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ABSTRACT 

This work presents the entanglement between an electromagnetic field and two-level atom situated inside a quantum 
optical system. Our optical model is based on cylindrical tube with a hole diameter of the order of nanoscale which 
leads to that only the lowest order mode can exist. Numbers of the statistical features of effective Hamiltonian such as 
the temporal evolution of the atomic inversion and the von Neumann entropy are evaluated. We have evaluated the 
atomic inversion and we demonstrate that the atom stills in maximal entangled state when the radius of tube a is large. 
We have used the von Neumann entropy to measure the degree of that entanglement. The results illustrate that the effect 
of the radius of tube a changes the quasi-period of the field entropy and therefore the entanglement process. 
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1. Introduction 

Entanglement process is one of the most mystifying 
properties of quantum optics. It is the key constituent for a 
lot of experiments in quantum communication and in-
formation processes [1-3]. Particularly for future applica-
tions similar to quantum networks or the quantum repeater, 
it is required to achieve entanglement as well between 
separated quantum processors. Because entanglement be-
tween different quantum particles such as atoms and 
photons forms the interface between atomic quantum 
memories and photonic quantum communication chan-
nels, lastly allowing the distribution of quantum informa-
tion over arbitrary distances [4-7].  

This work explains the generation and confirmation of 
an entangled state between a single neutral atom and a 
single quantize cavity-mode at a wavelength suitable for 
long distance information transport [8,9]. For this objec-
tive, we store a single atom in an optical dipole trap 
within cylindrical nanotube. Recently, advances in nano- 
fabrication technology as well as in the production of 
intense tunable lasers, have refreshed activity in atom 
optics in nanoscale region. Both have led to significant 
progress in the control of neutral atoms using laser light 
[10,11]. The manipulating atoms through cylindrical tube 
become an important sub-field of nanoscale studies. Be-
cause it can occur easily and efficiently in a manner simi-
lar to the propagation of light in the fiber optics. This has 
been a target of extensive theoretical and experimental 

studies [12-14]. 
In this work, we examine the entanglement between an 

electromagnetic field and atom situated inside a cylin-
drical nanotube. We concentrate here on cylindrical tubes 
with a circular cross section which are more common in 
practice and they have featured more prominently in re-
cent applications than other systems [15-17]. However, 
as far as we know, the entanglement between atom and 
electromagnetic field inside cylindrical tubes in such a 
practical system has not previously been investigated. It 
is the primary purpose of this paper to examine the es-
sential ingredients of the theory leading to the description 
of entanglement between atom and electromagnetic field 
inside cylindrical nanotube. Such a study should provide 
the initial steps towards a more comprehensive under-
standing of the nature of entanglement process within 
confinement systems in general.  

The paper is organized as follows. In Section 2, we in-
troduce the effective Hamiltonian for an atom coupled to 
the quantized field within a cylindrical nanotube. By us-
ing the evolution operator, the expression of the wave 
function at any time  is obtained in Section 3. Sec-
tion 4 is devoted to a discussion of the atomic inversion 
and we show that it exhibits collapses and revivals for 
short time intervals. In Section 5, we write the mathe-
matical form for the quantum field entropy and we use 
numerical computations to examine the effect of the ra-
dius of the tube on the evolution of the field entropy and 

0t 
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hence entanglement between the atom and the field. Fi-
nally, Section 6 contains the conclusions.  

2. Effective Hamiltonian 

The cylindrical tube is depicted in Figure 1. As shown in 
this figure,  is the radius, the tube is infinite in length 
and the longitudinal spatial variation is along the , 
coincident with the straight line . The walls of the 
tube are perfectly conducting excluding all electromag-
netic fields from their interior. The standard electromag-
netic boundary conditions apply such that the tangential 
components of the electric field vector and the magnetic 
field vector must vanish at every point on the cylinder 
surface. The optical system consists of an atom of mass 

a
-z axis

0r 

M , characterized by its electric dipole moment μ , of 
oscillation frequency 0 , interacting with the electro-
magnetic field. The effective Hamiltonian can be written 
as: 

