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ABSTRACT 

In this paper, adaptive sensor fusion INS/GNSS is proposed to solve specific problem of non linear time variant state 
space estimation with measurement outliers, different algorithms are used to solve this specific problem generally oc- 
curs in intentional and non-intentional interferences caused by other radio navigation sources, or by the GNSS receiver’s 
deterioration. Non linear approximation techniques such as Extended Kalman filter EKF, Sigma Point Kalman Filters 
such as UKF and CDKF are computed to estimate the navigation states for UAV flight control. Several comparisons are 
conduced and analyzed in order to compare the accuracy and the convergence of different approaches usually applied in 
navigation data fusion purposes. The last non linear filter algorithm developed is the Cubature Kalman Filter CKF 
which provides more accurate estimation with more stability in Tracking data fusion application. In this work, CKF is 
compared with SPKF and EKF in ideal conditions and during GNSS outliers supposed to occur during specific interval 
of time, innovation based adaptive approach is selected and used to modify the covariance calculation of the non linear 
filters performed in this paper. Interesting results are observed, discussed with real perspectives in navigation data fu- 
sion for real time applications. Three parallel modified algorithms are simulated and compared to non-adaptive forms 
according to Root Mean Square Error (RMSE) criteria. 
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1. Introduction 

Data fusion for non linear system is one of the most impor- 
tant and challenging problems in Multisensor signal proc- 
essing and integrated navigation systems today. In our 
work, sensors used are inertial as the main system with 
external aid provided by GPS and GLONASS receivers 
known recently as Global Navigation Satellite System 
“GNSS” solutions. Data fusion based on IMU/GNSS has 
been widely explored and experimented in the special- 
ized literature [1,2]. For inertial sensors, accelerometers 
and gyroscopes, the technology of manufacturing these 
sensors has a great importance and high impact on the 
accuracy of inertial navigation systems. In this paper, it is 
assumed that accelerometers and gyroscopes are in the 
category “Low cost” which gives more important interest 
in real time applications where most sensors are MEMS  

Micro Electrical Mechanical Systems based technology. 
The most inconvenient of these inertial sensors are the 
biases and drifts growing during time, which needs to be 
bounded by another technology of sensors such as used 
in our work, called GNSS receivers. Satellite-based sys- 
tems such as GNSS gives today’s satellite trajectory and 
high-precision navigation. Inertial sensors combined with 
GNSS receiver are a good alternative and reliable inte- 
grated system for navigation purposes. However, 
“GNSS”; Galileo E5a/E5b signals and the GPS L5 signal 
lie within the Aeronautical Radionavigation Services 
(ARNS) band. They suffer interference from the services 
in this frequency band, in particular, high power pulsed 
signals from Distance Measuring Equipment (DME) and 
Tactical Air Navigation (TACAN) systems embeeded on 
most aircrafts. The pulsed interference degrades received  
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Signal to Interference and Noise Ratio (SINR), lowers 
the acquisition sensitivity and even causes the tracking 
loops to diverge. To maintain system accuracy and integ- 
rity, interference mitigation is beneficial and necessary. 
Adaptive integrated navigation systems INS/GNSS is then 
proposed for different aerospace applications. However 
in our work, we focus on GNSS outliers caused by multi- 
path scenario, a bad satellite visibility due to flights in 
canion environment, or due to non-intentional interfer- 
ences caused by multiple GSM signals, multiple satellite 
communication technologies such as Iridium, Globalstar 
etc. Nevertheless, the classic form of INS/ GNSS data fu- 
sion is not adaptive against jamming, impulsive noise, 
missing measurement... etc. In this paper a solution is 
proposed based on adaptive extended Kalman filter (EKF) 
then, compared with more advanced and modern appro- 
aches in non linear filtering such as the adaptive SPKF 
and the adaptive CKF [3].  

