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ABSTRACT 

In this paper, the problem of identification of the characteristics of the rotor unbalance on two supports is investigated 
as the inverse problem of measurement. The vibration of rotor supports in two mutually perpendicular directions used 
as the initial information. The inverse problem is considered, taking into account the error of the mathematical descrip-
tion of rotor-bearings system. To obtain estimates of real unbalance characteristics, the hypothesis as to the exact solu-
tions is applied. The method of Tikhonov regularization is used to obtain stable results. Test calculations are given to 
illustrate the proposed approach. 
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1. Introduction 

The constructional differences of rotors and their do-
mains of exploitation led to the creation of special meth-
ods of balancing. In many cases, the only criterion of 
rotor balancing is the absence (or the permissible value) 
of dynamical responses of supports. The compensation of 
deflections on length of rotor is considered only as the 
means to arrive of minimum of main criterion. In other 
cases, the reach of minimum of its deflections or its 
bending moment is taken as the criterion of rotor balanc-
ing. Such difference in choice of criterion can explain 
that for each case the parameters that are the main for 
given type of rotors are chosen. The reactions of supports 
or corresponding vibrations are taken for criteria of ro-
tors balancing in particular to turbine-generator-building 
and the rotor deflection axis in jet engine building [1,2]. 

The basis of the most existing methods of flexible ro-
tors balancing is the measuring of rotor vibrations and its 
supports, namely measuring of deflection and phases of 
rotating rotor followed by the choice and putting of trial 
plummets according to the shape of normal mode of vi-
brations. 

The motion of flexible rotor relative to the rotating to-
gether with its coordinate system (one of axis coincides 
with the geometric axis of rotor) is described by Fred-

holm equation of the first kind. This equation is substi-
tuted for the matrix equation of form: 

 2 2 ,2A A A     y y e y e  

where  and  are vectors of dimension ; y e n
 ikA a  is the quadratic matrix of dimension n n ; 

  is the frequency of rotating. The coefficients of in-
fluence  ikA a  are defined experimentally for each 
plane of correction by trial starts. 

Balancing plummets are calculated with the help of the 
initial values of vibrations i  from condition of re-
maining amplitudes minimum. The definition of balanc-
ing plummets is made by least squares method. The in-
formation about experimental complex values of influ-
ence coefficients that are obtained by different balancing 
is neutralized as a rule. 

y

The main tendencies of balancing methods develop-
ment are connected with ways of development of coeffi-
cient influence definition [2,3]. 

Besides, current passive methods do not give the com-
plete information about the position of unbalance if the 
rotor has a large length along the axis of rotation. 

The suggested algorithms of unbalance evaluation use 
the experimental data about vibrations (accelerations) of 
two rotors’ support in two mutually perpendicular direc-
tions during the work and a few rotor rotations as the 
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initial information. These algorithms do not demand spe-
cial conditions of work or the installation of trial plum-
mets. 

2. Problem Definition 

Let us consider a deformable rotor rotating on two 
non-rigid supports [4,5]. We introduce rectangular right- 
hand coordinates system O . The axis O coincides 
with axis of the rotating shaft of rotor. The axis O  
belongs to the plane of rotor in horizontal position. The 
axis O  has vertical direction. We obtain equations of 
rotor motion in the following [4,5]: 

1) Weight’s centers and stiffness’s centers of cross- 
section of rotor coincide; 

2) Eccentricity of rotor’s disk is one-order infinitesi-
mal with a displacement under vibrations. 

The motion of rotor on two non-region supports is de-
scribed by system of ordinary differential equations of 
18th order [4,5]. Unbalance of rotor is modeled by some 
external load (EL). The value of this EL and the place of 
its action is it necessary to find. It is assumed that the 
vibrations of rotor supports in two mutual perpendicular 
directions are obtained from experiment. Let us suppose 
that the functions     1 2 3, ,z t z t z t   characterize the 
unbalance of rotor (EL) 

      
   

2 2
1 2

2
3

sin , cos ,

sin ;

r r

r

z t m r z t m r

z t hm r

     

  

  

 

 




 

where  is the radius of rotor, r  is the mass of un-
balance reducing to a surface of rotor, 

r m
  is the angular 

velocity of rotation,  is unbalance arm, h   is angular 
deviation of the factor of EL with respect to correction 
plane. If the unbalance is absent then the functions 

3  will be equal to zero. We suppose 
that with the help of acceleration transducers the function 
have been recorded (

     , ,z t t z t1 2z

   ,A Bt  t


  are the acceleration of 
supports in horizontal direction, B are the 
acceleration of supports in vertical direction). As an ex-
ample, we consider the equation for the unknown func-
tion  only. 

