5 6

4 1 2 3 6 5

, , , , ,

, , , , ,

, , , , ,

, , , , ,

, , , , ,

, , , , ,

, , , , ,

, , , , ,

x x x x x x PO P

x x x x x x PO P

x x x x x x PO P

x x x x x x PO P

x x x x x x PO P

x x x x x x PO P

x x x x x x PO P

x x x x x x PO P

















 

I obtain a cycle  ,C n x   with  1,2,3,4n   and 
 , , , 1 2 3 4x x x x x . But the subset of  in which 

allocations give 5

 PO P
x  to agent 5 and 6x  to agent 6 does 

not contain the cycle  ,C n x  . This is also true for the 
subset of  in which allocations give PO P 6x  to 
agent 5 and 5x  to agent 6.  

Example 6 shows that the existence of such an ele-
ments is not guaranteed. Nevertheless if such element 
exists and the agents in  have the same preferences 
over the set , then the Paretian set contains a complete 
cycle 

N
Y

 , X 
c

Proposition 6: Let the set  be a subset of  and 
 a subset of 

C N .  
N N

X X  with    car card Xd N  . Suppose 
that all agents in  have the same preferences over the 
set . If the subset of 

N
X  PO

cN


P  composed of alloca-
tions in which agents belonging to  get 

 ,c cN X  z A  has the cycle ,C n x  , then  PPO  
has a complete cycle  ,cC N X   in which  get .  cN z

To illustrate this proposition, consider the case where 
the Paretian set  contains the allocations  PO P

 1 2 3 4 5, , , ,x x x x x ,  2 3 1 4 5, , , ,x x x x x  and 

 3 1 2 4 5, , , ,x x x x x . Then,  PO P  has the cycle 

    1 2 3x x


1, 2,3 , , ,C x . By Proposition 6, the allocations 

1 2 3 4 5, , , ,x x x x x , 2 1 3 4 5, , , ,x x x x x  and 

 3 2 1 4 5, , , ,x x x x x

 PO P

 must also belong to . Then,   PO P

  3 , , , has a complete cycle .   1 2 31, 2,cC x x x

5. Cycles and Paretian Sets 

Finding a preference profile that rationalizes a set  is 
easy in some cases. When 

S
 ,S A N X

a

, then any pref-
erence profile such that agents have same preferences 
rationalizes the set  has a Paretian set. Also, if the set 

 has only one allocation , this set can be rational-
ized by any preference profile in which each agent gets 
his most preferred good. Even in the case where  has 
two allocations, this set can be rationalized if the two 
allocations are pairwise connected. However, it is not 
possible to go further. At the first look, it is impossible to 
say if a set  can be rationalized even if all allocations 

are pairwise connected6.  

S
S

S

S

Fortunately, it is possible to find some necessary con-
ditions on rationalizable sets. Before presenting some 
conditions on rationalizable sets, I need the following 
proposition.  

Proposition 7: Suppose  has a cycle  PO P  ,C i y . 
Let  be an agent belonging to  and li N x  an element 
of . If all agents belonging to X  N i  have the same 
preferences over the set  lX x , then agents belonging 
to  have same preferences over N  lX x .  

The next proposition describes the restrictions on the 
number of allocations  PO P

3n 
 must contain.  

Proposition 8: If  and    ,PO P A N X , 
then      1 1card PO P n !n     . If P

     1 !1P n nPO     , then there exist an agent  
and a good l

i
x  belonging to X  such that there is no 

allocation  belonging to  with ha  PPO h
ia xl  and 

the preference profile is given by 

1)  ,g h lYY
P P g h N Y X x      

2)  ,g h XX
P P g h N i     

3) 
       

,,
for some

l kl k
g i kx xx x

P P g N i x X    lx  

Using Proposition 8, it is possible to know if a set 
cannot be rationalized just by looking to the number of 
allocations belonging to this set. If 

     1 1 ! 1, !card S n n n 1       
P

, then there exists 
no preference profile  such that  S PO P . But, 
the reverse is not true. This is a necessary condition. 
Furthermore, it is possible to use cycles to find other in-
tervals such that, if the number of allocations of a set 
belongs to those intervals, then this set cannot be ration-
alized. However, it is not possible to find a general form 
for all of those intervals.  

6. Conclusions 

The rationalizability in the context of house allocation is 
hard to provide. Except in cases where there are only a 
few allocations (1, 2 or 3) or for extreme cases (the set of 
all possible allocations or for singleton), it is very diffi-
cult to conclude. The use of cycles can help to analyze 
the rationalizability of an allocation set.  