   
2

02 z F

P
H U S H

M
     R μ E R  (1) 

where  and P R  are the momentum and position vec-
tors of the atomic centre of mass, which is assumed to be 
subject to a general potential . In the two-level 
approximation the internal motion of the atom involves 
only two states: 

 U R

e  of energy e  and E g  of energy 

gE , such that 0e gE E    . The operators  and  
are the lowering and raising operators for the internal 
atomic states such that 

π †π

S Sμ μ 12 21eg
; where the 

operators 


zS , 12  and 21  are the Pulli operators 
which satisfying the following commutation relations  

S S

 
 
 

12 21

12 12

21 21

2

2

z

z

z

S S S

S S S

S S S

 

  

 

        (2) 

Finally,  E R  is the electric field operator and FH  
is the electromagnetic field Hamiltonian. The quantized 
fields inside cylindrical tube are well known [14] and can 
be written in terms of s-polarized and p-polarized modes 
satisfying the electromagnetic boundary conditions at the 
cylindrical walls. We write for :  , ,E zR t
 

 

Figure 1. Schematic drawing of the cylindrical tube. 

      
 

, , ,
s p Q

E z t a Q Q z t H c 


 
 

      R R  (3) 

where H c   stands for “Hermitian conjugate”, 
 ,r   which is a two-dimensional (transverse) 

position vector and factor  refers to the three mode 
variables 

R
Q

 , ,k m .  Qa  is the boson operator for 
the field mode of polarization  s p  

 ,m
, characterized 

by the integer quantum numbers  and the longi-
tudinal parallel weave vector . The relevant commuta-
tion relation is: 

k

   †
QQa Q a Q                (4) 

where QQ   is given by  

QQ mm k k                  (5) 

Finally,  , ,Q z t R  are the mode functions sat-
isfy electromagnetic boundary conditions at the cylinder 
walls, these can be written as  

   

     

2
ˆ,

ˆ ˆ e e
Q
p

Q
p p m

m

i t kzi
m m

m

ik
Q t C J h r

h r

ik
J h r iJ h r

h





 


  




  


 



   




R

r z



   (6) 

     

 

ˆ ˆ,

e e
Q
s

Q
s s m m

m

i t kzi

Q t C iJ h r J h r
h r





 

 
      
   






R r

    (7) 

where m mh a    and m  are the roots of the Bes-
sel’s function of the first kind   0mJ     while 

m mh a     and m  are the roots of first derivative of 
Bessel’s function  m  0J   . As well as, Q

pC  and 
Q
sC  are the normalization factors given respectively by:  

 

1
2 2 2

2 2
12

Q m
p

o m

c
C

f Va J


  

 
   
 



  


    (8) 

   

1

22
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Q m
s

o m m

C
f V J


  

 
 
  



   




      (9) 

where  is the quantize volume of the tube, 0V 1f   
and 1 2f   for 0 . Finally, in Equations (7) and (8) 

Q
p  and Q

s , these are the dispersion relation the two 
polarized modes frequency, they can be written as  

     2 2 2 2Q
p c k a   m        (10) 

     2 2 2 2Q
s c k a   m       (11) 

The number of propagation modes within the cylin-
drical tube can be determined by 

  max Int 2πm a         (12) 
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The optical system we are concerned with, is a cylin-
drical tube of diameter 2 0.5r a  



, which is an exact 
single mode operation system that allows propagation of 
only one mode. This mode is known as the fundamental 
mode (the lowest order mode) that is the s-polarized 
mode with  and consequently the Equation 
(7) will be reduce to 

 1, 1m

     
  1,1,

1

22
1,1 11

2 2
11 1 11

1 11 11 11
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,
1

ˆ ˆ e e
k

s

S

o

i t ki

k z t
V J

r a r
iJ J

a r a




  

  




 


  
 

         
    





R

r



z




  (13) 

where 11 1.84   which is the smallest root of all the 
Bessel function derivatives. On the other hand,  is 
the mode frequency given by  

1,1,k
s

     21,1, 2 2 21.84k
s c k a      (14) 

Thus cut-off frequency and cut-off wavelength 
 of this lowest mode, are  0k  

 1.84 2π
0.29 ,  3.41

2 1.c c

c
c a a

a
 


   

84

a



 (15) 