2. Inertial Sensors 

Inertial Measurement Unit “IMU” is the kernel of any 
inertial navigation system. It is composed by 03 accel- 
erometers and 03 gyroscopes in addition to 03 magne- 
tometers in most modern IMU’s. The technology used 
during the last 50 years has been divided in two principal 
technologies: Gimbaled INS and Strapdown INS. In our 
work, the model used is related to strapdown technology 
with fixed inertial sensors MEMS based, in parallel with 
body axes. Most of todays inertial sensors are micro elec- 
tromechanical systems (MEMS). This technology was 
first used for commercial purposes in the 1990’s, and en- 
abled new applications through high miniaturization and 
cost reduction. Inertial sensors began to be used in com- 
pletely new domains, such as Pedestrian navigation. How- 
ever, this miniaturization and cost reduction infuences 
the performance of the accelerometers and gyroscopes, 
which explains why some inertial sensors based on pre- 
vious technologies are still used for high-performance 
purposes. Gimbaled INS are mechanical with special Ho- 
rizontal stabilization control algorithm with very expen- 
sive cost, they are usually used onboard satellites, space- 
crafts, submarine etc. 

IMUs based on MEMS sensors are strap-down sys- 
tems, which means the sensor’s orientation depends of 
the orientation of the object it is on. Theoretically, all types 
of previously shown MEMS inertial sensors can be com- 
bined in an IMU. 

2.1. Mechanization of Inertial Measurement Unit 

Inertial navigation system is divided in two principal 
parts: IMU and Digital Signal Processing of sensors data 
fusion. 

Strapdown INS mechanization is described such as in 

Figures 1 and 2 with a general diagram of SINS as de- 
scribed, based on inertial sensors output; accelerometers 
and gyroscopes. This navigation system can’t ensure long 
term accuracy of its output, and depends on external aid 
such as GNSS in most of aerospace applications [4]. 

2.2. IMU Sensors Output Integration 

Inertial measurement units (IMUs) typically contain three 
orthogonal rate-gyroscopes and three orthogonal accele- 
rometers, measuring angular velocity and linear accelera- 
tion respectively. Ideally, the output of the rate-gyroscop- 
es is written as  

        T

b bx by bzt t t t              (1) 

In practice, however, the outputs contain errors and are 
written as the formula given below:  

     ,b b bt t    t

t

           (2) 

        T

b bx by bzt t t             (3) 

Integrating this yields the updated attitude information 
for the system provides the following equation:  
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Similarly, accelerometers outputs can be written as 

        T

b bx by bza t a t a t a t    ,         (7) 

 

 

Figure 1. Strapdown Inertial Measurement Unit with MEMS 
gyroscopes from ST Microelectronic. 
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Figure 2. IMU/INS Sensors output integration.  
 

      ,b b ba t a t a t              (8) 

Two integrations subsequently yield velocity and posi- 
tion updates as follows 

Velocity integration:  

, , 1 ,n k n k n k nV V t a g    

,

         (9) 

Position integration:  

, , 1n k n k ng kPos Pos t V           (10) 

where g  is the estimated gravity vector and t  is the 
data period. Collectively, Equations (1) to (10) describe 
the system model.  

2.3. GNSS Global Navigation Satellite System 

GNSS signal processing is much explored based on dif- 
ferent algorithms tested more and more in real time con- 
ditions and in simulations through the specialized litera-
ture. We focus on the effect of more satellite visibility in 
order improve geometry dilution of precision due to the 
high number of satellites GPS + GLONASS (36 - 40). 
GLONASS satellites also broadcast signals in the L1 and 
L2 sub-bands of the radio frequency spectrum as de- 
scribed in Figure 3. It is observed in some situation sev- 
eral interferences from different sources for GPS and 
GLONASS during static and dynamic positioning. GNSS 
outages or outliers cause accuracy degradation, and some- 
times undelivered GNSS receiver positioning. 

