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ABSTRACT 

In a Euclidean space , the Lebesgue-Stieltjes integral of set-valued stochastic processes dR     , 0,tF F t T   

with respect to real valued finite variation process     , 0,tA t T 

t

 is defined directly by employing all integrably 

bounded selections instead of taking the decomposable closure appearing in some existed references. We shall show 

that this kind of integral is measurable, continuous in  under the Hausdorff metric and -bounded. 2L
 
Keywords: Set-Valued Stochastic Process; Finite Variation Process; Measurability 

1. Introduction 

Recently, integrals for set-valued stochastic processes 
with respect to Brownian motion, martingales and the 
Lebesgue measure have received much attention. 

In 1997, Kisielewicz ([1]) defined the integral of set- 
valued process as a subset of  space, but he didn’t 
consider the measurability of the integral. In 1999, Kim 
and Kim [2] used the definition of stochastic integrals of 
set-valued stochastic process with respect to the Brow- 
nian motion. They called it Aumann ([3]) type It  inte- 
grals. In [4], Jung and Kim modified the definition by 
taking the decomposable closure such that the integral is 
measurable. Li and Ren [5] modified Jung and Kim’s 
definition by considering the predictable set-valued 
stochastic process as a set-valued random variable in the 
product space , and the measurability and de- 
composability also were based on product 

2L

ô

   
 -algebra. 

After that, Zhang et al. ([6,7]) studied the set-valued inte- 
grals with respect to the martingale and Brownian motion. 

Stochastic differential inclusions and set-valued sto- 
chastic differential (or integral) equations are employed 
to model the problems with not only randomness but also 

impreciseness. Recently, there are some references re- 
lated to set-valued differential equations such as [8-13] etc. 

Concerning to the integral with respect to finite va- 
riation processes, Malinowski and Michta [12] give the 
notion of set-valued integral with respect to single valued 
finite variation but without considering the measurability. 
Z.Wang and R.Wang [14] defined the Lebesgue-Stieltjes 
stochastic integral of single valued stochastic processes 
with respect to set-valued finite variation processes (refer 
to [14] for the detail). 

In this paper, different from the definition in [14], 
based on the Definition 3.1 in [12], we will study the 
Lebesgue-Stieltjes integral of set-valued stochastic pro- 
cesses with respect to single valued finite variation pro- 
cess. We shall prove the measurability of integral, 
namely, it is a set-valued random, which is similar to the 
classical stochastic integral. 

This paper is organized as follows: in Section 2, we 
present some notions and facts on set-valued random 
variables; in Section 3, we shall give the definition of 
integral of set-valued stochastic processes with respect to 
finite variation process and then prove the measurability 
and -boundedness. 2L
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2. Preliminaries 

We denote  the set of all natural numbers,  the set  R
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of all real numbers,  the d-dimensional Euclidean 
space with the usual norm 

dR
 ,  the set of all non- 

negative numbers. Let   be a complete pro- 
bability space, 

R

P, , 
  t  a : 0t ,T  -field filtration sa- 

tisfying the usual conditions. Let  be a Borel field 
of a topological space . 

 E





d
E

Let  (resp. k kc ) be the family 
of all nonempty, closed (resp. nonempty compact, 
nonempty compact convex) subsets of . For any 

 dR    ,R  Rd

dR
dx R  and  dA R , define the distance between 

x  and A by  , iA nf y Ad x  x y . The Hausdorff 
metric 


Hd  on    (see e.g. [15]) is defined by  

  ax su
a A

B 

d

, m p d a    , , sup ,H
b B

d A B d b A
 

  (1) 

 , dA B R .  
Denote   0 , supH a Ak

A d A
 d

a . For  
, , ,A B C D R , we have  

     , ,H A B C H  
*,d d

D A C , .H B D  

For A R x R  the support function of A  is 
defined as follows:  

   , s

L

up :S x A x A , x x

 d

.



 

  , , ; ; 1p d pL P R R p  
d

: the set of all 
—valued Borel measurable functions R : df R  

such that the norm  

  
 

1

d , f 1 ,

esssup , if ,

p p

p
f f p

p









   



 iP

 f f


 

is finite. f  is called pL -integrable if  ;p df L R 
 d

. 
A set-valued function :F R

dR
O 


O



 is said to be 
measurable if for any open set , the inverse 

 belongs to  . Su- 
ch a function 

 1 : :F O F      
F  is called a

 dP R
 set-valued random variable. 

Let  (resp. , , ;     , , ; d
cP R  

 d
kc R

 d
kc R

 , 
) be the family of all measurable 

-valued (resp. -valued) func- 
tions, briefly by  (resp.  

