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ABSTRACT 
In this paper, we derive a nonlinear equation of corneal asphericity (Q) using the tangential radius of curvature (rt) on 
every semi-meridian. We transform the nonlinear equation into the linear equation and then obtain the Q-value of cor- 
neal semi-meridian by the linear regression method. We find the 360 semi-meridional variation rule of the Q-value us- 
ing polynomial function. Furthermore, we construct a new 3D corneal model and present a more realistic model of 
shape of the anterior corneal surface. 
 
Keywords: Cornea; Computer; Image 

1. Introduction 
It is well established that the anterior surface of the cor- 
nea is the major refractive element of the human eye, 
being responsible for approximately 75% of the eye’s 
total unaccommodated refractive power [1]. Guillon [2] 
and Bennett [3] assumed the human cornea to have a 
conic section which can be described by the Baker’s eq- 
uation: 2 2

02y r x px= −  [4]. Here, p describes the as- 
phericity of the corneal section. Cheung [5] calculated 
the corneal asphericity (p) using the sagittal radius of 
curvature ( sr ) from corneal axial power map according 
to Bennett’s equation: 2 2 2

0 (1 )sr r p y= + −  [6]. Schwie- 
gerling [7] used corneal height data from corneal height 
map and Zernike polynomials to describe the shape of 
the cornea. Corneal topography is commonly presented 
as axial power map, tangential power map and height 
map. To our knowledge, there is no report of investigat- 
ing the corneal asphericity (Q, 1Q p= − ) calculation by 
the tangential radius of curvature (rt) from tangential 
power map. 

In most previous studies, it has been reported the Q- 
values which is representative of all corneal meridians or 
the Q-values of two principal meridians. Dubbelman [8] 
measured k-values (where 1k Q= + ) of six semimeri- 
dians (0˚, 30˚, 60˚, 90˚, 120˚, 150˚) using Scheimpflug 
photography and modeled the meridional variation of the 
k -value using the 2cos  function. However, it indicated 
that the 2cos  function is not an adequate model to de- 
scribe the variation. 

Sagittal radius of curvature (rs) is spherically biased 
and is not a true radius of curvature [9-11] and it will 

lead to erroneous result for an asymmetric corneal sur- 
face. Tangential radius of curvature (rt) is a true radius of 
curvature which can better represent corneal shape and 
local curvature changes especially in the periphery [12]. 
In this paper we derive a nonlinear equation of corneal 
asphericity (Q) using the tangential radius of curvature (rt) 
on every semi-meridian for the first time. We obtain the 
Q-value of corneal semi-meridian by the linear regres- 
sion method and find the 360 semi-meridional variation 
rule of the Q-value using polynomial function. Further- 
more, we construct a new 3D model of shape of the ante- 
rior corneal surface. 

2. Derivation of the Corneal Model 
The Bausch & Lomb Orbscan II corneal topographer is 
used to acquire images of the topography of the right eye 
of 66 normal young subjects. All subjects have no history 
of ocular disease and ocular surgery with emmetropic 
eyes. A series of data point on a semi-meridian are ar- 
ranged at 0.1 mm intervals. The interval between two 
semi-meridians is 1˚. The tangential radius of curvature 
(rt) and perpendicular distance from the point to optical 
axis ( y ) of all data point on a semi-meridian and vertex 
radius of curvature ( 0r -value) can be obtained from the 
raw data of tangential power map of anterior corneal 
surface. 

A three dimensional Cartesian coordinate system is set 
with its origin at vertex normal to the corneal intersection 
of the optic axis of the corneal topographer [13]). The 
Z -axis, Y -axis, X -axis of the coordinate represent the 
optical axis direction, the vertical direction and the hori- 
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zontal direction, respectively. θ  is the angle between 
the corneal meridian section and the XOZ  plane. The 
corneal meridian section is located on the YOZ  plane 
when θ  = 90˚. At this time, we assume that the equa- 
tion of corneal meridian can be correspondingly de- 
scribed by the conic equation: 2 2

1 2 1 2, ,y a z a z a a R= + ∈ . 
This conic equation is an improvement of the Baker’s 
equation [4]. While located on the XOZ  plane when 
θ  = 0˚ and described by the conic equation: 

2 2
1 2x a z a z= + . For any other angle θ  except for 0˚, 

90˚, 180˚, 270˚, the YOZ  plane can be coincided with 
the corneal meridian section by rotating the coordinate 
system. Thus the corneal meridian section of any other 
angle θ  can also be described by the conic equation 