However unlike PS, GLONASS (Russian) uses fre- 
quency division multiple access (FDMA) in both L1and 
L2 frequency sub-bands. This means that each satellite 
modulates the same ranging code on carrier signals with 
slightly different frequencies and is identified by a slot 
number rather than a Pseudo random Noise (PRN) num- 
ber. GNSS based on GPS and GLONASS (European sys- 
tem Galileo and Chinese system Compass in the future), 
are well known satellite navigation ystems and uses par- 
allel positioning techniques; the only difference is that 
GPS sends different messages on the same frequency (L1, 
L2, L5) and GLONASS sends the same message on mul- 

tiple frequencies (L1, L2…). It is important to consider 
in the near future the new statement of GNSS constella- 
tion including Galileo future European system and 
COMPASS the future Chinese system. Each space con- 
stellation has slightly different orbital plane parameters. 
In this paper, GPS and GLONASS C/A codes are con- 
sidered in INS/GNSS data fusion. This study concerns 
non-intentional interferences and outliers/outages in GNSS 
signal for civilian GNSS receivers. All adjacent commu- 
nication systems to GNSS band which is a potential 
source of interferences and have been studied in the lit- 
erature. In this work direct data fusion technique is ap- 
plied to an important case when measurement outliers 
occur affecting GPS and GLONASS receivers during 
UAV navigation. 

2.4. UAV GNC System (Guidance  
Navigation & Control)  

We now describe the application of the SPKF/CKF to the 
problem of loosely coupled GPS/INS integration for gui- 
dance, navigation and control (GNC) of an unmanned 
aerial vehicle (UAV). The main subcomponents of such a 
GNC system is a vehicle control system and a guidance 
& navigation system (GNS) as shown in Figure 4. Fixed 
Wing and Rotor Wing UAVs have been simulated through 
different dynamical parameters. The embedded system 
includes an inertial MEMS based IMU, a 10 Hz GPS/ 
 

 

Figure 3. Power spectral densities of GNSS signals. 
 

 

Figure 4. UAV guidance, navigation and control. 
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k

 1ˆ ˆk k k kx f x             (15) GLONASS synchronized receiver, and a DSP Design Au- 
topilot REVO board for real time implementation. UAV 
nonlinear control system is based on non linear adaptive 
state estimators selected as EKF, UKF, CDKF and CKF.  

Update:  

 1 1ˆ ˆ ˆk k k k k k k kx x K Z h x 
            (17) 

We implemented EKF, SPKF (UKF, CDKF) and CKF- 
based sensor fusion algorithms in normal conditions and 
during outliers in order to observe the effect on the accu- 
racy and the convergence of filters. We will next discuss 
the UAV specific system process and observation (meas- 
urement) models used inside EKF, SPKF and CKF based 
navigation system, which is used a second time during 
GNSS outliers with modified covariance estimation. 

 1 1ˆk k k k k k k k kP P K H x P 1            (18) 

The meaning of the extended Kalman filter can be 
understudied by appreciating the same equation of gain 
calculation as in the Kalman filter at the difference that 
in the non linear filtering, EKF is sub-optimal filter. It 
requires then, more adaptive approaches in solving both 
filtering and control problems in Aerospace [4,5]. There 
is another version of extended Kalman filter which could 
be developed at second order of Taylor approximation, 
this filter offers better results under high non linearity of 
the system’s dynamic and measurement model.  In the 
next section, another approach based on cubature rule 
technique is developed. 

We then focus on the application of the Innovation 
based adaptive CKF/SPKF to the integrated navigation 
problem. We specifically detail the development of an 
adaptive based Cubature Kalman Filter ACKF for loose- 
ly coupled implementation for integrating GPS measure- 
ments with an IMU within the context of autonomous 
UAV. The next section describe in detail non linear fil- 
tring algorithms used and implemented in this work.  

4. Sigma Point Kalman Filtering  
(Cubature Rule)  3. Kalman Filter and Its Extended Version  

In estimation theory, it is well known that for linear state 
space estimation, affected by white Gaussian noises, the 
optimal filter is called Kalman filter which is also equi- 
valent to Maximum Likelihood estimator. However in 
most practical navigation applications, a nominal trajec- 
tory does not exist beforehand. The solution is to use the 
current estimated state from the filter at each time step k 
as the linearization reference from which the estimation 
procedure can proceed. Such algorithm is known as ex- 
tended Kalman filter (EKF).  

