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ABSTRACT 

We analyze the two flavor version of the Nambu-Jona-Lasinio model with a repulsive vector coupling , at finite 

temperature and quark chemical potential, in the strong scalar coupling 

 VG

 SG  regime. Considering GV = 0, we review 

how finite Nc effects are introduced by means of the Optimized Perturbation Theory (OPT) which adds a 

 
2

S cG N    term to the thermodynamical potential. This 1 cN  suppressed term is similar to the 
2

VG    

contribution obtained at the large-Nc limit when GV ≠ 0. Then, scanning over the quark current mass values, we compare 
these two different model approximations showing that both predict the appearance of two critical points when chiral 
symmetry is weakly broken. By mapping the first order transition region in the chemical potential-current mass plane, 
we show that, for low chemical potential values, the first order region shrinks as μ increases but the behavior gets re-
versed at higher values leading to the back-bending of the critical line. This result, which could help to conciliate some 
lattice results with model predictions, shows the important role played by finite Nc corrections which are neglected in 
the majority of the works devoted to the determination of the QCD phase diagram. Recently the OPT, with GV = 0, and 
the large-Nc approximation, with GV ≠ 0, were compared at zero temperature and finite density for one quark flavor only. 
The present work extends this comparison to finite temperatures, and two quark flavors, supporting the result that the 
OPT finite Nc contributions naturally mimic the effects produced by a repulsive vector interaction. 
 
Keywords: QCD Phase Diagram; NJL Model 

1. Introduction 

Although most of the results obtained up to now seem to 
support the quantum chromodynamics (QCD) critical 
point (CP), an interesting observation against its exis-
tence comes from the numerical simulations of QCD at 
imaginary chemical potential by de Forcrand and Philip-
sen [1-3] which shows that the region of quark masses 
(mc) where the transition is presumably of the first order 
(for quark masses smaller than the physical ones), tends 
to shrink for small positive values of the chemical poten-
tial as shown in the upper panel of Figure 1. Conversely, 
according to models supporting the critical point, the first 
order region should expand when the chemical potential 
increases, so that the physical quark mass point hits the 
critical line at some finite value of the temperature and 
chemical potential as shown in the bottom panel of Figure 
1. A possible explanation for the disagreement between 

the “exotic” scenario (Figure 1, upper panel) and the 
“standard” scenario (Figure 1, bottom panel) has been 
given in [4,5] where it was suggested that a strong (re-
pulsive) vector coupling may account for the initial 
shrinkage of the first order region, that would then start 
expanding again at larger values of the chemical poten-
tial leading to the back-bending of the critical surface and 
the recovery to the CP at the physical quark mass values. 
As a result, two critical points should appear for a given 
range of (small) quark masses, as argued by Bowman 
and Kapusta [6] who investigated the Linear Sigma 
Model (LSM) including thermal fluctuations and consid-
ered small values for the pion mass. A pictorial view of 
this peculiar situation is given by Figure 2 which illus-
trates a possible back-bending scenario in the two-flavor 
case. In the more traditional T − μ plane, these two criti-
cal points are located at the end of two first order transi-  
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Figure 1. Upper panel: The “exotic” scenario with the 
shrinkage of the first order transition region which excludes 
the presence of a CP at the physical point. Bottom panel: 
The “standard” scenario with the expansion of the first 
order transition region which provides the appearance of a 
CP at the physical point. 
 

 

Figure 2. Schematic view of the back-bending scenario in 
the µ  mc plane. The shaded area represents the region of 
first order phase transitions; the dashed line represents 
second order phase transitions while the light part of the 
figure represents the cross over region. Two critical points 
(c1 and c2) appear at mc << mphys and the expected CP is 
present at mc = mphys. 

tion lines where one of them represents the usual line 
which starts at zero temperature and chemical potential 
of the order of the constituent quark mass while the other 
is an unusual line which starts at zero chemical potential 
and high temperature [6,7]. 