2 2
1 2y a z a z= +  in the new coordinate system (see Sec- 

tion 5.2). 
Here let us take corneal meridian section with θ  = 

90˚ for example, the formula of the curvature of a point 
on the section can be expressed as [14,15]: 

32
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              (1) 

where K  is curvature, 'y  and ''y  are the first and se- 
cond derivatives with respect to z  which is z -axis 
coordinate value of the point. Differentiating both sides 
of the conic equation 2 2

1 2y a z a z= +  with respect to z , 
we get 
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Then by substituting y′  and y′′  into Equation (1), we 
obtain: 
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The conic equation 2 2
1 2y a z a z= +  can be rewritten 

as: 
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Since 2Q e= − , then by Equation (3) we have 
2 (1 )a Q= − + . 
Finally by substituting 2 (1 )a Q= − +  into Equation 

(2), we obtain 
3

2 2 2
02

0

1 [ ]tr r Qy
r

= −               (4) 

3. Solution to Q-Value Calculation Problem 
Since rt is a nonlinear function of y  in Equation (4), it 

is difficult to calculate Q -value. To transform the non- 
linear problem to the linear one, the Equation (4) is con- 
verted to another form which can be written as: 

2
2 3

ty b cr= +                   (5) 

where b  and c  are constants, a straight line graph of  

2y  (on the ordinate) vs 
2
3

tr  (on the abscissa) is plotted. 

By the linear regression method, we get 
2

0rb
Q

=  and 

4
3

0rc
Q

= − , that is, 
2

3
bQ
c

= − . The straight line gives a  

coefficient of determination ( 2R ). The Q-value of the 
given semi-meridian is calculated including from the first 
point at 0.1 mm to 3.5 mm. Figure 1 illustrates a func- 
tion scatterplot of perpendicular distance squared versus 
tangential radius of curvature to the two-thirds power on 
the nasal horizontal principal semi-meridian of the right 
eye for subject number 1. 

4. 360 Semi-Meridional Rule of the Q-Value 
The corneal zone analyzed is up to diameter 7.0 mm 
which is large enough to cover the pupillary area. The 
near vertical meridians will have a diameter limit im- 
posed by the eyelids and eyelashes. In our earlier study, 
we found that the semi-meridians which the peripheral 
points were up to 3.5 mm were mainly distributed within 
50  ̊of the horizontal including 0  ̊- 50˚, 130  ̊ - 180˚, 181 -̊ 
230˚, 310˚ - 359˚. The Q-value of each semi-meridian in 
these near horizontal regions was calculated. According 
to the Q-values of the near horizontal semi-meridians, we 
use regression analysis to model the 360 semi-meridional 
variation of the Q-value and fit the Q-value of 
 

 
Figure. 1. Scatterplot of perpendicular distance squared 
versus tangential radius of curvature to the two-thirds 
power. 
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each semi-meridian in the near vertical regions including 
51˚ - 129˚, 231˚ - 309˚. The form of a polynomial func- 
tion is: 

2 3 4
0 1 2 3 4( ) ...f x p p x p x p x p x= + + + + +  

where x is semi-meridian angle θ  (degree) and f(x) is 
corresponding Q-value. Here, the degree must be con- 
verted to the radian when calculating the polynomial 
fitting. 

To determine which degree polynomial will provide an 
optimal fit to the 360 semi-meridional variation of the 
Q-value, we calculate the RMS fit error of the polynomi- 
al function from 5th degree to 9th degree. We find that the 
RMS fit error become relatively stable at approximately 
0.02 for fits higher than 6th degree. 

The 360 semi-meridional variation of the Q-value is 
well fitted using the 7th degree polynomial function for 
all subjects. Figure 2 shows an example of the variation 
of the Q-value as a function of semi-meridian for subject 
number 22 with the following 7th degree polynomial 
function: 

Red: Fitted curve of 360 semi-meridional variation of 
the Q-value. 

Figure 3 shows that the majority of right eyes display 
the goodness of fit (r2) of polynomial function for all 
subjects for the asphericity above 0.9 and the median 
value is 0.94. The mean RMS fit error of polynomial fit 
is 0.02 ± 0.008. 

Figure 4 shows the variation in asphericity with semi- 
meridian region of anterior corneal surface for all sub- 
jects. It can be seen that the Q-value distribution of ante- 
rior corneal surface presents bimodal variation. These 
two peak values represent the least negative Q-values. 
 