Different estimators were introduced to solve non linear 
estimation problems; Sigma points Kalman filters (SPKF) 
introduced in the recent advances in nonlinear filtering. 
Both Unscented filters (UKF) and (CDKF) mean SPKF, 
in this case, the density of probability using a determinis- 
tic sigma points is estimated at the first and the second 
order moments of the RGV. For Central Difference Filter, 
it adopts an alternative method called central difference 
approximation. Like UKF, CDKF generates several points 
about the mean based on varying the covariance matrix 
along each dimension. It evaluates a non linear function 
at two different points for each dimension of the state 
vector that are divided by an appropriate chosen interval, 
SPKF are strong estimators and superior alternative to 
the EKF in several applications with high non linearity.  

Extended Kalman Filter EKF 

Let us describe below the algorithm of EKF: based on 
state space model as given by:  

 1 , ,k k kx f x u v         

k

     (11) 
4.1. Cubature Kalman Filter CKF  ,k ky g x w               (12) 
CKF is known as the closest known approximation to the 
Bayesian filter for non linear estimation with Gaussian 
assumptions. Such as for UKF and CDKF, CKF doesn’t 
require any Jacobian matrix computation of linearization. 
The basic steps are given in the next paragraphs. The key 
assumption of CKF is that the predictive density 
 1k k  where 1k

Linearization using Taylor approximation at the first 
order gives the state space model given in most refe- 
renced literature.  .Fk  is the Jacobian matrix of  .fk  
and  .Hk  is the Jacobian matrix of . Thus, fol- 
lowing algorithm is obtained: 

 .kh

Initialization:  

0x̂  et .              (13) 0P

Prediction: 

   1 1ˆ ˆ
T

k k k k k k k kP F x P F x  Q      (14) 

p x Z Z   denotes the history of input 
measurement pairs up to k − 1, and the filter likelihood 
 k k  are both Gaussian, which leads to a posterior 

Gaussian density 
p z Z

 p x Zk k . Under these conditions, 
CKF reduces the computation of mean and covariance  

 

      1

1 1 1 1 1ˆ ˆ ˆT T
k k k k k k k k k k k k k k kK P H x H x P H x R



    
                       (16)
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with more accuracy. The cubature based Gaussian filter 
algorithms use cubature rules of the form:  

   
1

m

i i
i

I f f 


            (19) 

to approximate the integral of the form:  

     1
d 2 e

π

Tx x

n
dg x x x g x  

     x  (20) 

Equation (26) is an integral of a non linear function 
multiplied by Gaussian weight. The unscented transfor- 
mation can also be interpreted as an approximation of the 
integral of the form (27). The technique introduced is 
based on Gaussian sum filters explored and given in de- 
tail by [6]. However it is proposed to model jamming 
GNSS signal by particular kind of Gaussian sum noise 
which is twin Gaussian sum affecting only measurement 
equation. Bellow the algorithm of Adaptive CKF pro-
posed and applied in this work:  

4.1.1. Prediction Step 
1) Draw cubature points i ,  from the in- 
tersections of the n-dimensional unit sphere and the Car- 
tesian axes. Scaled by 

1,2, , 2i   n

n . We can write then:  

for 1, , , 1, , 2 1i
i

i n

ne
i n i n

ne




   


  n    (21) 

2) Propagate cubature points. The matrix square root is 
the lower triangular Cholesky factor. 

, 1 1 1 1 1 1i k k k k i k kX P m            (22) 

3) Evaluate the cubature points with dynamic model 
function:  

 *
, 1 , 1 1i k k i k kf X             (23) 

4) Estimate the predicted state mean:  
2

*
1 ,

1

1

2

n

k k i k km
n

   1         (24) 

5) Estimate the predicted error covariance:  

*
, 1 , 1 1 1

1

2k

T T
x i k k i k k k k k kP m

n
 

     2m Q    (25) 

4.1.2. Update Step 
1) Draw cubature points i ,  from the in- 
tersections of the n-dimensional unit sphere and the Car- 
tesian axes. Scaled by 

1,2, , 2i   n

n  (as in step 1).  
2) Propagate the cubature points.  

