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ABSTRACT 

We will study global properties of evolutional Lotka-Volterra system. We assume that the predatory efficiency is a 
function of a character of species whose evolution obeys a quantitative genetic model. We will show that the structure 
of a solution is rather different from that of a non-evolutional system. We will analytically show new ecological features 
of the dynamics. 
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1. Introduction 

In this paper, we study global behavior of an evolutional 
Lotka-Volterra system for three species 
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for the unknown quantities  and 2  
which are the population of jth species and the mean 
character value of the second species, respectively. Here 

 are certain cons- 
tants, and 2  and 3  are death rate of the se- 
cond and the third species, respectively. The quantities 

2  and 3  are the predatory efficiency of the 
second and the third species, respectively. The number 

2  is the mean character value of the second species 
with minimal cost. The quantity  is the additive 
genetic variance and 
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0   is the cost of evolution, 
namely, if   decreases, then the cost increases. 

The effect of evolution is expressed in terms of (1.4) 
and the condition that the predatory efficiency  

 3 3 2 2ˆa a z z   is given by 

  0
3 3 2 2 3 2 2ˆ ˆ ,a a z z a a z z            (1.5) 

where  is a given constant and 0
3 0a    0

30 a z a   is 
a function of . An example of a3 is given by (C.1) in 
Section 3. Equation (1.4) follows the quantitative gene- 
tical model (cf. [1-5]. See also Section 7). The evolu- 
tional Lotka-Volterra system for two species was studied 
in [3], where rather detailed numerical analysis was made. 
As for the system for three species, very little is known 
as to global behavior of solutions even from a numerical 
point of view. In this paper, we shall make the analytical 
study of evolutional Lotka-Volterra model for three 
species and show several new phenomena caused by 
evolution.We also refer [6] as to non-evolutional case. 

z

Let  : ;t t     0 .  Let 0t  and  
 1,2,3N i  0

2zi  and  be given. We first prove 
that (1.1)-(1.4) with the initial condition 
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have unique smooth time global solution. (cf. Theorem 
2). Then, in terms of estimate of a solution obtained in 
the proof of Theorem 2, we study behaviors of a solution 
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related to evolution. Indeed, we will show that the be- 
havior of a solution near the equilibrium point is different 
from those in the case of tea-cup attractors for a non- 
evolutional system. Namely, the decay of the predator 

3  starts before the quantity 2  becomes small be- 
cause the predatory efficiency a3 tends to zero, by evolu- 
tion. We remark that although 

N N

3 2  plays an impor- 
tant role in the non-evolutional system near equilibrium 
point, the quantity 

N N

3 2N N  is crucial in the evolu- 
tional one. This is because the quantity 3 2N N  is 
related with the dynamics of evolution. We remark that 
the effect of evolution in our system is intermittent in the 
sense that in some subdomain of the phase space flactua- 
tions of pray 1 2  occur as in the case of non-evolu- 
tional model, while in other subdomain, evolution stabi- 
lizes large fluctuations of 2  and 3 . We also discuss 
the role of γ in (C.1), which is related with the sensitivity 
of evolution to the character bias 2 2 . (cf. Lemma 3 
and Section 4 for the case of a linear efficiency). In Sec- 
tion 5, we study the uniform convergence of solutions of 
an evolutional system as the cost of evolution tends to 
infinity, i.e., 

,N N

N N

ˆz  z

  decreases to zero. 

2. Time Global Solution 

We shall study the global existence and uniqueness of a 
solution of the initial value problem. We assume that 

 is the twice continuously differentiable 
function which satisfies 
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30 a z a 
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for some . Moreover we suppose that there exist 
 and  such that 

0
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The following local existence and uniqueness theorem 
is well known. 

THEOREM 2.1. Assume (2.1) and (2.2). Then there 
exists a 0   such that the system of Equations (1.1)- 
(1.4) with the initial conditions (1.6) has a unique 
continuously differentiable solution  1 2 3, ,N N N ,  
in 

2z

0 .t t  

0 .