In [4] the author has considered the three flavor 
Nambu-Jona-Lasinio model (NJL) at large-Nc with an 
explicit repulsive vector interaction, with coupling GV, in 
order to produce a back-bending that would conciliate 
the lattice results obtained by de Forcrand and Philipsen 
with most model predictions. It is well known that within 
the NJL this type of interaction weakens the first order 
transition line [8] in opposition to the scalar coupling 
 SG  which tends to favor the appearance of first order 
phase transitions [9]. The explicit presence of a vector 
term was decisive in order to produce the back-bending 
scenario within the large-Nc application of [4]. It was 
explained that the net effect produced by a repulsive 
vector channel is to add a term like −GV q

2 (here ρq 
represents the quark number density) to the pressure and 
as a result the size of the first order covers a smaller 
range of temperatures as compared to the GV = 0 case.  

At the same time, the value of the coexistence chemical 
potential for a given temperature occurs at a higher value 
when GV ≠ 0 and, as a consequence, the critical end point 
happens at smaller temperatures to be higher chemical 
potentials than in the case of vanishing GV. Although 
such a vector term is known to be important at high den-
sities in theories such as the Walecka model for nuclear 
matter, its consideration is more delicate within a non 
renormalizable model such as the NJL where usually the 
integrals are regulated by a momentum cut-off, Λ. Within 
this model, GS and Λ are usually fixed to reproduce the 
pion mass  π 135 MeVm  , the pion decay constant  

 eVπ 93 Mf   and the quark condensate 

 1 3
250 MeV  which yields Λ  560 - 670 MeV, 

GS Λ
2  2 - 3.2 and mc  5 - 5.6 MeV (see [10] for a com-

plete discussion).  
However, fixing GV poses and additional problem 

since this quantity should be fixed using the ρ meson 
mass which, in general, happens to be higher than the 
maximum energy scale set by Λ. Then, GV is usually 
considered to be a free parameter whose estimated value 
ranges between 0.25 GS and 0.5GS [11,12]. 

Alternatively, when going beyond the large-Nc (or 
mean field) level one may induce quantum (loop) correc-
tions which mimic the physical effects caused by a clas-
sical (tree) term such as GV. This is precisely what has 
been observed in an application of the nonperturbative 
Optimized Perturbation Theory (OPT) method to the two 
flavor NJL model with vanishing GV [13]. The OPT re-
sults for phase diagram for this model show that 1 cN  
corrections induced by this approximation reproduce the 
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same qualitative features obtained by considering the 
model at large-Nc with an explicit repulsive vector chan-
nel. The reason is that the OPT two loop contributions 
add a term like  2

S q f cG N N  to the pressure.  
The relationship between the OPT, at GV = 0, and the 

large-Nc approximation, at GV ≠ 0, has been recently in-
vestigated in great detail in the framework of the abelian 
NJL at finite densities and zero temperature in [14]. In 
the context of the eventual back-bending behavior of the 
critical line in the μ − mc plane, the OPT has also been 
previously employed with success in [7]. There, the 
strategy was to use very high values for GS in order to 
obtain a T − μ phase diagram dominated by first order 
chiral transitions only.  

Then, the OPT with its  2
S f c  term was 

used at different quark mass values showing that, in this 
case, two critical points emerge at low mc due to the 
weakening of the first order line at intermediate μ values 
leading to the back-bending behavior observed in 

G N N

[4] 
without the need to explicitly include a vector channel in 
the lagrangian density. 

Note that a repulsive vector type of coupling was not 
explicitly considered in the two flavor LSM application 
performed by Bowman and Kapusta which, on the other 
hand, was carried out beyond the mean field level 
through the consideration of thermal fluctuations.  

In the present work, we extend the comparison between 
the OPT (at GV = 0) and the large-Nc approximation (at 
GV ≠ 0) to the non abelian NJL model at finite tempera-
ture and density in the strong coupling and small quark 
mass regime showing that, as expected, both methods 
agree from the qualitative point of view leading to a 
back-bending which would be completely missed by a 
standard large-Nc evaluation.  

Our results also emphasize the importance played by 
1 cN  terms which are easily taken into account by the 
OPT so that this method may be viewed as a robust al-
ternative to investigate nonperturbative effects related to 
the chiral transition of strongly interacting matter. The 
work is organized as follows. In the next section, we per-
form a large-Nc application to the two flavor NJL version 
in the strong coupling regime for the GV ≠ 0 case. In Sec-
tion 3 we review the OPT results, at GV = 0, which were 
originally obtained in [7]. We then compare, in Section 4, 
the analytical and numerical results obtained with the 
two different model approximations. Our conclusions are 
presented in Section 5. 