.  
For , the family of all 

 , , ; d
kcP R  

d

R
  , , ; d

cP R  

 , dF  


 ; 

, 
K R


R   ,c R 

 d

, , 



d


 ;P

pL -inte- 
grable selections is defined by 

        , :

1

p p
FS f P f F a

p

   



: ,L  

p
F 

; dR . . ,s
(2) 

In the following,  is denoted briefly by S p
FS . 

A set-valued random variable F  is said to be integra- 
ble if 1

FS  is nonempty. F  is called -integrably 
bounded if there exits 

 1pL p  
 ;, ,p dP Rh L    s.t. for all 

 x F  ,  x h   almost surely. 
An -valued stochastic process  (or 

denoted by 

dR  : 0t t f f

  : 0f f t t 
d

) is defined as a function 
:f R  R  with the -measurable section tf , 

for . We say 0t  f  is measurable if f  is    - 
measurable. The process  is called 

t -adapted if 
 : 0tf f t 

 tf  is -measurable for every . 
Let 

t 0t
  Z 

0
: :Z R


   t , where  tt

 
  ; ,tZ t Z  . We know that  is a   -algebra 

on R  . A function : df R  


d

R  is measurable 
and -adapted if and only if it is -measurable ([8]). t

In a fashion similar to the -valued stochastic pro- 
cesses, a set-valued stochastic process 


R

 : 0ttF F   
is defined as a set-valued function  d:F R R 

0
 

with -measurable section  for . It is called 
measurable if it is 

 tF t
 

F
-measurable, and t - 

adapted if for any fixed t ,  is t -measurable. 


 t  
 0:F F tt   is measurable and -adapted if and 

only if it is 
t

 -measurable. t  is called   : t 0F F
pL -integrable if every  is tF pL -integrable. 

3. Set-Valued Stochastic Integral w.r.t Finite 
Variation Processes 

Let  , 0t tA A   be a real valued t -adapted 
measurable process with finite variation and continuous 
sample trajectories a.s. from the origin. That is to say, for 
each compact interval 



   0,,s t  and any partition 
 nt1, ,t    of  ,s t , the total variation  

      
1i i

A2 1A t, sup n
tV s t A  



   

is finite and  0, 0A    a.s. Then for any T , the 
process 

0
 0t,tA A   can generate a random measure 

denoted by A  in the space . For 
any 

  0, , 0  T ,T 
   , 0,s t T , let  

      , :s t ,t ,AA A s     

where      ,, ,A t A t A t      is the decom- 
position of A , A  and A  are non-negative and non- 
decreasing processes,      , , ,A t A t A t    . In 
the product space   0, ,T  , set  

            dt P
0,T

: ,A CC t 0, d ,A T A    


  
C

1  (3) 

for  , where  is the index function. Then the 

set function 
C1

  is a finite measure in the measurable 

space   0, ,T

  

  if and only if  

 2
0,A T P


 d   . In the following we always 

assume      dT P   
2

0,A . 

Let   ; d
A R2 0, ,,L T  be the family of all 

 -measurable -valued stochastic processes  such 
that  

dR f

     t  
2

Af t   
0,

, d .
T

Open Access                                                                                            APM 
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  2 0, , , ; d
Af L T R       , 0,s t T , 



For any  and
the stochastic Lebesgue-Stieltjes integral 

  
,

df A
s t   is 
 dA


defined by

   
,s t

 the Bochner integral f     path
ral process

 - 
by-path. One can show that the integ  

      0,
d , 0,st

f s A t T  is  -measurable. 

Note: in [12], the i  being pre- 
dictable, in fact the integ  can  to the 

ntegrand is assumed
rand  be relaxed  - 

measurable class since the integrator tA  is continuous. 
Let     2 0, , , ; d

AM T R    be the family of l 
 -measurable  dR -valued stochas ic processes 

 al
t F  

such that  

     2
, d ,t     

0, AkT
F t



where    ,, sup x F tk
F t x  . For any 



 

    2 0, , , ; d
AT R  F M , set  

   
    

2 2: 0, ,T , ; :

, , , . .

d
A

A

S F f M R

f t F t a e



  

  

 
   (4) 

Definition 1. (see [12]) For a set-valued stochasti
process  the set-valued 
st

c 
    2 0, ; d

kcF M T R  
ochastic Lebesgue-Stieltjes integral (over interval 

 ,s t ) of F  with respect to the finite variation con- 
tinuous process A  is the set  

          2

, ,
d :

s t s t
d : .F A f A f S F      

In [12], the authors call this kind of integral as tra ctory 
integral since they consider it as a 

 and show 

nt
 

je

   2 0, , , ; d
AL T R  -valued random variable. 