 
In the following we study the existence of a global so- 

lution. We require the condition 

0 0 0 0
1 2 3 1 2 2ˆ, 0, ,0 0N K N N z z           (2.3) 

Remark. If  for some j, then, by the uni- 
queness, any solution of (1.1)-(1.4) satisfies 

0 0iN 
0iN  . 

Hence it reduces to a system with less unknown 
quantities. Note that we avoid this case in (2.3). 

We have 
THEOREM 2.2. Suppose that (2.3) is satisfied. Then 

the system of Equations (1.1)-(1.4) with the initial 
condition (1.6) has a unique global solution in 

0 .t t    
Proof. First we will show the apriori estimate 
 1N t K  for all t . Suppose that this is not true. Then, 

by the continuity of  1N t  and  in 
(2.3) we can take the smallest time  such that 
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By the local existence and uniqueness theorem, 
Equations (2.4) with the initial condition  
    

1
1 3 2 3 1t t

 has a unique solution. 
We denote the solution by 

0, , , ,N N z K N t z 2

 1 3 2, ,N N z   .
 

 Then (1.1)-(1.4) 
with the initial value  0

3 1 2,0, ,K N t z  at 1t t  has a 
solution  1 3 2, ,N N z    By the uniqueness of the solution 
we obtain    1,0,N N   .1 2, ,N N 3 2 3 2  

It follows 
that 
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N t
 by (2.3), we have 

a contradiction. Hence we have  By the 
continuity of 
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in a sufficiently small neighborhood of 1 . Then, the 
second term in the right hand side of (1.1) satisfies  

t

 2 1 2 2 2 11 a h N 0a N N    in a sufficiently small  
neighborhood of 1  On the other hand, since  .t
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a neighborhood of small, it follows that 
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there. Hence  is a decreasing function. This  
contradicts to 
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such that 
t

 1 ,N t K  which shows the desired estimate. 
Next we will estimate N2 from the above. Take 0   

that 2 1,c   and add ε times (1.2) to (1.1). Then we 
have 
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By the apriori estimate there exists M > 0 depending 
only on r, K and  such that 2d   .f s M  Hence we 
have 
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It follows that, for  0t t
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Note that the right hand side quantity depends on the 
initial value and the equation and depends neither on δ > 
0 nor on g > 0. 

We make the same argument for  3 .N t  Take ε so 
that 3 1,c   and add ε times (1.3) to (1.2). Then we 
have 
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By setting   2:v Nt 3N   we obtain the equation 

3 . Because this equation has a similar 
form as in the case 
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1  depending only on 2 3  and the initial 
values so that 

0M  , , ,r K d d
 1.f t M  Then we argue in the same 

way and we obtain 

     1
1 3 2 0 3 0v t M d N t N t          (2.11) 

In view of the definition of v we have 

      1 1
3 1 3 2 0 3 .N t M d N t N t     0     (2.12) 

Next we will estimate  1N t

2

2, N L

from the below. By the 
estimates of  and  from the above there exists 

 such that  It follows that 
1N N

K2L  1N t 2.

 11 2 2
1 1

2 2 2

2 2 1
2 1 2 2 1 2

2 2 2

d
1

d 1

.
1

N N a N
rN N K

t a h

N a N
a N N a N L

a h N

  


     


1

N
 

By integrating from  to t we obtain 0t

     1 1 0 2 2 0exp .N t N t a L t t        (2.13) 

We will estimate N2 from the below. There exist con- 

stants 3 3  depending on the equation and the 
initial values such that, 
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The estimate of  from the below can be shown by 
simple computations. 
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If 2 2ˆ ,z z V  then the right hand side of (2.17) is neg-
ative. Therefore  2 ˆz t z2  is decreasing near 1t t . 
This implies that  2 ˆz t z2 0    does not tend to 0  
when . Because 1t t  2z t  is continuous, we have 

 2 1 2 0ẑz t    . This is a contradiction. Hence we have 
the desired estimate. 