3. The Wave Function 

In this section we use the effective Hamiltonian for a 
two-level atom coupled to the quantized field inside cy-
lindrical nanotube in Equation (1) to study the dynamics 
situation of this optical system. For simplicity we re- 
write the effective Hamiltonian as follows :   1

 †
1 211 22 12 21

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆH n aaS S S S       (16) 

where we have taken the Raman-Nath approximation for 
the atomic Hamiltonian which leads to neglect the kinetic 
energy term. On the other hand the interaction Hamilto-
nian part was given in the standard interaction Hamilto-
nian for a two-level atom interacting with the field in the 
dipole approximation and the rotating-wave approxima-
tion. By introducing the following operators:  

 1 2

1ˆ ˆ2
2

I N            (17) 

   †
11 22 12 21

ˆ ˆ ˆ ˆ ˆ ˆˆ
2

C a aS S S S


         (18) 

with  

 11 22
ˆ ˆ ˆ ˆ 2N n S S      (19) 

where 2 1     
N̂

 is the detuning parameter. It is 
easy to show that  and  commute with each 
other and therefore they are constants of motion. In this 
case, the Hamiltonian (16) can be cast in the following 
form:  

ˆ Ĉ

ˆˆ ˆH C             (20) 

At the moment let us consider the atomic coherent 
state ,   which acquires both excited state e  and 
ground state g  for the two-level atom in the following 
form:  

     , cos 2 sin 2 expe i       g    (21) 

In the above equation   is the relative phase of the 
two atomic levels. To obtain the excited state we have to 
take 0   while to make the wave function describe 
the particle in the ground state we have to let π  . 
Consequently, if we consider the field to be initially in 
coherent state    then the initial state of the field 
takes the form: 

 q n n         (22) 

where  
2

exp
2

n

q n
n

  
  
   

 is the amplitude of  

states n , and 
2  is the initial mean value of the op-

erator  with n̂ e i    where   is the phase of 
coherent state. Assuming that at time  the system 
is in a pure state, thus the wave function is given by 

0t 

 0 ,     . Thus, the wave function for the 
system at any time  takes the form. 0t 

     0t U t  , where  U t  is the evolution 
operator. It is given by 
       exp expU t iHt i    expt iC t . After 

straightforward calculations we find that: 

     ,t D t e T t g   ,       (23) 

where  

 

 

1 1 1
1

1

1 1

1

ˆˆ sinˆexp cos cos
ˆ2 22

ˆˆ sin
ˆexp exp sin

ˆ2 2

iZ t i d t
D t d t

d

iZ t d t
i a i

d

 

 

            
         

 (24) 

and 

 

 

2 2 2
2

2

2 2

2

ˆˆ sinˆexp cos
ˆ2 2

ˆˆ sin
ˆexp sin exp cos

ˆ2 2 2

iZ t i d t
T t d t

d

iZ t d t
i i a

d



  

            
          

 (25) 

with  

1 1 2 2Z  1n             (26) 

1 22ˆ 2 nZ             (27) 

where  
2 2 2ˆ 4j j jd   1 2j              (28) 
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 2
1 2ˆ 1 ,  ˆ ˆn     2n̂          (29) 

The reduced density matrix for the field is given by 
     f

atomt Tr t t    , such that: 

         f t D t D t T t T t       (30) 

where  D t  and  T t  are given by Equations (24) 
and (25) respectively. Once the wave function is com-
puted, we can calculate any expectation value related to 
the atom or the field which is done in the next sections.  

4. Atomic Inversion 

The atomic inversion is defined as the difference be-
tween the probabilities of fining the atom in the excited 
state and in the ground state. Not only we use the atomic 
inversion to observe the atom in excited or ground state 
but also observe that the atom reach to maximal state. 
The maximal state defined as the probabilities of fining 
the atom in excited state and ground state are equal. If we 
assume the atom starts in its excited state, we can show 
that the atomic inversion  take the following 
form:  

 W t

        
2

2 2

1 1 1
0

e

2

n

n

nW t F n t n t n
n




 



        (31) 

where 

   1 1 1cos 2 sin 1F n t d t i d d t           (32) 

 1 sinn t d t d   1 1           (33) 