, 1 1i k k k k i k kX P m   1

3) Evaluate the cubature points with the measurement 

m

       (26) 

odel. 

 , 1 , 1i k k i k kY h X             (27) 

4) Estimate the predicted measurement:  
21 n

1 , 1
1

ˆ
2k k i k k

i

y Y
n 



            (28) 

5) Estimate the innovation covariance matrix.  

1k kS 

2

, 1 , / 1 1 1
1

1
ˆ ˆ

2

n
T T

i k k i k k k k k k k
i

Y Y y y R
n    



  
  (29) 

6) Estimate the cross covariance matrix.  
21 n

T T
, 1 , 1 1 11

1

ˆ
2k k

i k k i k k k k k kx y k
i

P X Y m y
n    



    

(30) 

7) Estimate the Kalman gain.  
1

, 1 1k xy k k k kK P S 
            (31) 

8) Estimate the update state.   

 1 1ˆk k k k k k km m K  y y       (32) 

9) Estimate the error covariance 

1 1
T

k k k k k k k kP P K S  K          (33) 

NOTE: Comparing with SPKF, there are 
te

omparing with SPKF, there are no parame- 
te

4.2. Adaptive Cubature Kalman Filter ACKF 

gi- 

no parame- 
rs to tune in CKF approximating non linear functions of 

the system and measurement. Another alternative to ap- 
proximate the lower bound for non linear state estimation 
with additive Gaussian noises is given and described in 
[7,8].  

NOTE: C
rs to tune in CKF approximating non linear functions of 

the system and measurement. Based on similar idea such 
as for sub optimal fading factor, it is possible to combine 
Sigma Point Kalman Filters (UKF, CDKF, CKF) and 
adaptive fading approach.  

It is possible to define then the fading factor such as 
ven bellow:  

  , ,
,

,

, 1tr

11,tr

i k i kk k
i k

i kyy

V R

P

  



 

      
     (34) 

With parameters defined below:  

0 0

1
,

1
2

T
k k k k

V V v v
k







    



       (35) 

Thus, the covariance matrices need to be updated bas- 

Tv v
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ed on the adaptive fading factor such as given in the fol- 
lowing equations:  

*
, 1 , 1 1 12k

T Tk
x i k k i k k k k k k kP m m    (Q

n
       36) 



2

1 , 1 , 1 1 1
1

ˆ ˆ
2

n
T Tk

k k i k k i k k k k k k k
i

S Y Y y y
n


    



   R   (37) 

, 1

2

, 1 , 1 1 1
1

ˆ
2x yk kk

n
T Tk

i k k i k k k k k k
i

P X Y m
n


    



   y    (38) 

The key parameter in this adaptive algorithm is the 
fa

ntation principle of SPKF/ 
C

ing adaptive SPKF and CKF, we 
pr

The 1  Simulation of EKF-Adaptive EKF 
ble 1:  

er 
du

Initial Motion 

Distance N, E, D Velocity N, E, D Attitude angles pitch, 

ding factor. It requires the defined parameters, some 
other techniques in literature use multiple fading factors 
which is not always superior to the single fading factor 
and are commonly selected.  

Conceptually, the impleme
KF resembles that of the EKF, the implementation, 

however, is significantly simpler because it is not neces- 
sary to formulate the Jacobian and/or Hessian matrices of 
partial derivatives of the nonlinear dynamic and meas- 
urement equations, which is very important for real time 
implementation.  

Before, implement
opose to observe the effect of Innovation based adap- 

tive EKF on the navigation state during outliers as a first 
experience, thus, go in more advanced signal processing 
for UAV data fusion during GNSS outliers. 

st

The condition of simulation is described in Ta
T = 50 s, N = 5000; dt = 0.001; g = 9.81 m/s/s; Outli
ration of time ODT = 19 s.  