We shall prove the existence of a global solution. Set 
   1 2 3, ,NN Nt  N  and let 0t t    be the maximal 

interval for which  N t  and  2z t  are defined. If 
   , then we are done. Assume that .    We will 
show that the limits   and   mj t jN t: l  i

 2: limt z t   exist. We set  
   , , ,2 1 2 3 4, ,F N z F F  F F F  where j  is the right 

hand sides of the Equations (1.1)-(1.4), respectively. We 
write (1.1)-(1.4) into an equivalent system of integral 
equations 

F
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By the apriori estimates from the above,  
    2,j F N t z t  is bounded on 0t t  


. Hence there 

exists M such that    .j jN t N s M t s    It follows 
that the limit  limj t jN t




 : 0j jN 
  exists. If we define 

, then  jN t  is continuous up to 
t  . We will show that it is . For this purpose it is 
sufficient to show that 
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This proves the assertion. We can similarly prove for 
 2z t  .We can solve (1.1)-(1.4) with the initial values 

j  and  at  0 0
2 2 2: li, mtz z z t t  . Then by the 

unique existence of the solution we can extend  N t  
and  2  to some neighborhood of z t t  . This con- 
tradicts to the definition of  . Hence we have    . 
This ends the proof. 

Remark. 1) We remark that the apriori estimate of a 
solution does not depend on the cost of evolution 
0     and the additive genetic variance g>0. This 
means that the evolution of a character has little effect to 
the bound of sum of populations of three species. 

2) As a corollary to Theorem 2 we see that if there is no 
effect of evolution, i.e.,   0

3 2 3 3ˆ ,a z z a 
 

then (1.1)- 
(1.3) with the initial condition (1.6) has a unique global 
solution. Indeed, (1.1)-(1.4) can be split into (1.1)-(1.4), 

 .1 ˆd dz t g z z   2 2 2  The latter equation can be 
integrated. In view of the uniqueness of the solution of 
(1.1)-(1.4) we see that (1.1)-(1.3) has a unique solution. 

3. Intermittency of Evolution Effect 

We shall study the effect of evolution to dynamics of 
(1.1)-(1.4).More precisely, we will study how the dy-
namics of (1.4) is related with that of (1.1)-(1.3).By 
setting  we write (1.4) in the form 2 2ˆz z z 
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We also assume that  3a z  is twice continuously 
differentiable and nonnegative in the closed intervals 
 0 , 0  and  0 0,     . If we denote the 

right-hand side of (3.1) by  f z

  

, then, by (C.1) we 
have 

 
0 2 2

2
3

3 3
2

0 2
3 0 2

2
,

1

gzN a z gz
f z

a z N 



h







 
 

      (3.2) 

on 0 .z    We define  f z  on 0z    by the 
right-hand side of (3.2). Define, for 1,   

0 1
3 2 3 3 0ν : , .N N K a h 


  : 2       (3.3) 

We first study the behavior of  f z
2.

. 
LEMMA 3.1. 1) Assume    Suppose that 

 0 2 2
3 3 01 2N a    . Then  f z  has a unique zero z 

= 0 in the interval  0 0,   and  f z z  is negative 
on    0 0, 0   . 

Assume  0 21 2N a 2
3 3 0   . Then  f z  has 

simple zeros, 0z  and 0 on  0 0,  . The function 
 f z z  is negative on the intervals   and 0 ,0z

 00, z , while it is positive on  and  0 0, z 
 0 0,z  . (cf. Figure 1). 

Moreover, there exists  such that z0 has an 
asymptotic behavior 

1  0

     1 2 1
0 0 21 2 1 ,z K K O K N      

      ,

(3.4) 

when 2 10, .K N     Similarly we have 

       

    

1 1 1 10 20
3 0 3 2

0

1 2 1

1 1

,

z
a h N K

O K

 


 






  

  

  




     (3.5) 

when .K  
 

2) Assume 1.   If   10 2
3 0 3 2 11 ,a h N K 


   then 

 f z  has simple zeros, 0z  and 0 on .  0 0, 
The function  f z z  is negative on the intervals 

 0 ,0z  and  00, ,z
 

while it is positive on 
 0 0, z   and  0 0,z 

  1
1 N

. (cf. Figure 1). 
If 0 2

3 0 3 2 1a h K ,


 
 

then  f z  has a unique 
zero z = 0 in  0 0,   and  f z z  is positive on 
   0 0, 0 .  