We note that the expectation value for  can be 
obtained directly from the constant of motion  of 
Equation (19). Then we find collapse and revivals com-
parable to the coherent state (JCM). The revival time can 
be estimated as in refs. [6,7] to be the time revival in four 
photons. It is estimated as 

 n̂ t
N̂

2πRt  n  for the coherent 
input. In our numerical investigations we plot the atomic 
inversion against time  taking into consideration the 
atom initially in the excited state and the field is prepared 
in a coherent state with 

t

10n  . 
In Figure 2, we consider the sodium atom case with 

wavelength transition 589 0 nm  

25 nm

, which means that 
the maximum value of the cylinder radius is 
2 0 5 147a a    

15t 

0W 

. We see that the flip from 
the upper to lower state occurring partially and collapse 
and revivals phenomenon of the atomic inversion is ap-
parent. The revival at  which is in compliance 
with the estimated value. We note that the inversion os-
cillates around the value .  

The maximal state occurring at the collapses time and 
periodically as shown in Figure 2. While in Figure 3, we 
take another example, the rubidium atom with wave-
length transition 780 0 nm  

195 0a  
 (which means that the 

cylinder radius will be ). It’s clear that after  nm

 

Figure 2. The evolution of the atomic inversion with the 
intensity of the initial coherent field equal to 10n  , 

0   and 147.25 nma  . 

 

 

Figure 3. The evolution of the atomic inversion with the 
intensity of the initial coherent field equal to 10n  , 

0   and 195.0 nma  . 

 
increasing of the parameter , the time of maximal state 
occurring increases. It is noted that the parameter a  
increases the collapses and revivals to occur at long in-
tervals. In general the behavior of the function is changed 
markedly, however it shows an increase the time of the 
collapses (the atom reach to maximal state). 

a

5. Quantum Field Entropy 

In this section, we use the field entropy as a measure of 
the degree of entanglement between the field and the 
atom of the system under consideration. The quantum 
dynamics described by the Hamiltonian (16) leads to an 
entanglement between the quantum field and the atom, 
which will be quantified by the field entropy. A suitable 
diagnostic tool is the entropy [18,19]  

 lnS Tr                 (34) 

where   is the density operator for a given quantum 
system and we have set Boltzmann’s constant 1k  . If 
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the atom is in a pure state, then in a suitable bases the 
density matrix is diagonal and has a single unit element. 
For this case , while if 0S    describes a mixed state, 
then . Since the initial state is a pure state, then 

, either 
0S 

0S  fS

 a fS T 

 the field entropy or a  the atomic 
entropy is used to measure the amount of entanglement 
between the two subsystems. When , the 
system is disentangled or separable and both the field and 
atomic subsystems are in pure states. The entropies of the 
particle and the field, are defined through the corre-
sponding reduced density operators by: 

S

S S 0f a 

   f a a a fr   lnf           (35) 

provided we treat both separately. Since the trace is in-
variant under a similarity transformation, then we can go 
to a basis in which the density matrix of the field is di-
agonal and then express the field entropy  tfS  in 
terms of the eigenvalue  tf  for the reduced field 
density operator. A general method to calculate the vari-
ous field eigenstates in a simple way has been developed 
[20]. By applying this method, we can obtain the eigen-
values for the reduced density operator thus:  



           
         

exp

exp

t D t D t D t T t

T t T t D t T t





  

   

f


    (36) 

where  

       
   

1sinh
2

D t D t T t T t

D t T t
 

 
 








    (37) 

The field entropy  may be expressed in terms 
of the eigenvalues  for the reduced field density 
operator as:  

 fS t
 f t

         ln lnf f f f fS t t t t t             (38) 

Now we turn our attention to examine numerically the 
dynamics of the field entropy we use the same initial 
parameters of the earlier figures. By using the same ini-
tial parameters of the earlier figures. We observe that 
when  (for the sodium atom) the entropy 
is dynamically reduced to the minimum values at 

147 25nma  

2πt  n  and the tube field can not reach to the pure 
state. It is note that the entanglement increased at the 
atom papered in maximal state. In Figures 2 and 3 the 
maximal states are occurring at the collapses and the 
maximum degree of entanglement occurring at same time 
see Figure 4. For the second case when  
(for the rubidium atom), which is observed in Figure 5, 
we see that the entropy is stable (do not oscillated) at 
long time compared with the previous case. This mean-
ing that the time of maximal state increase by the pa-
rameter  increases. 