2. The NJL in the Strong Coupling Regime 

The standard version of the two flavor Nambu-Jona- 
Lasinio model lagrangian density L with a repulsive vec-
tor channel reads [10,15] 

     222

5

i

,

c

S V

m

G i G

L 




  

     

   

    




 (1) 

where  (a sum over flavors and color degrees of free-
dom is implicit) represents a flavor isodoublet (u and d 
type of quarks) Nc-plet quark fields while   are isospin 
Pauli matrices.  

As emphasized in [16], the introduction of a repulsive 
vector interaction term of the form  2

VG     in 
Equation (1) is also allowed by the chiral symmetry. 
Such a term can become important at finite densities, 
generating a saturation mechanism depending on the 
vector coupling strength that provides better matter sta-
bility [10,16]. Here, we will show that this term also in-
fluences the phase diagram, especially at the low tem-
perature and high density region. A standard parametri-
zation for this model is Λ = 587.9 MeV, GS Λ

2 = 2.44, 
and mc = 5.6 MeV so that, with these inputs, one obtains 
fπ = 93 MeV, mπ = 135 MeV, and M = 400 MeV at T = 0, 
and μ = 0 [10].  

However, as will be shown in the next subsection, in 
order to simulate the back-bending behavior in the pre-
sent model we will keep Λ = 587.9 MeV considering 

2 4SG    while varying the current quark mass from mc 
= 0 to mc = mphys= 5.6 MeV. As discussed in [7] this 
nonstandard choice does not affect very much the pre-
dicted values for observables such as fπ , mπ and  . 
On the other hand the quark effective mass, which is di-
rectly proportional to GS, assumes very high values 
(around 800 MeV > Λ). However, this is not a problem 
for our present purpose of simulating the back-bending in 
a qualitative way (see [7] for a more complete discus-
sion). 

2.1. Thermodynamical Potential at Large-Nc 
with Finite GV Contributions 

The large-Nc (or MFA) evaluation of the thermodynami-
cal potential within this model is standard and yields [10] 

  2 2, ,, S s VL qN G GM T     FG

 ,

    (2) 

where the dressed “free gas” term is given by 

12 , ,FG f c M TN N I           (3) 

the scalar density is given by 

22 ,s f cN N I M T , ,                (4) 

and the quark number density is given by 

32 ,q f cN N I M T , .              (5) 

The integrals appearing in the above equations are de-
fined by 
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 
  3

1 3

d
ln 1 e ,

2π

pE T

p

p
I E T

      


   (6) 

 
     

3

2 3

d 1 1
, , 1 ,

2π e 1 ep pE T E T
p

p M
I M T

E  


 

 
   

   
  


1

 

(7) 

and 

 
     

3

3 3

d 1 1
, , ,

2π e 1 ep pE T E T

p
I M T

 


 

 
  

  
  


1

2 .

,s

  (8) 

where  Here, the divergent contribu-
tions corresponding to the first term on the right hand 
side of Equations (6) and (7) are regulated by Λ. The 
effective quark mass, M, and the effective chemical po-
tential, µ, are obtained from solving the following cou-
pled self consistent equations 

2 2  pE p M 

 2c SM m G                  (9) 

and 

2 V qG ,                  (10) 

Let us now review the main effects of the repulsive 
vector interaction in the phase diagram by considering 
the standard parametrization. Figure 3 shows the situa-
tion for GS Λ

2 = 2.44, Λ = 587.9 MeV and mc = 0 (chiral 
limit) at GV /GS = 0, 0.1, and 0.4. As expected the GV 
term has little effect at low chemical potential values 
where the second order chiral transition dominates since 
mc = 0.  

One also notices that, as GV increases, the first order 
chiral transition line weakens so that the tricritical point 
occurs at smaller temperatures. It is also clear that for a 
given temperature the coexistence chemical potential 
takes place at higher values with increasing GV. This 
scenario is also observed away from the chiral limit 

 except that now the second order transition is 
replaced by a cross over region and the tricritical point 
turns into a critical end point. This type of phase diagram 
where a CP naturally appears at the physical quark mass 
point is predicted by most model approximations. Now, 
in order to simulate the lattice results by de Forcrand and 
Philipsen we first need to obtain a first order phase tran-
sition at μ = 0 for low mc values so that at vanishing den-
sities our results would be consistent with the lattice re-
sults furnished by the Columbia plot 