  ,A  t  t

;

1z t 
Then the problem of unbalance measurement is re-

duced to the solution of integral equations of Volltera 
first kind 

       1 1
0

d , 0,
t

t z t u t t T     

or 

1 1 1, 1, ,pA z B u  x             (1) 

where 1  is a linear integral operator A  1 : A Z U , 

1  is the searched characteristic of EL, 1,z pB


 is a linear 
irreversible operator 1,  depending on vec-
tor parameters of mathematical model (MM) of “rotor- 

supports” system  (    is the sign 
of transposition); 

 :pB X U

 T

1 2, , , np p p p   T
x

l t
i i ip p p

 is the vector-function of initial 
data. Subjective factors influence on the definition of 
parameters of system “rotor-supports” MM and therefore 
the parameters are supposed to have their values within 
certain limits:   1 i n , . In this way the 
vector  can be changed inside the known closed re-
gion . 

p
p D nR 

The equations for required functions    3z t2 ,z t  will 
be similar to the Equation (1). 

For a rotor on two supports for function  1 ,z t  
   , t

p E

2 3  the vector parameters  of MM 
has a kind 
z t z 11Rp D 

 , ,Bb a T
b, , , , , , , ,A B A B AJ m m m c c b  

,A Bc c

, 

where E is module of Jung of rotor material, m is the 
mass of rotor, mA is the mass of the A support, mB is the 
mass of the B support;    are the stiffness of sup-
ports A and B with respect to the horizontal and vertical 
direction; ,bA Bb   are the coefficients of external friction; 
a is the distance of gravity centre of rotor to the A sup-
port, a + b = l is the shaft length of rotor. 

The vector function x  is obtained using the ex-
perimental data (vibrations of supports) where the noise 
is present. Therefore it is convenient to think that each 
component of vector function x  and function u  
belongs to L2 [0, T]. Under this conditions the problem of 
equation (1) solution belongs to ill-posed problems if the 
searched functions  1z t  belong to  0,C T  as the 
operator A in (1) is completely continuous [6]. 

The value of function deviation 1,u   from the exact 
function is given (if exact operator  is linear): exu 1,exB

1, 1, 0 1, ,ex e exU
B A A h1,u u 1, pB  x ех U

     x x  

where 0 0 ;
X

b d    x   

0 1, 1, ,p p ех ех XX U X Up D
B d 1,sup ,b B B 

 
   x x ; 

ехx  is the exact vector function of initial data; 1, ,ехВ  

1,exA  are the exact operators; , b
0
, d,  are given val-

ues. 
h

3. Statements of Identification Problem as 
Inverse Problem of Measurement 

Let us consider the set of possible solutions of Equation 
(1) with account of whole error of initial data  

 0, 1 1, 0: ,h p ZU
Q z z Z A z B h z      x . 

The set 
0,hQ   is unbounded for any 0 0   as this 

problem is ill-posed [6]. 
For definition of stable approximate solution is used 

the regularization method of Tikhonov [6]. This way is 
based on the search of following extreme problem solu-
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tion: 

   
, 0

0 inf
hz Q

z


   z ,           (2) 

where  z  is the stabilizing functional which is de-
fined on 1Z  ( 1Z  is the everywhere dense set into Z). 

The functional  z  is chosen as follows  

     2
1

2 2 2
0 10, 0

d
T

W T
z z q z q z     t , 

where . 0 1

The choice such functional is explained by the follow-
ing reasons: 

0, 0q q 

• The solution 0z  of an extreme problem (2) least will 
deviate zero and to have least first derivative in 
root-mean-square sense; 

• The solution 0z  will give an estimation from below 
of exact solution z  of Equation (1) T    0 Tz z  

z
. 