 
(cf. Figure 2). 

 

 

Figure 1. 2 . 
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Proof. We divide the proof into 5 steps. 
Step 1. By (C.1) we have 

   

   

  
  

2 0 2 2
3 3 2 3 3 3 3 2

2 20 2 2
3 3 2 3 3 2

1γ 1 1 0 2γ 2
0 3 3 2 0

1γ 1 1 0 2γ 2
0 3 3 2 0

1 2 1

1

.

f gz

a h N N a z a h N

a h N a h N

K z a h N z

K z a h N z



 


 


2



 





 



 

 

   

  

  

    

 

 

  (3.6) 

Set 
2γ 0
0 3 3 2 01 ,A a h N z   ,

.

         (3.7) 

and define 

  2 1 1g K  A     
            (3.8) 

We consider the zeros and the sign of  g   in the 
interval .1 1    

Step 2. First we consider the case 2.   Assume that 
  is an odd integer. Because 1   is an even integer, 
we have    .g g   

1 0g K A   
 We have  

  and      0 1g   
0

0A 

 
. Be- 

cause we easily see that   if g 0 1  , it 
follows that g  has no zero point on  1,1 . 

In order to study the zero of g  in (0,1), note 
. One easily see that the assumption   0g  1

 0 2 2
3 3 01 2N a   


 is equivalent to  
1 0g K A     .  Because   0g   on (0,1], 

we see that  g   has only one zero point in the inter- 
val (0,1] if  0 2 2

3 3 0N a 1 2 .   In view of (3.6) we 
conclude that f


 has zero points 0  and 0 in the in- 

terval 
z

1,1  for some . It is also clear that if 
the opposite inequality 

00 z 1
 0 21 2  2

03 3N a    holds, 
then   0f z z   on    1,1 0  . 

Next we consider the case   is even. By the same 
way as in the odd case, we have  0 1  g ,  

 and  1 0g K      1 0A  .g K    Since 
g  is strictly increasing on (0,1), there exists unique 0 , 

00 1   such that  0 0.g   In order to show that 
 g   has no zero on  1,0 ,  we note  

 

 

Figure 2.  and 1γ    1
.


0 2

3 0 3 2 11 a h N K    

  2 11 .g K 
      

1 0K
 

 Because  and 2 1 0  
  on  1,0 , we see that g  has a unique 

zero point 0  on  1,1 . Clearly, g  has only one 
zero 0 , because    g g     for all 

, 1 1,     which proves the assertion. The sign of 
 f z z  is almost clear from the definitions of ,g g   

and the argument in the above. 
Step 3. We will show the asymptotic formula of 0  in 

(3.4). In view of the argument in Step 2 we may consider 
z

  0.g    
If we set  1 , 1 0       , then we have 

   
    

2 1
1 1 1

2 1 1

A K

K

 
 



  

,     

    

    
      (3.9) 

where    2O    is a polynomial of   with posi-
tive coefficients. Hence we have 

   

   

1

1

2 ( 1)

2 1

: .

K

A K K



  

     

   





  

   

 

         (3.10) 

Hence, for  sufficiently small we can uniquely 
solve (3.10). By an implicit function theorem we see that 

Λ

     is a smooth function of  such that Λ
   00 0,  1 .   It follows that 

   
    

2
0 0

1 2 2 1
2

1

1 2 1 ,

z O

K K O K  

 

    
 

     

    



.N
 

Therefore we have (3.4). 
Step 4. Next we will prove (3.5). We will solve 
  0,g    namely 

2 11 ,K A 
                  (3.11) 

for 0 1.   Hence we have 
1 1 1 .K A 

    


            (3.12) 

If   does not converges to zero when ,K    
then there exist c>0 and a sequence  

 0 1,2,n c n    . Since the right-hand side of 
(3.12) is bounded for ,n   this leads to a contradic- 
tion. Hence K  is asymptotically equal to  

