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ABSTRACT 

In this paper, we first summarize several applications of the flux approximation method on hyperbolic conservation 
systems. Then, we introduce two hyperbolic conservation systems (2.1) and (2.2) of Temple’s type, and prove that the 
global weak solutions of each system could be obtained by the limit of the linear combination of two systems. 
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1. Introduction 

It is well known that no classical solution exists for the 
following initial value problem 

  0t x
u f u                (1.1) 

with bounded measurable initial data 

   0,0 ,u x u x              (1.2) 

where  is the unknown 
vector function standing for the density of physical 
quantities and 

 T

1 2, , , , 1n
nu u u u R n 

    1 , , n



  T
f u f u  f u  is a given 

vector function denoting the conservative term. These 
equations are commonly called conservation laws. 

Since, in general, the discontinuity or the shock waves 
will appear in the solution to the Cauchy problem (1.1)- 
(1.2), there are two standard methods to obtain a weak 
solution or a generalized solution  for given hyper- 
bolic conservation laws. One is to construct a sequence 
of smooth functions to approximate . For example, to 
add a small parabolic perturbation term to the right-hand 
side of (1.1): 

u

u

  ,t x
u f u u  xx              (1.3) 

where 0   is a constant. For each fixed  , we have a 

classical solution u  of (1.3)-(1.2), then we try to prove 
that the limit  of uu   as   goes to zero is the solu- 
tion of (1.1)-(1.2), where the compactness could be ob- 
tained by the compensated compactness arguments [1,2] 
when the functions have only the uniform boundedness 
in a suitable Banach space or the technique given in [3] 
when the functions are of total bounded variation 
estimates; another is the finite difference method [4]. We 
construct a sequence of simple functions by choosing a 
suitable difference scheme which is based on the given 
hyperbolic conservation laws and then prove the com- 
pactness of the sequence of functions. Normally, in the 
second method, we know that the sequence of simple 
functions is of total bounded variation estimates. 

However, the third front tracking method [5], here we 
just call it the flux approximation method, is also used in 
many different cases. 

In [6], Dafermos first introduced this method to the 
scalar conservation law 

 x
u 0,tu f                (1.4) 

where  is a scalar function, and u  f u



 is a locally 
Lipschitz continuous function. He constructed a sequence 
of piecewise linear functions f u  and a sequence of 
step functions  0u x  to approximate  f u  and the 
initial date  x0u  respectively. Let the solutions of the *Corresponding author. 
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following Cauchy problem be :  ,u x t

0
x

u 

 0 .u x

 tu f               (1.5) 

with the initial data 

 ,0u x              (1.6) 

For each fixed  , since the simplicity of the flux 
function  f u  and the initial date  0u x , the 
sequence of solutions  can be easily obtained 
first. Then by using the standard compactness argument 
by Oleinik, the convergence of  can be proved 
as 

 ,u x t

 ,u x t
  goes to zero. 

Later, the above idea was used to study the existence 
of Riemann solutions for some special systems of two 
equations. For example, in [7], the author first studied the 
Riemann solution for the Cauchy problem of the follow- 
ing system 

 
t x

t

v u

u f

 
 

0,

0
x

v 
             (1.7) 

with initial data 

        0 0,v x u



,0 , ,0 .v x u x x         (1.8) 

The more details about the Front Tracking method for 
systems of hyperbolic conservation laws can be found in 
the books [5,8] and the references cited therein. 

In [9], Keyfitz introduced a different way to approxi- 
mate the nonlinear flux function f v

 0
x

v 

 

. Consider the 
Cauchy problem 

 
0,t x

t

v u

u f v

 
  

           (1.9) 

with the Riemann initial data, where  since    0f v 

the system is hyperbolic or 31

3
f v  v  as required in  

[9]. For each fixed  , System (1.9) is strictly hyperbolic 
and Riemann solution     , , ,v x t u x t 

  

 could be 
easily obtained. Then a Riemann solution of system (1.7) 
follows since it is the limit of  ,x t, ,v x t u  as   
goes to zero. 