From the practical point of view the function  
gives a guaranteed estimation from below sizes of real of 
a rotor in sense of functional 

0

 z . If  0   0z  
( there is known limiting an allowable size for the 
given type of rotor machine) then the rotor is working in 
emergency operation with guarantee. 

0

If the inequality   0
0z     is carried out, then no 

objective conclusions can be made. We will be named 
the solution of extreme problem (2) as estimation from 
below of real unbalance. 

In work [7] regularizing algorithm was suggested for 
Equation (1) with approximate linear operator A  for 
Banach spaces ,Z U , which based on the regularization 
method [6]. 

The solution of problem (1) is reduced to the solution 
of following extreme problem: 

 
1 1

2

1, 1 1 1,

1, 1, 1

inf , , inf

, ,

Uz Z z Z M z u A A z u z

M z u A


 


 


 

      

   

,  (3) 

where  z  is stabilizing functional for Equation (1) 
which defined on 1Z , the set 1Z  is everywhere dense 
into Z . 

Regularization parameter   can be obtained from 
equation of general discrepancy: 

  
1

22 2
1 1, 1, 0 1, 1, 1,

U Z
 ,A z u h z u A          (4) 

where  is measure of discrepancy.  1, 1,u A 
However at realization of such approach there are 

large difficulties at definition of size d, h as the absolute 
exact operators 1, 1,  are unknown and basically 
they cannot be constructed. However at realization of 
such approach there are large difficulties at definition of 
size d, h as the absolute exact operators 1,

,ех exB A

ехB  is un-
known and basically it cannot be constructed. Therefore 
size d is determined with the large overestimate and in 

set ,dQ   the “extraneous” functions get, that considera-
bly reduces accuracy of the regularized solution. 

So in this paper the estimation of inverse problem so-
lution instead of solution of Equation (1) is suggested. 
The following hypothesis is assumed for this purpose 
[8,9]: the such inequality is valid 

1, 1,exz z                       (5) 

for any approximate operators 1 1,, pA B

1,exz

1,exu

 in Equation (1) 
which corresponding to adequate mathematical descrip-
tion of vibration process [10];  is the solution of 
Equation (1) with exact right part  and exact opera-
tor 1,exA . The exact operators 1, 1,,ex exA B  can are non-
linear. 

The inequality (5) is evident if the exact operators are 
linear one. 

In the given work it is supposed, that all approximate 
operators 1, pB  in (1) have the same structures which 
depend from some vector parameters . In this 
case extreme problem (2) can be replaced by the follow-
ing extreme problem [11]: 

p D

   
*

,

inf inf inf
pp D z Qz Q

z z




 
       z ,     (6) 

where *
,p

p D

Q Q 


   ( is the union). 

Now in set of the possible solutions “the extraneous 
functions” have not got. 

It is evident that *
,hQ Q 
Q
 for any d > 0, h > 0,  > 0. 

Therefore the use of the set  instead of *
,hQ   allows 

obtaining the most “thin” solution. 
From the practical point of view the solution z  of an 

extreme problem (6) has the same meaning, as well as 

0 , but gives an exacter estimation from below. We will 
be named the solution of extreme problem (6) as estima-
tion from below of real unbalance also. But the inequal-
ity 

z

 0z z      is valid. 
For the solution of an extreme problem (6) it is offered 

to use a method of a choice of the minimal special 
mathematical model of system “rotor-supports” [11,12]. 
It allows getting more exact estimation of exact solution. 

For the realization of such approach it is necessary to 
choose within the vectors  some vector p D 0p D  
such that 

0

1 1
1 1, 1 1,p pA B A B 
        x x  

for all possible X x  and all . The operator 

1,

p D
pB  with parameter 0p D  will be called the minimal 

operator. Appropriate to this operator the model is named 
as the minimal MM [12,13]. 

If the minimal MM exists, then the extreme problem 
(6) can be replaced by an equivalent simpler extreme 
problem: 

 
,

inf
po

z Q
z






     z .           (7) 

Let’s consider the problem on existence of the mini-
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mal MM in a problem of unbalance identification. 
From physical sense of a problem follows, that the vi-

brations of support of a rotor        , , ,A B A Bt t t       t
t

, 
 at constant speed of rotation of a rotor  

and at constant size of unbalance in time 
   ,A Bt 

 0,t T  are 
periodic functions with zero average for the minimal 
period 1 2T π  . 