 1 1 .A
    

By solving this relation we have 

   1 1 1 1
~ 1 A K

 
  

 



 

when .K    By (3.11) we have  
   1 1A K

1
1 

  
 




   . It follows that 

     

       

 

1 11 1  1 

1
1 1 1 1

1

1 1 .
1

A K

A K
K



 

 
 



  


 




 

  

 
       


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By simple computations we obtain (3.5). 
Step5. If 1,   then we have  

1  2
1 1 .g K   

  0g  
A   We can easily see that 

 on  1,1 .  The solution of   0g    is  

given by 1 11 .K A   The rest of the assertion is  

almost clear from this formula. This completes the proof. 
Remark. We will briefly discuss the difference of dy- 

namics of z in (3.1) for f and .f  We note that two func- 
tions are identical for 0 .z     For a small number 

0  , consider the case shown in Figure 2 for 1.   
Then f looks like as in Figure 3 where new attractive 
equilibrium points appear near 0  because we have 
made a modification to 3  so that 


a  0f   0.  The 

new equilibrium point corresponds to that of f  with 
modulus larger than 0 . Because of the new equilibrium 
points we have an apriori estimate of the solution for f. 
Namely, the orbit started from a neighborhood of the 
origin does not go beyond 0  This fact is important 
since, if otherwise, the efficiency 3  becomes nega- 
tive. Note that the dynamics of f and 



.
a z
f

z  
 is the same out- 

side some neighborhood of the boundary . We 
also note that a similar situation occurs in the case 

0

2   
with 0 0 .z  

z
 (cf. Figures 1 and 4).On the other 

hand, if 0 0    , then the dynamics of f and f  in 

0  may be different, while in other part both are the 
same. 
z  z

We also note that the apriori estimate holds for f. 
Therefore apart from the neighborhood of 0z    the 
dynamics of f is well approximated by that of f , for 
which f  we can make concrete analysis of the dynam- 
ics, although we do not have the apriori estimate. 
 

 

Figure 3. Picture of f.  .1γ 
 

 

Figure 4. Picture of f.  .2γ 

We will study behaviors of solutions under the effect 
of evolution. 

1) Behaviors near the equilibrium point.  
We consider how the dynamics of (1.1)-(1.4) is related 

to the dynamics (1.1)-(1.3) without evolution. We recall 
that (1.1)-(1.3) without an evolutional effect has what is 
called a tea-cup attractor. The isocline of (1.1)-(1.3), 
(3.1) is given by the family of equations 

  2 2
1

2 2 1

1 0
1

a N
r N K

a h N
, 


          (3.13) 

3 32 2 1
2

2 2 1 3 3 2

0,
1 1

a Nc a N
d

a h N a h N
 

 
        (3.14) 

3 3 2
3

3 3 2

0,
1

c a N
d

a h N
 


            (3.15) 

  0.f z                 (3.16) 

It follows from (3.15) that 

3
3 2

3 3 3

: .
d

a N A
c h d

 


           (3.17) 

One may assume that A is small since  is small. 
By (3.14) we have 

3 ~ 0d

  2 2 1
3 3 3 2

2 2 1

1 0
1

c a N
a N h A d

a h N

 
.    

      (3.18) 

Let us first consider the non-evolutional case, z = 0 or 
the case where evolution becomes stationary, namely 

. Then there exists C > 0 such that 0z   3 .a z C
 

Hence 2 3N A a  is small and 1  is close to K, by 
(3.13). It follows that there exists 1C such that 

N
0

   2 2c a N1 2 2 1 2 11 a h N d C    if 2  is sufficiently 
small. In terms of (3.17) and (3.18) 

d

3 2  tends to 
infinity when . This implies a typical behavior of 

2  and 3  around an equilibrium point when there is 
little effect of evolution. Numerical experiments show 
that the decrease of 3  occurs soon after the orbit ap- 
proaches to the equilibrium point, namely 

N N
0A 

N

N N

3 2N N  be- 
comes sufficiently large. 