 0cm  

[17].  
Within the NJL this is easily achieved by increasing 

GS [9] so that, at GV = 0 and mc = 0, the whole phase 
diagram is dominated by a first order phase transition. 
Figure 4 shows this situation in the strong coupling re-
gime for different values of GV and mc. Let us first ana-
lyze the case GV = 0 by noticing that if one increases mc 
the first order line weakens and turns into a cross over at 
μ = 0. Figure 5 illustrates the situation in the μ − mc  

 

Figure 3. The large-Nc phase diagram for a standard pa-
rametrization ( = 587.9 MeV and GS2 = 2.44) in the chiral 
limit (mc = 0). The continuous lines represent first order 
phase transition and the dashed lines represent second order 
phase transitions. The solid symbols represent the tricritical 
points for the ratios GV/GS = 0, 0.1 and 0.4. Note that GV 
weakens the first order phase transition and, for a given T, 
shifts the coexistence chemical potential to higher values. 
 

 

 

Figure 4. The large-Nc phase diagram in the strong coupling 
regime ( = 587.9 MeV and GS2  4). Upper panel: the 
chiral limit (mc = 0) where the continuous lines represent 
first order phase transitions and the dashed lines represent 
second order phase transitions. The solid symbols represent 
the tricritical points for the ratios GV/GS = 0, 0.1 and 0.3. 
Bottom panel: different current mass values (mc/mphys = 0, 
0.5, 1.0, 1.5, 2.0 and 2.5) have been used with fixed GV/GS = 
0.5. For mc ≠ 0 the dashed lines represent the cross over re-
gion. Both panels show that GV weakens the first order phase 
transition but for small mc and high GS its presence leads to 
the emergence of two (tri) critical points. Note how mc has a 
greater influence over the high-T region while GV affects the 
intermediate to low-T region. 
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Figure 5. The µ − mc plane, at large-Nc for GV = 0 at strong 
(scalar) coupling ( = 587.9 MeV, GS2 = 4). The shaded 
area represents the region of first order phase transitions; 
the dashed dark line represents second order phase transi-
tions while the light part of the figure represents the cross 
over region. The figure shows that there is no back-bending 
scenario at large-Nc when GV = 0. 
 
plane showing that, for GV = 0, the first order line re-
cedes from the temperature axis as mc increases without 
reproducing the back-bending scenario which would 
conciliate the de Forcrand and Philipsen results with 
model predictions. Now, if we turn on the vector interac-
tion, still at mc = 0, the weakening of the first order tran-
sition happens in a different way so that two segments of 
first order chiral transitions appear. One of them is the 
usual one which starts at T = 0 while the other is an un-
usual first order line which starts at μ = 0 as Figure 4 
shows. So, at the expense of considering a strong GS and 
a finite GV we have managed to induce the appearance of 
two tricritical points at vanishing mc which, as will be 
shown in Section 3, leads to the back-bending scenario. 

2.2. Thermodynamical Potential at Vanishing GV 
with Finite Nc Contributions  

The basic idea of the OPT method is to deform the 
original lagrangian density by adding a quadratic term 
like (1 )   to the original lagrangian density as 
well as by multiplying all coupling constants by δ [7]. 
The new parameter δ is just a bookkeeping label and η 
represents an arbitrary mass parameter. Perturbative cal-
culations are then performed in powers of the dummy 
parameter δ which is formally treated as small and set to 
the original value, δ = 1, at the end1.  

Therefore, the fermionic propagator is dressed by η 
which may also be viewed as an infrared regulator in the 
case of massless theories. After a physical quantity, such 
as the thermodynamical potential (Ω), is evaluated to the 
k-order and δ set to the unity only a residual η depend-

ence remains. Then, optimal nonperturbative results can 
be obtained by requiring that Ω(k) (η) be evaluated where 
it is less sensitive to variations of the arbitrary mass pa-
rameter. This requirement translates into the criterion 
known as the Principle of Minimal Sensitivity (PMS) 
[18] 

   

, 1

d
0.

d

k

 







          (11) 