While Proposition 8 studies the number of elements 
necessary for an allocation set to be rationalizable, Pro- 
position 6 presents a case where the fact that a set con-
tains a cycle implies that it must contain some specific 
allocations too. Proposition 8 could be extended to in-
clude more conditions, but to devise a complete state-
ment of all cases promises to be very long and compli-
cated. From my point of view, the most interesting ave-

6For example, consider the set 

     1 2 3 4 2 1 3 4 1 2 4 3, , , , , , , , , , ,T x x x x x x x x x x x x . All allocations are pair-

wise connected but this set cannot be rationalized. 
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nue for the use of cycles is to employ them like I do in 
Proposition 6. In short, cycles can be useful to study di-
rectly the rationalizability of an allocation set, since by 
using cycles, it is possible to say if a given allocation set 
is missing some allocations to be rationalizable.  
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Appendix 

Proof of Lemma 1: Suppose the set  has a cycle S
 ,C n x  . Then, the set  contains S   allocations such 

that:  
1 1 1
1 1 2 2

2 2 2
1 2 2 3 1

1 2 1

, , ,

, , ,

, , ,

a x a x a x

a x a x a x

a x a x a x

 



  
  

  

  

  

 



  
 









1

 

I can write this cycle by using 2 3 1 , , , , x x x x x   . 
Then, all cycles  with  ,C n x  x  which has its com-
ponents switching neighbor to neighbor relative to x  
give the same cycle. This gives   different ways to 
write the same cycle. I can do the same thing by switch-
ing elements of  and I find also n 

r
 ways to write the 

cycle. Now, consider the number  which is a positive 
integer strictly lower than  . Suppose that there exists 
no positive integer  strictly lower than q   such that 

. Let  0mod rq 

    
     1 1 2 1 1 1

1, 1, 2 1, , 1 1

, , , ,r mod r mod r

n r mod r mod r

x x x x x
 

 





   

     

 
 

 












 

and consider the cycle  ,C n x  . Since r  does not 
belong to R , this means all components of n  and 
x  are different. So, the cycle  is the same 
than 

 ,C n x 
 , x C n . This is true for all  which are positive 

integers strictly lower than 
r

  and do not belong to R .  

Finally, I obtain   2card R   . 

Proof of Lemma 2: Without lost of generality (WL- 
OG), let’s take the cycle  ,C n x   with 1, 2, ,n     
and  1 2, , ,x x x x   . If   1 card R , it means 
that there is atleast one 


r    which does not belong to 

R . If  does not belongs to r R , this means there is a 
positive integer q  strictly lower than   such that 

.  0rq mod
Now, consider the vector of agents 

     1, 1, 2 1, , 1 1I In mod mod q         and 
the vector of goods 

     1 1 2 1 1 1
, , , ,

I Imod mod q
x x x x x     
    

Since  is not equal to r   and  is strictly lower 
then 

q
 , the set  is not equal to . I obtain the 

cycle  which is a subcycle of 
N 


N
C n , x  ,C n x  . 

Proof of Proposition 1: WLOG, suppose that 
 1, 2, ,n     and  1 2, , , x x x x   . Consider 

1,h hx x   where . Suppose that agent 1 
prefers 1h

1,2, , 1h n 
x   over hx . Because  has the cycle  PO P

 ,C n x  , there is an allocation belonging to  PO P  
such that 1hx   is allocated to agent 2 and hx  to agent 1. 
Since this allocation belongs to , then agent 2 

must also prefer 

 PO P

1hx   to hx . Again, because  PO P  
has the cycle  ,C n x  , there is an allocation belonging 
to  PO P  such that 1hx   is allocated to agent 3 and 

hx  to agent 2. Since this allocation belongs to  PO P , 
then agent 3 must prefer 1hx   to hx . If I continue for 
all agents belonging to I , I find that all agents belong-
ing to  must have similar preferences for all pairs N

,h h 1x x   with h 1,2, , 1   and for the pair 1,x x . 
Proof of Proposition 2: WLOG, suppose that 
 1, 2, ,n     and  ,1 2, ,x x x x  . Let    q r  be 

the smallest integer such that, for r    and  not 
belonging to 

r
R ,    0mod q r r . If  does not 

belong to 
r

R , then for every 1, 2, , r    and every 
 1,2, , 1q r   , the cycle  , s sxC n  with 

     
     1

, ,

,
I

I I

mod q r

r mod

x  



 

  


s

sx x

 

 2r

m, ,

, ,
Ir mod

n r

x x



 

 2

,

od



1q r
 

is a subcyle of  ,C n x . Because  , s sC n x  is a sub-
cycle of  , x C n ,  PO P  must have the cycle 
 ,s sC n x . I can then apply Proposition 1. 
Proof of Proposition 3: WLOG, suppose that 
 1, 2, ,n     and  ,1 2, , xx x x x  . Now, take  x  

and x  with 1, 2, , 1    and 1, ,eta     
and let     . By assumption,   belongs to the 
set R .  