Let us consider the evolutional case. Then the main 
difference from the non-evolutional case is that  3a z

 
may tends to zero. For the sake of simplicity, let us con- 
sider the case 1   or 2  . Assume that there exists 
an orbit such that 3 and 1N  3 2N N  grows large. Be- 
cause 3 2N

z

N  also grows large, it follows from (3.4) 
that 0  tends to zero, and we are in the situation that the 
orbit of 0  tends to 0 . Therefore  tends to 
zero. Hence the boundedness of 2  implies that 

z
z  l  3a z

N
   3 3 2 2 33 3a h N1c a N d   becomes negative. There- 
fore, by (1.3),  exponentially decreases. Note that the 
decrease of 

3N
 3a z  begins after 3 2N

N
N  exceeds a 

certain constant independent of  and  when 2N 3
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1  . This exhibits a strong contrast to the non evolu- 
tional case where the collapse of  occurs after 3N

3 2

2) Effect of the parameter 
N N  becomes sufficiently large. 

  to evolution. 
In the predatory efficiency  in (C.1)  3a z   repre- 

sents sensitivity to z. Namely, as   increases,  3a z

1

 
for small z approaches to a constant function. The dy- 
namics of z is quite different in the cases    and 

2  . Indeed, if 1   and 

  1 32 0
0 3 3 2 1 2 3

0a




20 3

2
1 ν ,

N
l a h N K

Nl h


   

then evolution progresses. (cf. Figure 2 and Figure 3). 
The latter condition means either the cost of evolution is 
small, 1   or 3 2 1N N  . We note that the attract- 
tive equilibrium points near 0  have the effect to 
hold the orbits around 0 . Conversely, if  

3 2 1

z  
z  

 2 0
0 31 l a  1

Kh N 


  , then we see that fluctuations in 
progress and rest of evolution takes place. 

In the case 2   we have a different situation. In- 
deed, if  0 2 2

3 3 01 2 ,N a      then the evolution be- 
comes stationary. If otherwise, then similar fluctuations 
in progress and rest of evolution as in the case 1   
takes place. We will show in the next section that in the 
linear case  3a z z  

2
 we have a sharp contrast to 

the case  
N N

. 
3) Fluctuations of  and . 1 2

The rhythm of 1  and 2  is also observed in a 
non- evolutional system and it is related with the struc-
ture of a tea-cup attractor. We have a similar phenome-
non for an evolutional system. 

N N

Let 1 2 3  and  be a solution of (1.1)- 
(1.4). One can show by Poincaré –Bendixon theorem that 

1  and 2  are an oscillating solution of two species 
under appropriate choice of parameters. Note that  
tends to zero exponentially. By the continuity of solu- 
tions of the initial value problem with respect to an initial 
value and the apriori estimate of a solution, one can see 
that for every  and 

, , 0N N N   

N

0T 

z

N
z

0   there exists 0   
such that if 

       
     

1 1 2

3

0 0 , 0 0 ,

0 , 0 0 ,

N N N

N z z

2N 

 

  

  

 




 

then 

       
     

1 1 2

3

, ,

, ,

N t N t N t

N t z t z t

2N t 

 

  

  

 



.


 

for all  Here, without loss of generality we 
may assume that the initial time is 0.Especially, this 
shows that there appears a rhythm of 1  and 2  for 
some interval of time. Note that  is small and the 
evolution becomes stationary, i.e., . 

0 t T 

N

0
3 3a a

N

3N

In order to estimate T, we take    1 10 0N N  , 
   2 20N N  0 ,  and   0z z  0 . By integrating the 

equation of , one has 3N

     
 

3 3 2
3 3 3 0

3 3 2

0 exp d .
1

t c a N s
N t N d t s

h a N s

 
     

  

Hence, if we have 

 
 

3 3 2
3 0

3 3 2

d ,   0
1

t c a N s
d t s t t T

h a N s
  

       (3.19) 

for sufficiently small  , then we have  
   3 3 0 e TN t N  ,   from which we have the esti- 

mate of time length T,  1
3ln 0 .T N    We have a 

similar condition like (3.19) in the general case 

0 0t t t T  
0 .T T

 by replacing 0 and T, respectively, by 0  
and 

t
  A similar condition like (3.19) holds for 

some  and T if we have an averaging property: 0t

 
 

3 3 2
30

3 3 2

1
lim d .