Here, we shall consider it as a subset of d


the measurability with res
R

pect to  , which is very 
different from the way in [12], also differe  from other 
references such as [10,16,17] etc. In fact, for almost 

every  , the above integral 
   

,
d

s t
F A  is a sub- 

dset of n the following, we shall assume the R . I  - 
algebra separable w.r.t P . In additi   is on,   0,T  
is separ e and abl   0,T    , then one can get 

 2S F  separable. Therefo  we can find  
measurable set 

is re  an  -

F  1F   and for every , such that P

F , the integral 
   
0,

d
T

F A  is defined path- - by  

path. For F  ,  d 0A  , therefore 
for every

set 
it is well defined  

   
,s t

F 
  . 

      
, ,s t s t

d dF A F A    tinuity of   since the con

tA . In the sequel, we shall denote the integral by  

 dt

s
F A  instead of 

   
,

d
s t

F A . For any  0,t T ,  
t

denote 
0

ds sF A  by t I F . 
Theorem 1. For    2 0, , , ;d

kc ARF M T     , 

   , 0,s t T nd  a  ,


 the Lebesgue-Stieltjes inte- 
gral   d

t

s
F A   f 

Pr

 is a c

, 

ompact and convex subset o
dR . 

oof 1. In fact  2S F  is a bounded and convex 
subset of   ;R2 0, , ,L T d

A since F  is convex   , 
and compact,moreov is weakly compact since er, it 

  ; AR2 0,L , , dT  ve. The nvexity of 
the integral is obvious. 

ar operator  
    : d

t
F F A 



th

 is 

e line


reflexi co

We shall show 

s
   :    2 d

kcS F R  is  
bo

For any 
unded. 

 2f S F ,     , 0,s t T , 

       

   

, d

, d ,

s s

t

s

f A f A

F A





d ,
t t

    

  



   

  (5) 

mplies the linear operator  is bounded. 
ore the integral 

 

which i
Theref


d

t

s
F A   

ct one. 

is weakly compact since 

y 2

the bounded linear operator mapping akly compact 
set to a weakly compa In dR  space, a weakly 
compact set is compact. 

Lemma 1. (see [16] Corollar .1.1 (5)) Assume 

a we

 ,   is a measurable space,  is a separable X

Banach space,  :F  X , and F is a set-valued 
variable, then  random  * ,S x F    * *x X  is mea- 

surable.  
By using Lemma 1, as eorem 1 

in [17], we
 a manner similar to Th

 have the following result:  
Lemma 2. Assume A  is the corresponding stochas- 

tic process,     ; ,d
kc AR 2 0, , ,F M T     for 

any    , 0,s t T , we h e 

1) d d ,
t

av
t

s s
F A F A   R     ; 

2)     *, d , d ,
t t d

s s
S x F A S x F x R   

    .   

ma 3. (see [16] Theorem 2.1.16) Assum

A

Lem e  ,   
space, is a meas ch urable space, is a separable BanaX  

 : kc X , and for any fixed * * ,x X  F  * ,x FS  
is measurable, if one of the following conditions is 

1) *X  is separable; 
2) for an

satisfied: 

y   , kcF   X . 
n The F  is a set-valued random variable.  

a 1 and Lemma 3, wh  , for any From Lemm en dRX
,    d

kcF K R   is  -measurabl* dx R e if and 
only if   * ,S x F   is  -measurable

 1.7  If  ,   is a se- 
parable ,  a e separable 

. 
Lemma 4. ([16] Theorem .7)

 space, r metric space X

 :  X  satisfy: 
(a) for any  ,

F
,x F x   is measurable; 

,


y  
X

(b) for an ,x F  x  
 Hausdo

  is continuous or is 
continuous with respect to rff metric, 

Then    , ,x F x   ly measurable.  
Then by Lemma 1 we have the following:  

is joint

Open Access                                                                                            APM 
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Lemm    a 5. Assume  AF M 2 0, , , ;d
kcT R  .   

en     * , , : 0,S x F t T R   is  -meTh asurable. 
e  

 
Theorem 2. Assum

F M     2 0, , , ;d
kc AT R   Then     .

t

 
   2 ; dI F L R   for each  0,

mapping    , tt I F    is 
t T . Furthermore, the 
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4.

e integra es in compact and convex
subsets of , we defined the integral with respect to 
real-valued iation processes. And then we proved 

pro es of this kind of integral such as 
boundedness and continuity under the

Hausdorff metric. 
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