Suppose that x  1  P x . Because  PO P  has the 
cycle  ,C n x  , there is an allocation belonging to 

 PO P  such that x  is allocated to agent 1   and 
x  to agent 1. Since this allocation belongs to  PO P , 
then agent 1   must prefer x  to x . Again, be-
cause  PO P  has the cycle  ,C n x , there is an allo-
cation belonging to  PO P  such that x  is allocated 
to agent  2  1mod   and x  to agent 1  . Since 
this allocation belongs to , then agent  PPO

 2mod  1  must prefer x  to x .  
I can continue until I show that  

x P x    

with 

  , 1mod     11,  1, 2mod 1,        

Since there is no positive integer q    such that 
  0mod q   , then the set 

     1, 1,mod 2 1,  , 1 1 mod        has    
elements. So all agents belonging to  have the same  N

preferences over the set  ,x x  . 

Proof of Proposition 4: Suppose the opposite is true, 
i.e. there exists ,i j N   and ,x x X    such that  

i

j

x P x

x P x

 

 
 

This means the good x  will never be allocated to j  
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when the good x  is allocated to . That contradicts 
the existence of a complete cycle. 

i

Proof of Proposition 5: Suppose 

 is prime. By 

Corollary 1, if  has a cycle  PPO , x C n , then all 
agents belonging to  have the same preferences over 
the set .  

N
X

Now, suppose   is not a prime number and let   
be the smallest prime number higher than 1 such that 

.    0mod  
,Suppose 1 2x x 

N

1

X . Let  and  be two non- 
empty subsets of  such that all agents belonging to 

 prefer goods 

1N 2N

1N x  to 2x  and all agents belonging to 
 prefer goods 2N 2x  to 1x .  

Suppose  has  PPO   cycles  for  ,C n  tx
1, 2, ,t   . By convention, 1 1

tx x
t

 for all . For all 
cycles , I define 

t
 ,C n tx    the positions of 2x  in 

the vector  so that tv 2
tx x

By Proposition 3, if there is a  such that 
 , and let .  1

t

t t 
t   does 

not belong to R , then all agents must have the same 
preferences. Suppose t  belongs to R  for all t . Let 
the set Π  be equal to  , 2 , ,     which is a 
subset of R

The maximum number such that all 
.  

t  belong to Π  

is  21 !
 

  
 

  . If  
t

1 2 !
 

    
 




, then there is  

at least one cycle  with  , tC n x    . By Proposi-
tion 2, then agents belonging to the same set  

 , ,1 2j j , , j         for 1, 2, ,j    have 
the same preferences. But, agents in different subsets 
could have different preferences.  

If I add another cycle  ,C n x  , then   does not 
belong to . If Π   does not belong to R , by Propo-
sition 3, all agents must have the same preferences over 
 1 2, x x . If   belongs to R , by Proposition 1, for 

1, 2,h , 
, ,h h

 , agents belonging to 
 2 , , h 1 mod  

         have the same 
preferences. Since   does not belong to , then  
and 

Π h
h 


 does not belong to the same set 

, ,1 2j j , , j        1, 2j for , , 
h

. So the 
two sets which contain agent  and h   must have 
the same preferences. I can continue to conclude that all 
agents must have the same preferences.  

Proof of Proposition 6: WLOG, suppose that 

 1 2, , ,X x x x    and  1, 2,N ,  . Let the set  
cX  be equal to  and .  XX cN  NN
Now suppose that  a P



O P  where agents belong-
ing to  get goods belonging to . This means there 
exists an allocation 

N X
,b A X I  such that  

f

orj

or at least one

2, ,
i i i

j j j j

b Pa i

b P a b a j N  1,
 

There are three possible cases for the allocation . 
The first case consists of a reallocation between agents in 

..  

b

cN
But this kind of reallocation cannot Pareto dominate 

the allocation  because there exists an allocation  
belonging to the Paretian set in which agents belonging 
to  get . If a reallocation between agents in  
dominates , then the allocation  should not belong 
to 

a a

cNcN z
a a

 PPO .  
The second case is a reallocation between agents in 
. Again, it is not possible for this new allocation to 

dominate the allocation . I assume that all agents in 
 have the same preferences over goods in 

N

N
a

X . Then 
no reallocation between agents in  could Pareto do- 
minate the allocation .  