1

t

t

c a N s
s d

t h a N s


  

4) The limit case when evolution cost tends to zero. 
We assume 3 . If the evolution cost tends to zero, 

namely 
0N 

  grows from zero to , then, by (3.4) and 
the definition of 


,K   approaches to the origin. 0

Therefore, the evolution progresses, namely z ap- 
proaches either of the points 0 . It follows that the 
predatory efficiency 3 . By the same reasoning as 
in 1) 3  tends to zero. We note that in the limit case 

z


0a 

N
   the third species dies out. This agrees with an 
ecological observation. 

4. Evolution for a Linear Predatory  
Efficiency 

We will discuss the evolution in the case 

 3

, if  0

0,      if otherwise,

z z
a z

     
 


         (4.1) 

where 0   is a real constant and 0 
3a
 .As in the 

previous case we make modifications of  in some 
small neighborhood of the zero point 

z

0     such 
that  1

3a C  . 
For the sake of simplicity, we assume that 0 

.t t  

. By 
repeating the same arguments as in Section 2 we see that 
the system of Equations (1.1)-(1.4) with the initial condi- 
tion (1.6) has a unique global solution in  0

We will study the dynamics of the evolution in relation 
with the populations  and .We now define 2N 3N

     2

3 3 2: 1f z z N h N z   


     .     (4.2) 

The condition   0f z   is equivalent to 
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  2

3 2 31z h N z N     0



.  

By definition we may consider (4.3) in the set 
 because, if otherwise,  : ; 0I z z   

  0.f z z     Set 

    2

3 2: 1z z h N z      

and calculate the minimum of  z  in I. It is taken at 
 3 2 3 21 3z h N h    N  with the minimum value 

given by 

   
3 3 2 2

3 2 2 3
2

3 2

1
4 ~ 4 O

27 27

h N N h
N

h N

 
 


   .  

We recall that   0f z   is equivalent to 
 Therefore, if    3 0.z N  

 3 2
3 24N N 2

3 27h      modulo terms of  2O ,N  
namely 

 3 2 0 0 3, 2 3 3N N c c h     ,    (4.4) 

then there appear an attractive equilibrium point 0  near 
the origin . This means that the predatory effi- 
ciency 3  is close to a constant function if 

z
0z 

a 3 2N N  
is sufficiently small. Indeed, the equilibrium point  
can be estimated as 

0z

   2

0 3 2 32 2
3

O .z N N N N
h




     
 

3

2  

In view of the linearity of  and the smallness of  3a z

3 2N N  near the equilibrium point we see that  3a z  
is almost constant for small changes of 3 2N N . 

Suppose now that (4.4) does not hold. Then the attract- 
tive equilibrium point near 0z   disappears, and there 
remains an attractive equilibrium point near the zero of 

3 .Hence the evolution progresses and  tends to 
zero. This alternative between the rest and the progress 
of evolution shows a high contrast to the case of a con- 
vex predatory efficiency function discussed in the previ- 
ous section. 

a  3a z

5. Behaviors of Solutions as Cost Increases 

In this section we study the convergence of a solution of 
an evolutional system to that of a non-evolutional one 
when the evolutional cost increases, namely   de- 
creases to zero. Let    ,j jN t N t   and 

   2 2 ,z t z t 


 be the solution of (1.1)-(1.4). Let 
jN t  be the solution of the non-evolutional system 

(1.1)-(1.3), namely   0 .a 
0T 

3 2 2 3

THEOREM 5.1. Assume (2.3). Let  be arbi- 
trarily given. Then we have 

ˆa z z  Then we have 

  
0

lim ,N t N t





    

uniformly in t on  0 0 .t t T t  

Proof. By integrating (1.4) we have 

   
  0

3 3
2 2 2

3 3 2

ˆ exp d .
1

t

t

N s ag
z z g t s s

a h N s
      

  
 (5.1) 