The method of flux approximation was applied by the 
first author of this paper to study the existence of weak 
solutions [10,11], the existence of global Lipschitz solu- 
tions [12], 1H   compactness for weak entropy-entropy 
flux pairs of the isentropic gas dynamics [11], L  
estimate for isentropic gas dynamics with a superline 
source [13], the global  solutions of Aw-Rascle 
traffic flow model [14] (or the nonsymmetric systems of 
Keyfitz-Kranzer type) with negative adiabatic exponent 
and so on, which we shall introduce below. A new ap- 
plication of this method related to the LeRoux system is 

introduced in Theorem 1, Section 2. 

L

2. A New Application of Flux Approximation  
Method 

In this section, we introduce a new application of the flux 
approximation method. We found two hyperbolic con- 
servation systems of Temple’s type [15], and the global 
weak solution of each system could be obtained by the 
limit of the linear combination of two systems. 

Consider the hyperbolic systems 

2

2

1
2 0

4

0
4

t

x

t

x

u
u v

u
v

u v

  
,      


       

          (2.1) 

and 

 
 

2 0,

0.

t x

t x

u u v

v uv

   


 
             (2.2) 

By simple calculations, two eigenvalues of system (2.1) 
are 

1 22

2
,F F

D D
   

2

2
,



          (2.3) 

where 
1

2 24D u v  , with corresponding right eigen- 

vectors 
T T

1 21, , 1,
2 2

u D u D
r r

       
  

 



      (2.4) 

and 
T

1 1 4 4 3

T

2 2 4 4 3

4 8 4
, 1,

2

4 8 4
, 1, .

2

F

F

u u D
r

D D D

u u D
r

D D D





             
   


            

,

  (2.5) 

The Riemann invariants of (2.1) are 

   , , ,w u v u D z u v u D.            (2.6) 

Thus, the curves const., const.w z   are straight 
lines on the  ,u v -plane. 

Similarly, two eigenvalues of system (2.2) are 

1 2

3 3
,

2 2 2 2
B Bu D u D     ,         (2.7) 

with the corresponding right eigenvectors (2.4) and 
T

1 1

T

2 2

3 1
, 1,

2 2 2

3 1
, 1, 2.

2 2 2

B

B

u u D
r

D D

u u D
r

D D





   
2,          

   


             

   (2.8) 
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The Riemann invariants of (2.2) are also given by (2.6) 
Therefore if we consider the bounded solution in the 

region: 0 , it follows from (2.5) (or (2.8)) that 
both characteristic fields of system (2.1) (or system (2.2)) 
are genuinely nonlinear in the sense of Lax [16]. 

0v v 

Now we prove that both systems (2.1) and (2.2) have 
the same entropies. 

Let 3 3
,

2
D   u . Then for smooth solutions, (2.2) 

is equivalent to the following system: 

 
22
3

0

3
0.

2 8

t x

t

x

 

 

  


       
 

           (2.9) 

Considering the entropy-entropy flux pair  ,q  of 
system (2.2) as functions of variables  ,  , we have 

 
1

31
, ,

4
q q         


    
 

.


    (2.10) 

Eliminating the  from (2.10), we have q
4

31
.

4   


                (2.11) 

Similarly, for smooth solutions, (2.1) is equivalent to 
the following system: 

1

3

4 0

3 0

t x

t

x

 

 


 


      
 

.



            (2.12) 

For the entropy-entropy flux pair   of system 
(2.1), we have 

, q

 
4

3, ,q q     
 

 
 

4 .

 

2

         (2.13) 

Eliminating the q  from (2.13), we have also the 
same entropy Equation (2.11). 

Using the compensated compactness arguments, we 
may easily obtain the global existence of weak solutions 
for the Cauchy problem of system (2.2) in the upper 

-plane  or system (2.1) in the region 

0  for a suitable constant , which could be 
guaranteed since the curves  are 
straight lines, where i ic d

 ,u v
v v

 0v 
0 0v

w c
, 2

, , 1,i iz d i  
1i, ,   are four suitable 

constants. The details could be found in Chapter 7 of [17] 
or the original paper by Diperna [18]. 

Now we consider the linear combination of systems 
(2.1) and (2.2): 

 

 

2
1 22

1 22

1
2 0

4

0,
4

t x
x

t x

x

u u
u v

u
v uv

u v

 

 

  
       


        

where 1 2,   are two positive flux approximation per- 
turbations. 