N
a

Finally, the last possibility is a reallocation between 
agents in both sets Because the agents in  have the 
same preferences, 

N

1y  is preferred to ky  by all agents 
in .  N

Suppose the agent who gets 1y  in the new allocation 
is agent  . Because of the cycle, there is an allocation 
in this cycle such that   gets good ky . Then this al-
location could not be in the Paretian set because this al-
location will be dominated.  

This means that the allocation where   gets ky  is 
Pareto dominated and contradicts the existence of a cycle 
 , x C n  in the set . S
Proof of Proposition 7: For all pairs of goods be-

longing to  X x , I can apply Proposition 2 or Propo-
sition 3 to find that there is at least one agent belonging 
to  N   with the same preferences as  . Because all 
agents belonging to  N   have the same preferences 
over  X x , then all agents belonging to  have the 
same preferences over 

N
 X x .  

Proof of Proposition 8: Let    Ψ ,A N X PO P . 
By assumption,  Ψ 1 !n  .  

Step 1: Consider the good 1x . Suppose that agent 1 
gets good 1x  the least often in the allocations belonging 
to . Then, the number of allocations in Ψ  where 
agent 1 gets 

Ψ

1x  is less than  

 1 !



 

which is strictly lower than  2 !  . This means there is 
at least one cycle  1,C n x1  with  1 2,3, ,n    and 

 1
2 3, , ,X x x x   since there are exactly  2  !  of 

such cycles.  
Now take 2x . Again WLOG, suppose that 2x  is the 

good which is the least assigned to agent 2 in the set  
when good 1

Ψ
x  is assigned to agent 1. The number of 

allocations in this case is less than  

 
 

2 !

1






 

which is strictly lower than . This means there is 
at least one cycle 

 3 !  
 2 ,C n 2x  with 2 3, ,n    and 

Open Access                                                                                            TEL 



P. DE LAMIRANDE 

Open Access                                                                                            TEL 

349

 2
2

3 , ,
n

x x x   since there are exactly   of 
such cycles.  

3 ! 

I can continue until 1t    is a prime number. Let 
 belong to  1t t, , ,x x x  and suppose that agent x x  gets good  the most often in the allocations be-

longing to  when 1PO P x  is allocated to agent 1, 

2x  to agent 12, , tx   to agent . Then, by Corol-
lary 1, all agents who belong to 

1t 
t t , 1, ,  
 

   have 
the same preferences over the set  ,1t t, ,x x x x 

Step 2: Now, consider the general case where agents in 
 .  

 , 1, ,s s   
 1 2, , ,s s s

 have the same preferences over the set  

 ,x x x x x   


. But there is at least one cycle 

,C n x   with  , ,, 1n s s  

 1 2, ,s s s

  and 

, ,x x x x x 

N

, ,s s



1 2 ,s

. By Proposition 7, all agents 

belonging to  must have the same preferences over 

the set  ,  x x x x x    .  

Step 3: I can use the same approach with the two re-
maining x . Doing so, I find that all agents belonging to 
 , 1, ,s s  


 have the same preferences over the set  

1 2, , ,s s s ,x x x x  

2,3, ,

.  

I use this approach until I find that all agents belong-
ing to 

 2 3, , ,
 have the same preferences over the 

set x x x .  
Step 4: If Ψ  is strictly lower than , this 

means there is at least one cycle 
 1 !n 

 ,C n x , Then, by 
Proposition 7, all agents have the same preferences over 

the set  2 3 ,, ,x x x . Now, if steps 1 to 3 are done 
once again with 2x  and 3x  instead of 1x , it can be 
seen that all agents must have the same preferences over 
the set  1 2 3, , , ,x x x x .  

Step 5: Now suppose that Ψ  is equal to  1 !  . 
Suppose that there are two allocations  and  be-
longing to 

1a 2a
  such that all agents get different goods, 

there is no   1 2 such that a a1,2, ,   
Let the vector  be the cycle of goods from  to 
. In other words, the good allocated to agent 

.  
1ai

2a i  in 
the allocation  goes to agent 1 . Since there are 
two allocations composing the same cycle 

1a i 
 ,C n x  and 

there are  1 !   allocations, this means there is at least 
one cycle and I obtain that all agents must have the same 
preferences.  

The only way to avoid the possibility of having a cycle 
of   elements in the set  is for all allocations 
belonging to 

 PPO
 , there is a good which is never allocated 

to an agent.  
Suppose this good is x  and the agent never getting 

x  in  PO P  is  . Since all allocations belong to 
 PO P , all agents have the same preferences over the 

set   I  and all agents belonging to X x  have the 
same preferences over the set X .  

If all agents have the same preferences, then  PO P  
must contain all allocations. So, this means there is at 
least one good belonging to  X x  for which agent   
and other agents must have different preferences. 

 
 
 
 
 