If we make the change of variables,  σ g t s   , 
then we have 

 1

2 2 0
ˆ e d

t
z z w ,                (5.2) 

where  1 0t g t t    and 

 
 

  
1

3 3

2
1

3 3 2

.
1

N t g a
w

a h N t g

 


 








 
 

Because  1
3N t g   is uniformly bounded in   

by the apriori estimate, it follows that e  times the in- 
tegrand is uniformly bounded in 0t  when t 0  . 
Hence, the modulus of the integral can be bounded by a  

constant times 
0

d .e  
   It follows that   2 2

2ˆ 0z z 

uniformly in  when 0t t 0  . This entails that 
 23

0ẑa z 2 0a 3   0  uniformly in . 0

For the sake of simplicity we write (1.1)-(1.3) in 
t t

      
0

0, ,
t

t
N t N t N F N s s     d ,

d ,

 

where we use the same notation F as in (2.18). Since 

         
0

, ,
t

t
N t N t F N s F N s s      

we have 

         
0

, ,
t

t
N t N t F N s F N s     s d ,   (5.3) 

where the absolute value of a vector means the norm of a 
vector. Because we have the uniform estimate of 

 ,N s   in   by (1) of Remark in Section 2, we have 

     
    0

1 3

,

, ,

F N s F N s

K N s N s a a







   




3

 

for some  independent of 1 0K   . 
By (1.5) and (5.2) we have 

    10
3 2 2 3 0

ˆ e d
t

a z z a a w .            (5.4) 

Because  0 0a ,  there exists a constant 2  
independent of 

0K 
  such that the right hand side of (5.4) 

can be estimated by 2 .K  It follows that for any 0   
there exist 0 0   and A>0 such that, for 00     

         , ,F N s F N s A N s N s .        

Therefore we have 

       
0

, ,
t

t
N t N t T A N N d .           
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Appendix 

(A) The following lemma is used in Section 5. 
LEMMA. (Gronwall) Let  ,I a b    be a 

closed interval and let .s I  Let u be continuously dif- 
ferentiable in I such that, for some constants  and 

 the inequality 
0c 

0A 

   0 d
t

s
u t c A u       

holds true for . Then we have  t I
   expu t c A t s   on I. 
Proof. For the sake of simplicity, we consider the case 

.  Denoting the right hand side of the inequality by 
v(t) we have the relations,  
t s

    ,u t v t  v s c  and 
 v t    .Au t Av t 

 A t s 

 Multiplying the last inequality  

with , we have e       d d e 0.A t st v t    By in-  

tegration we get     e .A t su t v t c    
(B) We will briefly show how to deduce (1.4) from the 

theory of quantitative genetics. Let 2 2z z z  , g and w 
be the average character value,the additive genetic vari- 
ance and the average adaptability of the character value z, 
respectively. Following the quantitative genetical model 
we have (cf. [1] and [2]). 

   d d log .z t g z W z    

The left-hand side is the speed of evolution of a char- 
acter value. Following Fisher, [7] we have e .rW   We 
assume that (cf. [3-5]) 

   1
2 2d d logr z N N t W  2 ,  

 2
2 exp 2 ,W z    

where   is the cost of evolution. By definition we have 

3 32 2 2 1
2

2 2 2 1 3

d1
.

d 1 1

a NN c a N
d

z N t z h a N a h N

   
          3 2

(7.1) 

Here ,  and  are certain constants. We have 2a 2h 2d

3 3 3 3

3 3 2 2 2 3 3 2

1
.

1 1

a N N N

a h N N N a h N
 

 
 

Because one may regards j  as a constant function 
when z varies, the right-hand side of (7.1) can be re-
placed by 

N

   
3 3 2 3 3

2 2
2 3 3 2 3 3 2

.
1 1

N a N N a

N a h N a h N

 
 

 
 

Hence we obtain (1.4).  
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