 
Figure 2. Typical example of the variation of the Q-value as 
a function of semi-meridian. 

 
Figure 3. Box and whisker plot for the goodness of fit (r2) of 
the polynomial function for all subjects for the asphericity 
(Q). 
 

 
Figure 4. Variation in asphericity as a function of semi- 
meridian region of anterior corneal surface for all subjects. 

5. Construction of a 3d Model of Corneal 
Shape 

5.1. Rotation of the Coordinate System 
A new coordinate system ( ' 'X OY ) is obtained by rotat- 
ing the original coordinate system ( XOY )θ  degree in 
the counter clockwise direction. P  is an arbitrary point 
in the coordinate system with ( , )P x y  in the original 
coordinate system and ( ', ')P x y  in the new coordinate 
system. We can obtain the following coordinate rotation 
formula: 

' sin cos
' cos sin

x y x
y y x

θ θ
θ θ

= +
 = −

           (6) 

5.2. The Parametric Representation of the 
Equations of the Corneal Meridian Section 

We set the angle between a given corneal meridian sec- 
tion and the XOZ  plane is θ  degree. A new coordi- 
nate system ( XOY ) is obtained by rotating the original 
coordinate system ( XOY ) 0-(90 - )θ  degree in the coun- 
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ter clockwise direction around the Z -axis. Thus, the 
YOZ  plane can be coincided with the corneal meridian 
section in the new coordinate system ( XOY ). The equa- 
tions of the corneal meridian section in the new coordi- 
nate system ( XOY ).are as follows: 

2 2 2
1 2 0

0

2 (1 )

x

y a z a z r z Q z

 =


= + = − +
       (7) 

where ( , )x y  are the coordinates of the new coordinate  
system ( XOY ). 

Then by substituting 0-(90 - )θ  into θ  given in the 
formula (6), we obtain the following coordinate rotation 
equations of our corneal model: 

sin cos

sin cos

x x y

y y x

θ θ

θ θ

 = −


= +
             (8) 

We substitute the ,x y  given in Equation (7) into the 
Equation (8). The equations of the corneal meridian sec- 
tion on the original coordinate system (XOY) are as fol- 
lows  

2 2
0

sin cos 0

( sin cos ) 2 (1 )

x y
y x r z Q z

θ θ

θ θ

− =


+ = − +
     (9) 

Finally, we transform the Equation (9) into the fol- 
lowing form: 

2
0

2
0

2 (1 ) cos

2 (1 ) sin

x r z Q z

y r z Q z

θ

θ

 = − +

 = − +

           (10) 

5.3. Generation of a 3D Corneal Model 
360 semi-meridians are all chosen. Every point has an 
( , , )x y z  coordinate. The z  is a parameter and the z
values of a semi-meridian are selected from 0 mm to 3.5 
mm at 0.1 mm intervals. The ,x y  coordinate values of 
every point are calculated by substituting the corres- 
ponding z value into the Equation (11), 3D corneal sur- 
face plot is generated with the Visual C++ 6.0 program- 
ming [16]. Figure 5 shows a colorized 3D surface plot of 
anterior corneal surface from two different perspectives 
for the same subject as in Figure 2. Variation of color 
shows semi-meridional variation of the Q-value with 
0.02 color steps. From the top to bottom of color scale, 
the Q-value becomes more negative gradually. Figure 2 
shows that the Q-value of each semi-meridian is negative 
value (−1 < Q < 0) corresponding to the most common 
corneal shape (prolate ellipse) ([17]). Thus, the 3D sur- 
face plot of anterior corneal surface approximates a pro- 
late ellipsoid shown in Figure 5. 

6. Conclusion 
In contrast to the sagittal radius of curvature (rs), the  

 
Figure 5. 3D surface plot of anterior corneal surface for the 
same subject as in Figure 2. 
 
tangential radius of curvature (rt) is a true radius of cur- 
vature which can better represent corneal shape and local 
curvature changes especially in the periphery. 

In this paper, we proposed a nonlinear equation of 
corneal asphericity (Q) using the tangential radius of 
curvature (rt) on every semi-meridian. The 360 semi- 
meridional variation of the Q-value was well fitted using 
the 7th degree polynomial function for all subjects. We 
constructed a new 3D corneal model and present a more 
realistic model of shape of the anterior corneal surface. 
Our mathematical model could be helpful in the contact 
lens design and detection of corneal shape abnormalities, 
such as keratoconus or previous laser surgery. 
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