 

(meter) (m/s) roll, yaw (rad) 

1000 260 10/180 

1000 70 45/180 

1000 50 10/180 

 
rom Figure 5 to Figure 12, one can observe the state 

without observation diverge from the real  

F
estimation results of the non linear part described in the 
previous section, so the north velocity with corresponding 
MSE, East velocity with corresponding MSE, vertical ve- 
locity with its corresponding MSE and pitch attitude ob- 
servation based on multiple GNSS antenna with the cor- 
responding MSE. The figures content show how accura- 
cy degradation of EKF can be caused by GNSS measure- 
ment outliers. In the first part of navigation during reli- 
able GNSS outputs, EKF and Adaptive EKF seem to be 
superposed.  

IMU outputs 

Table 1. Initial values of covariance matrices P, Q, R. 

Estimation 
Covariance 

 diqg p  

System 
Covariance 

 diqg Q  

Measurement  
Covariance 

 diqg R  

100 10 10 

100 10 10 

100 10 15 

10 2 2 

10 2 2 

10 2 2 
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Figure 5. North velocity estimation. 
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Figure 6. MSE north velocity. 
 

ajectories and EKF during outliers is less accurate than 
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Figure 7. East velocity estimation. 
 

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

time s

M
S

E

MSE East Velocity

MSE EKF

MSE AEKF

 

Figure 8. MSE north velocity. 
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Figure 9. Vertical velocity estimation. 
 

After multiple simulations, it is clear through state and 
related MSE estimation that Innovation based Adaptive 
EKF “AEKF” provide an ameliorated filtering accuracy 
comparing with EKF. This is confirmed by different state  
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Figure 10. MSE vertical velocity estimation. 
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Figure 11. Pitch angle estimation. 
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Figure 12. MSE pitch angle estimation. 

 
stimation with different non linearity such as velocity e
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5. Simulation of Adaptive Cubature  

Le  system given by (1) and by the 

 EKF,UKF,CDKF and CKF during outliers 
wi

 UKF, 
C

5.1. Results and Discussion 

 of the previous section 

 Figure 13 
to

imation under outliers from Figure 19 
to

ation part: Position.  
s the location es- 

tim

5.2. Observation of Adaptive Non Linear State 

Duri ng algorithms are com- 

Kalman Filter 

t us go back to the
measurement noise affected by outliers. Let the initial 
state be described as a percentage of the true initial state. 
These next simulations should provide two important ob- 
servations:  

1) Compare
thout modification of Covariances estimation.  
2) Compare Innovation based Adaptive EKF,

DKF and CKF during GNSS outliers after modification 
of covariance estimation algorithm.  

The same simulation conditions
are considered in this second experience: first, attitude 
estimation is presented with yaw, pitch and roll angles 
estimation. Then, velocity through 03 axes of navigation 
(north, east, down) are observed and discussed, with fi- 
nally, the linear part in state estimation presented in this 
paper with position state vector estimation.  

Attitude estimation under outliers from
 Figure 18. 
Velocity est
 Figure 25. 
Linear estim
The only linear part in this work wa
ate on with north, east and vertical distance states are 

observed on Figures 26 and 27. 

Estimation for IMU/GNSS Data  
Fusion during Outliers 

ng simulations, the followi
pared and applied ton MEMS IMU/GNSS data fusion 
during 50 seconds. In this interval, GNSS outliers are  
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Figure 14. MSE yaw angle estimation in degree zoom. 
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Figure 15. MSE pitch angle estimation in degree. 
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Figure 16. MSE pitch angle estimation in degree zoom
 

mulated and activated between 13 s and 32 s. For the 

. 

si
first part of simulation in normal flight conditions,  Figure 13. MSE yaw angle estimation in degree. 
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Figure 17. MSE roll angle estimation in degree. 
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Figure 18. MSE roll angle estimation in degree zoom. 
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Figure 19. MSE down velocity estimation (m/s). 
 

etween 0 and 13 s, it is possible to observe that all fil-b
ters, classical and adaptive are superposed and present 
the same accuracy and convergence curve. This is logic re-  
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Figure 20. MSE down velocity estimation (m/s) zoom. 
 