195 0nma  

a
It is important to note that the atoms confined trans-  

 

Figure 4. The time evolution of the field entropy for the 
same initial condition and parameter of Figure 2. 
 

 

Figure 5. The time evolution of the field entropy for the 
same initial condition and parameter of Figure 3. 
 
versely within the tube are prone to a diffusive increase 
of the atomic momentum in longitudinal direction (wave- 
vector  has one continuous degrees of freedom along 
z-direction) which will minimize the entanglement proc-
ess. Definitely, this is better than the case of two-plates 
system that have two continuous degrees of freedom 
[8,9]. Subsequently, to avoid completely this problem, 
we can take a quantum size of an empty closed cylindri- 
cal resonator [21]. 

k

Over and above, by assuming inner walls to be a per-
fect conducting and so exclude all electromagnetic fields 
from their interior. In this situation, the standard elec-
tromagnetic boundary conditions apply such that the tan-
gential components of the electric field vector and the 
magnetic field vector must vanish at every point on the 
inner walls. Consequently, the energy injected during a 
very short time can remain stored inside tube for a very 
long time in comparison with the period, which means a 
very high quality factor Q. Furthermore to this intrinsic 
property, the closed resonator, in general, is a very sig-
nificant for the theory of an optical confinement of indi-
vidual atoms by the mechanical forces associated with 
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single photons. This kind of confinement represents ele-
mentary quantum systems that are well isolated from the 
environment. Recently, many experimental studies are 
concerned with the open geometries as suitable of inter-
action environment for atom optics [15]. These geome-
tries have clear advantages when it comes to loading the 
confine and, possible, further manipulating the atoms 
(e.g. cooling, trapping, mode selecting), but they suffer 
from the problem that it is relativity easy for atoms to 
escape. While close geometries confine atom in all direc-
tions and a particular mode can be excited from a tiny 
hole at an appropriate location in the outer surfaces. This 
hole may connect directly with the laser source or by a 
tube which a commonly method for coupling mode to a 
close geometries. This is the main reason why two-di- 
mensional tubes system cannot, in general, be employed 
as an efficient entanglement environments.  

6. Conclusions 

In this paper, we have examined in detail the properties 
of the entanglement between an atom and the electro-
magnetic field inside cylindrical nanotube. The tube 
modes are first quantized, allowing the effective Hamil-
tonian to be evaluated for an electric dipole located at an 
arbitrary point. We have shown that in the limit of small 
tube radius, especially when 2 0 5a   , only the fun-
damental mode s-polarized mode with  is 
allowed to propagate within the tube. Therefore, the sys-
tem became an exact single mode operation and thus the 
atom only interacts with a single mode.  

 1, 1m 

We have explored the temporal evolution of the ato- 
mic inversion and the von Neumann entropy. These 
processes have been depending on the radius of the tube. 
For the atomic inversion, we have shown that the atom 
stay in maximal entangled state when the radius of the 
tube is large. The degree of this entanglement has been 
measured by the von Neumann entropy.  

In addition, this work shows that the general feature 
explored here is the entanglement between atom and the 
position independent mode with    inside 
nanotube system is different on the entanglement be-
tween atom and the position dependent higher modes 
inside the same system. In fact, the above considerations 
of the entanglement process of the position independent 
mode have now paved the way for considering the en-
tanglement process of the position dependent mode that 
could be given more efficient entanglement process. An 
obvious line of extension of this work should consider 
cylindrical tube with walls made of dielectrics character-
ized by dispersive dielectric functions which could also 
exhibit loss. A theory focusing on such features can, ad-
ditionally, accommodate the first type of tube namely, 
the evanescent mode tubes which can now have the new 
feature of submicron dimensions. Although the decay 

emission of atoms in dialectic tubes has been fully inves-
tigated [17], the entanglement process in this structure 
has not been reported before. Work along these lines is 
now in progress and the results will be reported in due 
course.  

1, 1m 
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