In general, the solution to this equation implies in self 
consistent relations generating a nonperturbative cou-
pling dependence. In most cases nonperturbative 1 cN  
corrections appear already at the first nontrivial order 
while the large-Nc (or MFA) results can be recovered at 
any time simply by considering Nc → ∞. Finally, note 
that the OPT has the same spirit as the Hartree and the 
Hartree-Fock approximation in which one also adds and 
subtracts a mass term. However, within these two tradi-
tional approximations the topology of the dressing is 
fixed from the start: direct (tadpole) terms for Hartree 
and direct plus exchange terms for Hartree-Fock. On the 
other hand, within the OPT, the dressed mass term    
acquires characteristics which change order by order 
progressively incorporating direct, exchange, vertex cor-
rections, etc, effects. The differences between these three 
different methods have been recently discussed in [14]. 
To implement the OPT within the NJL model at GV = 0 
one follows the prescription used in [13] to write  

 

   22

5

i

,

c

S

m

i

L

G


   

     

    




   
    (12) 

Then, the order-δ thermodynamical potential can be 
written as (see [13] for technical details) 

     2

2
2

, 2

,
2

, S s FOPT S s s

S

G

f

s
q

c

GT G

G

N N

      







   

 
  

 


(13) 

where now all the integrals  defining the 
quantities ωFG, ρs , and ρq are redefined as 

 1,2,3iI i  

 , ,iI M T    . Then, for each pair of  ,T   
values the optimum mass parameter,  , can be obtained 
by solving the PMS equation given by [13] 

21
2 1

2

dd

d d

0.

S q qs
S s

c f c f

G
G

N N N N
 


 

 




           
        

 
  





  

(14) 

Note that when Nc → ∞ the PMS optimization proce-
dure sets  = −2GSρs exactly reproducing the large-Nc 
result (for the standard NJL model) with no ρq depend-

1Recall that within the large-Nc one performs an expansion in powers of 
1/Nc where Nc is formally treated as large but set to the original value 
(Nc = 3 in our case) at the end. 
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ence. By comparing the OPT thermodynamical potential 
given by Equation (13) with its large-Nc counterpart 
given by Equation (2) one notices that the OPT induces a 
finite Nc correction of the form   2

S f c qG N N   while, 
as discussed in [4], the GV term gives a net contribution 
of the form GV ρq

2. Then, one could expect that the two 
different model approximations given by the OPT (at GV 
= 0) and the large-Nc approximation (at GV ≠ 0) lead to 
the same qualitative picture of the phase diagram. A re-
cent comparison performed with one flavor at vanishing 
temperature in [14] showed that this is indeed the case. 

Here, we are now in position to extend that compari-
son to the more realistic two flavor case at finite tem-
peratures. 

3. Comparing the OPT at GV = 0 with the 
Large-Nc Approximation at GV = 0 

Let us now compare the results furnished by the two ap-
proximations for the NJL model at high GS. Figure 6 
shows the T − μ phase diagram when chiral symmetry is 
weakly broken . This figure also shows 
the large-Nc result for GV = 0 which predicts a first order 
transition taking place in the whole plane. At the same 
time the OPT with its 

0 c physm m 

 2
S q f c  contribution and 

the large-Nc at GV ≠ 0 weaken that line at intermediate 
chemical potential values so that two critical points ap-
pear in this case of small current mass as expected from 
the discussion related to Figure 2. Then, by varying the 
mc values towards the physical one (mphys) one can map 
the T − μ diagram into the μ − mc plane as shown in 
Figure 7. This figure clearly shows that both approxima-
tions considered here manage to produce the back-bend-  

G N N

 

 

Figure 6. The large-Nc (at GV/GS = 0.5) and the OPT (at GV 
= 0) phase diagrams in the strong coupling regime ( = 
587.9 MeV and GS2 = 4) for weakly broken chiral symme-
try (mc = 0.1 MeV). The figure shows the usual CP (c2) and 
the exotic high-T CP (c1) at the end of the first order transi-
tions for the OPT (continuous line) and large-Nc (dot- 
dashed). For comparison the figure also shows the large-Nc 
result (at GV = 0 and mc = 0) with the dashed line repre-
senting the first order transition. 