5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5

2

2.5

3

x 10
4

time s

M
S

E

MSE East Velocity

MSE EKF

MSE UKF
MSE CDKF

MSE CKF

MSE AEKF

MSE AUKF
MSE

A
CDKF

MSE
A

CKF

 

Figure 21. MSE east velocity estimation (m/s). 
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Figure 22. MSE east velocity estimation (m/s). 
 

lts due to unuseful innovation based adaptive fading su
factors used to improve the accuracy of filtering algo-  
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Figure 23. MSE east velocity estimation (m/s) zoom. 
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Figure 24. MSE north velocity estimation (m/s). 
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Figure 25. MSE north velocity estimation (m/s) zoom
 

thms during outlier period. It is very interesting to ob- 
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ri
serve the clear part of all figures which describes clas-  
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Figure 26. MSE vertical position estimation (m/s). 
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Figure 27. MSE vertical position estimation (m/s) zoom
 

cal non linear filters EKF, CDKF, CKF and UKF with- 

ation of fil- 
te

. 

si
out any adaptation, except for velocity estimation which 
in that case, UKF performs CKF in its non adaptive forms 
during outliers. This is an unexpected result between 
UKF and CKF. In this precise situation, UKF has better 
accuracy than CKF which is not usual in previous study 
and experiments in the field of data fusion. This is consi- 
dered as a interesting novel result. As for EKF and 
CDKF, it is possible to observe too an additional inter-
esting result, CDKF RMSE is less accurate than EKF 
RMSE during outlier period for velocity estimation which 
means that GNSS outliers affect more the CDKF covari-
ance estimation than the EKF computation.  

It is then possible to distinguish a classific
rs which is for most states estimation according the ac- 

curacy and convergence of filters: EKF, CDKF, UKF, 
CKF during outliers. It is very interesting to observe in 
the second curves of the adaptive filters the clear part of 
all figures which describes adaptive non linear filters 
AEKF, ACDKF, AUKF and ACKF, ACKF performs all 
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6. Conclusion 

 linear adaptive filters and the asso

adaptive ASPKF and AEKF during outliers. It is clear 
that ACKF maintain RMSE close to the minimum vari- 
ance which is not the case for AUKF, ACDKF and AEKF, 
those algorithms present some impulsive errors during 
outliers even with innovation based adaptive fading fac- 
tor. This is the proof that CKF after modification of its 
covariance and mean estimation presents a superior ac- 
curacy and stability of convergence comparing with 
modified SPKF and EKF. It is also clear that ACKF per- 
forms AUKF, ACDKF and finally AEKF. The last fig- 
ures of position estimation, it is possible to observe the 
RMSE of ACKF, ASPKF and AEKF during outliers, and 
it is clear that for this linear state, non linear filters are 
non adequate only ACKF provide a good results between 
9 s and 32 s. It is then possible to generalize the observa- 
tion that all transformed filters AEKF, AUKF, ACDKF 
and ACKF outperform their classical algorithms EKF, 
UKF, CDKF and CKF respectively. This means that the 
solution we propose is a good alternative to GNSS out- 
liers in IMU/GNSS data fusion.  

The design of non ci- 
ated data fusion based on EKF, SPKF and CKF were 
deeply studied for MEMS IMU/GNSS sensor fusion 
during satellite positioning outliers. Based on the innova-
tion fading factor, 04 non linear filtering approaches EKF,
KF, CDKF and CKF were modified using this fading 
factor for covariance and mean estimation during GPS/ 
LONASS outages. By the way, several solutions were 
proposed and ameliorated the accuracy and the time of 
convergence of each modified filtering algorithm. How-
ever according the RMSE criteria, Cubature Kalman Fil-
ter CKF during outliers demonstrated some limitation to 

perform Unscented Kalman Filter UKF in its non adap- 
tive form. Finally, adaptive fading CKF demonstrated a 
large superiority in estimation accuracy and in its stabil-
ity comparing with other filtering classes—adaptive EKF, 
adaptive UKF and adaptive CDKF. 
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