The eigenvalues of system (2.14) are solutions of the 
following characteristic equation: 

 

   

2

12 1 2
2 4

2 2
2

4
3 2

2 0.

u
DD

u v

  
  



  

  

         (2.15) 

Two roots of Equation (2.15) are 

1
1 22

1
2 22

2 3
,

2 2

2 3

2 2

u D

D

u D

D


 


 

      


        


         (2.16) 

with the corresponding right eigenvectors (2.4) and the 
Riemann invariants (2.6). Moreover, 

1
1 1 23

1
2 2 23

4
2 ,

4
2 .

r
D

r
D


 


 

    

   


          (2.17) 

Therefore both characteristic fields of system (2.14) 
are genuinely nonlinear in the region: . 0

Now we consider the Cauchy problem of system (2.14) 
with initial data 

0v v 

         0 0,0 , ,0 ,u x v x u x v x        (2.18) 

and have the main results in the following theorem 
Theorem 1. Suppose the initial data     0 ,u x v x

0v 
,

0  
be bounded measurable and 0 0  for a 
suitable constant 0 . Then for any fixed 1 2

 v x
v   , the 

global weak solution  1 2, 1 2, ,v u   of the Cauchy 
problem (2.14) and (2.18) exists. Moreover, for fixed 1  
(or 2 ), there exists a subsequence    (or 2 2,n nv u

 

 n1 1,nv u
 

) of  1 2 1 2, ,,v u   , which piontwisely 
converges, as 2n

  (or 1n
 ) goes to zero, to the solution 

of the Cauchy problem of system (2.1) (or (2.2)) with the 
initial data (2.18).  

The proof of Theorem 1: The proof of Theorem 1 
can be obtained by the standard vanishing artificial 
viscosity method coupled with the compensated com- 
pactness argument and the famous framework of DiPerna 
[18] for strictly hyperbolic, genuinely nonlinear systems 
of two equations. We add the viscosity terms to the right 
hand side of (2.14) and consider the following parabolic 
system 

,v 

    (2.14) 

 

 

2
1 22

1 22

1
2 ,

4

4

t xx
x

t xx

x

u u
u v

u
v uv

u v

 

  

  
       


        

x

x

v u

v



   (2.19) 
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with the initial data (2.18). According to the calculations 
given in (2.3) and (2.7), we know that the two eigenval- 
ues of system (2.14) are 

1 1 2 2 1 22 2

2 3 2 3
,

2 2 2 2

u D u D

D D
        

        
   

(2.20) 

with the corresponding right eigenvectors (2.4) and the 
Riemann invariants (2.6). 

For any constant , the curves  or c w c z c  is a 
straight line on the  ,u v

, , i 
z 

v

-plane, then we may choose 
suitable constants such that  

1 2 1 2  forms a bounded invari- 
ant region. Moreover, in this region, 1  for a 
suitable constant 1 0 . Since system (2.14) is strictly 
hyperbolic and genuinely nonlinear, and the viscosity so- 
lutions  of system (2.19) are uniformly 
bounded, then the famous compactness framework of 
DiPerna [18] gives us the convergence of 

1,2
 d

 

i ic d
,d

v 

1 2, ,

 , :u v c w c 

 1 2, , ,v u  

0, v v

  1 2 1 2 1 2 1 2, , , , , ,

0
lim , , , . .

on any compact set in ,

v u v u a

R R

         









 e



     (2.21) 

where the limit   is a weak solution of 
system (2.14) or satisfies (2.14) in the sense of distri- 
butions. For fixed 

1 2 1 2, ,,v u   

1  (or 2 ), a
1 2,v u 

nd for the generalized 
functions , we may rewrite system (2.14) 
as 

 1 2, , 

 

 

2
1 22

1 22

1
2

4

.
4

t ,
x

x

t x

x

u u
u v

u
v u

u v

 

 

  
       


        

v

v





     (2.22) 

Since the left hand side of (2.22) or system (2.1) is 
also strictly hyperbolic and genuinely nonlinear, and the 
functions  are uniformly bounded, in- 
dependent of 1 2

 1 2 1 2, ,,v u   

,  , so the DiPerna’s result [18] reduces 
the following convergence 

   1 2 1 2 1 1

2

, ,

0
lim , , , . .

on any compact set in ,

v u v u a

R R

     

 







e



      (2.23) 

where the limit  is a weak solution of system 
(2.1) or satisfies (2.1) in the sense of distributions, which 
ends the proof of Theorem 1. 

 1 1,v u 
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