The function  on physical sense represents also 
periodic function of a type 1

 1z t
 1 sinA t  . At   = 

const and at constant size of unbalance between func-
tions  and , also there is a connection 

, where -Const,  > 0. 
 1 , Az t 

1
A t t 

 t
B

B t 
 

Then the identity is valid 

    
     

1 2 3

4 5 1

A A A

A A

t t

t t z

     

   

 

  

  


t

t
,        (8) 

where 1 2 3 4 5, , , ,      are the function from T and p.  
In this case function    z p p      at the fixed 

functions  is continuous on components of 
a vector p. Under the well-known theorem of Weierstrass 
the function 

   ,A Bt 



t

p  reaches on the convex closed set D 
of the greatest lower bound. 

Let’s calculate partial derivatives of function  p  
on parameters (in the dimensionless form): 

   1 2 1 11 12 13 1 2 3 14k k k k
m

     
   


, 

   1 4 3 12 22 3 23 1 4k k k
EJ

     
      

,  (9) 

1 5 31 1 6 41 1 7 51 3 52, ,
A B

k k k
m m a

        
   

  
,k  

 1 8 61 62 3 3 63 1 64 3 9 71, ,
A

k k k k k
b b       
    

 
 

3 10 81 1 11 91 1 12 92, ,
B A B

k k
b c c         

  
  

k ; 

where  are positive constants. ik

The signs of the partial derivatives are determined by 
signs and sizes of functions 1 2 12

k

, , , ,  

 

which depend 
on angular speed of rotation of a rotor  , parameters p of 
MM and size of T: , , , 1,p T k  12 k k . 

The functions  21,1k k from variable  
are either square-law or linear. Therefore their signs are 
enough easily determined. 

2 2z T

At rather small Т the minimal operator for (1) exists 
and associated the corner point of D. 

In a problem of modeling of fluctuations in ventilator 
of the furnace the parameters of MM were the following 
[14]:  

4 40.84 10  kg, 0.9 10  kg,  l tm m     

11 2 3 42 10  H/m ,  3 10  m ,l t lE E J       
3 43.1 10  m ,tJ    

5 50.34 10 kg,  0.35 10 kg,l l t t
A B A Bm m m m       

9 90.65 10  H/m,  0.7 10  H/m,l l t t
A B A Bc c c c       

20,  100 Hs/m ,l l t t
A B A Bb b b b     

5 m,  5.1 m, 3 m,  3.1 ml t l ta a b b    . 

At 0.1 sT  and  the value  has 
appeared less least roots of the equations 

1 2311 s  2T
0,  1.12k k    

able disorder of parameters). Therefore, 
in this example of function k have signs: 

1

(in view of allow

3 4 5 6 7 80, 0, 0, 0, 0, 0, 0,              

9 10 11 120, 0, 0, 0       . 

Then, taking into account expressions (6 t is possible 
to

 

), i
 conclude, that 

 
0, 0, 0, 0, 0,

A Bm EJ m m a

    
    

    
 

0, 0, 0, 0, 0.
A B A Ab b b c c   

    
    

    
 

Hence, in a considered example the minimal model 
ex

.

It is possibly that the size of 

ists and corresponds to a vector  

 l l t t t l l  T

0 , , , , , , , , , ,l l t t
A B A B A Ap E J m m m c c b b a b   

, pz     for function 

, pz  from the some set ,pQ   which satisfies to equality 

 
,

, inf ,
p

p
z Q

z z





      

exceeds admissible size of . But the vector parame-0
errters p of MM is given with or. To make this conclu-

sion about a similar situation with a guarantee it is nec-
essary to consider all possible sets ,pQ  , then in them to 
find all functions ˆpz  which minim ize z  on ,pQ  , 
further among them  find greatest in sen  funct l 
value ,

 to se of iona

pz    . Thus we are getting to necessity of 
statem  following problem: ent of the

 
,

sup inf
p

p
z Qp D

z z


     .          (10) 

It is obvious that pz z         . If 0
pz     , 

ncy operationthen the machine prob erge . 
If 0

pz 
ably works in em

    , then no certain conclusions can be 
ma

For t
de. 

he solution of an extreme problem (10) it is of-
fe

 solution of an extreme 
pr

red to use a method of a choice of the special maximal 
MM of system “rotor-supports”. 