 

 

Figure 7. The µ − mc plane at strong (scalar) coupling ( = 
587.9 MeV, GS2 = 4) showing the back-bending. The 
shaded area represents the region of first order phase tran-
sitions; the dashed dark line represents second order phase 
transitions while the light part of the figure represents the 
cross over region. Left panel: The large-Nc result at GV/GS = 
0.5. Right panel: The OPT result at GV = 0. In both cases 
one observes two CP at mc << mphys but only the one at high 
µ survives at the physical point (mc = mphys). 
 
ing of the critical line so that the CP will be recovered at 
mc = mphys even if initially (at low values of μ) the line 
bends in such a way which is reminiscent of the “exotic” 
scenario displayed by the right panel of Figure 1. The 
physical nature and even the critical exponents of the two 
different critical points which occur at small mc have 
been discussed in great detail in [7]. From our results it is 
clear that as mc → mphys the unusual first order line dis-
appears and only the usual “liquid-gas” type of first order 
line survives in accordance with most model predictions. 

4. Conclusions 

We have considered the two flavor NJL model in the 
strong scalar coupling regime (GSΛ

2  4) in order to 
compare two distinct model approximations. The first is 
the traditional large-Nc approximation which was applied 
by explicitly considering a finite repulsive vector interac-
tion (proportional to GV) which was introduced at the 
classical (tree) level. The second is the alternative OPT 
method which was applied to the standard version of the 
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Our first step towards the simulation of the back- 

bending behavior was to tune GS at GV = 0 so that the 
large-Nc approximation predicts that the first order tran-
sition line, which usually starts at T = 0, will touch the T 
axis at μ = 0 for very small mc values. 

For mass values closer to the physical ones, this ap-
proximation recovers the expected cross over behavior at 
small μ with the appearance of a single critical point at 
intermediate chemical potentials. Next, we have shown 
that by considering finite values for GV at c phys  
this single first order transition line splits into two lines 
in the T − μ plane. One of them is similar to the usual 
“liquid-gas” line which starts at T = 0 and ends at inter-
mediate temperature values. The other one, which has a 
more “chiral” behavior according to the analysis of 

m m

[7], is 
located at the high temperature region and disappears as 
mc approaches mphys from below. In this way, we were 
able to induce the back-bending behavior for two flavors 
in a manner analogous to the one adopted in [4] for the 
three flavor case. The OPT results for this strong cou-
pling and small regime obtained in [7] were then re-
viewed so that a numerical comparison could be per-
formed. At the first non trivial order, this approximation 
includes one and two loop terms which would belong to 
the  and  0

cO N  1 cO N   in the usual 1 cN  type of 
expansion. In particular, the two loop terms generate a 
negative contribution to the pressure given by  

 2
S q f c , where ρq represents the fermionic 

density. This term is similar to the net −GV ρq
2 contribu-

tion considered at large-Nc 

G N N

[4]. Within the OPT the 
1 cN  suppressed vector term competes with its scalar 
counterpart, ρs, weakening the first order line at interme-
diate values of μ and enhancing the appearance of two 
critical points in the T − μ plane for mc values which are 
smaller than the physical ones. Finally by scanning the 
values of mc, we have mapped the T − μ phase diagram 
into the μ − mc plane observing that, for strong couplings, 
the large-Nc approximation, at finite GV , and the OPT, at 
vanishing GV , predict that the first order transition region 
shrinks for low values of μ as observed in the lattice 
simulations of [1]. But then, at intermediate chemical 
potentials, the vector terms −GV ρq

2 (large-Nc) and 
 2

S qG  c f  (OPT) change the first order phase 
transition region into a cross over region. Finally, at 
higher chemical potentials, the first order transition re-
gion reappears and then expands as μ is increased. So, 
our results suggest that even if an initial shrinkage of the 
first order region is confirmed by lattice simulations, it 
does not necessary rule out the existence of the CP which 
is expected to occur at intermediate chemical potentials 
for physical quark masses. In this case, a back-bending 
will be observed on the μ − mc plane outlining the im-
portance of a repulsive vector contribution in agreement 

with 

N N

[4]. Our comparison allows us to conclude that 
similar qualitative results will be obtained either by ex-
plicitly considering such a contribution at the classical 
level as in the large-Nc case or by radiatively generating 
it by going beyond the mean field level. Within the NJL 
model, the advantage of the second procedure, which can 
easily be implemented within the OPT, is that it does not 
require the fixing of GV which is a drawback of the first 
procedure. The results obtained in the present application 
support those obtained in [14], for the simpler abelian 
NJL model at vanishing temperature, showing the ro-
bustness of the OPT method. Finally, note that at these 
non standard high coupling values our results are to be 
taken only as qualitative predictions. 
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