It is possible to show that the
oblem (10) under some conditions always exists. 
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4. Test Calculation 

examination of unbalance char-
re was a calculated case when 

For the realization of such approach it is necessary to 
choose within the vectors p D  some vector 1p D  
such that 

1
1 1

1 11, pp
A B A B1, 
        x x  

X xfor all possible  and all . The operator p D
11, p

B  with param D  will lled the special 
mal operator. App  to this operator the model 

is named as the special maximal MM [9,10]. 
If the special maximal MM exists then the so

eter 1p
rop

 be ca
maxi riate

lution of 
an extreme problem (10) will coincide with the solution 
of the following extreme problem: 

 
1,

1,

p

p
z Q


  .infz    z            (11) 

For considered before an example the special maximal 
M

 .

If at a vector parameters p is inexact the part of pa-
ra

t of a problem of 
ro

M exists, unique and corresponds to a vector  

1 , , , , , , , , , ,t t l l l t t t t l   
Tl

A B A B A Ap E J m m m c c b b a b  

meters is given only then a situation essentially to not 
change but only the vector parameters p will have only 
smaller dimension. In a number of cases it is possible to 
carry out a choice of the special minimal or special 
maximal MM only in part of parameters of a vector p. 
And in this case it is possible to receive some prize in 
accuracy of the approximate estimation. 

Let us consider the following statemen
tor unbalance identification: to find the function plz  

among set of the possible solutions of the Equation (  
which would give the least maximal deviation from the 
experimentally measured vibrations of support of a rotor 
for all operators 1,

1)

pB . Such statement is reduced to the 
solution of the following extreme problem: 

1,

1 1, 1 , 1,inf supplA z B A z B  x
p p

p p p Uz B
  x ,    (12) 

where ,pz   is the solution of extreme problem (11) on 
set ,pQ  . 

ll eA ops a rators 1, pB  
ts of

it is possible to consider equiva-
lent within the limi  the specified accuracy, it is pos-
sible to consider function plz  as the most probable so-
lution of a problem of unba e identification. The func-
tion 

lanc
plz  will be call the most plausible estimation of 

unba e. The most probable estimation lanc plz  will co-
incide with classical regularizing the soluti of an in-
verse problem of unbalance identification of a rotor if 
there is the one operator 1,

on 

pB  only. The function plz  is 
the best approximation o  unbalance characteristics 
and also is steady to small deviations of the initial data. 

Suggested algorithm can be used in case if the exact op

f real

-
erator 1,exB does not belong to set of operators 1, pB  and 
the op or erat A  does not coincide with exact rator 

ex

ope
A . 

For suggested algorithm 
acteristics’ evaluation, the
functions        , , ,A B A At t t t        are the results of 
mathematical simulation of rotor vibrations with given 
unbalance. unbalance were cho-
sen as: 

0.5 kgrm

 The parameters of rotor 

  by 0.25 m, h 0.25 m, 0.5 rad.r     

The values ial data inaccuracy were chosen after 
filtering as the ing: 

of init
 follow

    20.08 m/s ,A Aext t       1C

    2
2 0.1 m/s ,B Bex C

t t       

    2
3 0.1 m/s ,A Aex C

t t       

    2
4 0.1 m/s .B Bex C

t t       

The whole inaccuracy of function  in Equation 
(1) is by chosen in acy of initial 
da

zation  [7]. 

 du t
accur
d the 

40.266 10    
ta. The discrepancy method define parameter of 

regulari
The functions      1 2 3, , z t z t z t  with parameters 

0.02 kg, 0.01rm h  m, 0.0 rad  
tion of extreme pr

 are the results of 

The results of identification with
identification as solu oblem (2). 

 using the special 
minimal MM are followings: 

0.23 kg, 0.12 m, 0.45 radrm h    . 

The results of identification with using th special 
maximal MM are followings: 

e 

0.37 kg, 0.23 m, 0.45 radrm h    . 

The solution of extreme problem (12) gives t results: he 

0.41 kg, 0.23 m, 0.48 radrm h    . 

If the parameters of unbalance don’t change ring the 
3 - 4 turns round, the axis of rotation is used f  the pa-
ra
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