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ABSTRACT 
Based on the research of predicting β-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine 
algorithm to predict β-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 amino acid resi-
dues are extracted as research object and the fixed-length pattern of 12 amino acids are selected. When using the same 
characteristic parameters and the same test method, Random Forest algorithm is more effective than Support Vector 
Machine. In addition, because of Random Forest algorithm doesn’t produce overfitting phenomenon while the dimen-
sion of characteristic parameters is higher, we use Random Forest based on higher dimension characteristic parameters 
to predict β-hairpin motifs. The better prediction results are obtained; the overall accuracy and Matthew’s correlation 
coefficient of 5-fold cross-validation achieve 83.3% and 0.59, respectively. 
 
Keywords: Random Forest Algorithm; Support Vector Machine Algorithm; β-Hairpin Motif; Increment of Diversity; 
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1. Introduction 
β-hairpin is a super secondary structure motif. In the β-β 
motif, if two anti-parallel β-strands are connected by loop 
and there are one or more hydrogen bonds between two 
adjacent strands, then the structure is called as β-hairpin 
[1-3], otherwise it is considered as non-β-hairpin. Correct 
prediction of β-hairpin motifs is helpful to folding recog-
nition, and it is vital for simplifying folding numbers of 
unknown structure [4-6]. Therefore prediction of β-hair- 
pin motifs has very important meaning. 

In the past few years, some methods have been devel-
oped for predicting β-hairpin motifs in different datasets 
and better prediction results were obtained. In 2002, Cruz 
et al. [2] employed an artificial neural network (ANN) 
for predicting β-hairpins in 534 protein chains; an accu-
racy of 47.7% was obtained. In 2004, Kuhn et al. [1] also 
used ANN for predicting hairpins in 2209 protein chains 
by identifying local hairpins and non-local diverging 
turns; an accuracy of 75.9% was achieved. In 2005, Ku-
mar et al. [3] used a Support Vector Machine (SVM) and 
ANN technique to predict β-hairpins in 2880 no redun- 

dant protein chains and obtained an accuracy of 79.2%. 
In 2008, our group’s Hu [7] et al. predicted β-hairpins in 
ArchDB40 dataset by using SVM, the overall accuracy 
and Matthew’s correlation coefficients are 79.9% and 
0.59, respectively. In 2010, our group’s Hu et al. [8] at-
tempted to use a quadratic discriminate (QD) method for 
predicting β-hairpins in ArchDB40 dataset, the overall 
accuracy and Matthew’s correlation coefficients are 81.6% 
and 0.55, respectively. 

In this article, we attempt to use a combination clas-
sifier algorithm, Random Forest and Support Vector Ma-
chine to predict β-hairpin motifs in ArchDB40 dataset. 
By using of the composite vector with increment of di-
versity, scoring function and predicted secondary struc-
ture information as characteristic parameters. When us-
ing Random Forest as prediction algorithm, the overall 
accuracy and Matthew’s correlation coefficient of 5-fold 
cross-validation achieve 82.0% and 0.55, respectively. 
However, when Support Vector Machine is used as pre-
diction algorithm, they are only 79.4% and 0.49, respec-
tively. Similarly, the results of Random Forest algorithm 
are also better than Support Vector Machine for the in-
dependent test. Furthermore, we also use Random Forest 
based on higher dimension characteristic parameters to 
predict β-hairpin motifs. The prediction results are fur-
ther improved. 
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2. Materials and Methods 
1) Materials 
Our algorithm is trained and tested on ArchDB40 da-

taset. That is generated from ArchDB, in which the clas-
sification of protein loops from no redundant proteins of 
known structures  
(http://www.sbi.imim.es/cgi-bin/archdb/loops.pl). 
ArchDB was based on DSSP [9] database and provided 
by Oliva et al. [10,11]. ArchDB40 subset contains 3,088 
no redundant proteins with resolution <3.0 Å, in which 
no two protein chains have a percentage identity >40% 
(ASTRAL SCOP 1.65). The ArchDB40 subset contains 
9180 β-β motifs are divided into 6216 β-hairpin motifs 
and 2964 non-β-hairpin motifs. Here a total of 6028 β- 
hairpin motifs and 2643 non-β-hairpin motifs with the 
loop length of 2 to 8 amino acid residues are selected as 
research object. 

2) Methods 
a) Random Forest (RF) Algorithm. 
Random Forest that had been originally proposed by 

Leo Breiman [12] in 2001 is an ensemble classifier, it 
contains many decision trees. For each tree in the forest, 
a training set is firstly generated by randomly choosing N 
times with replacement from all N samples of the original 
dataset (bootstrap), and the rest are used as a testing set. 
When each node of single decision tree is splitting, the 
number of features used for splitting each node of deci-
sion tree ( m ) is firstly specified. Then m  out of M
features are randomly selected and the best split attribute 
on these m  features is used to split the node, such that 
the impurity at each node of single decision tree is mini-
mized and each tree in the forest fully grows without 
pruning. A Random Forest with k decision trees is formed 
by repeating k times as above procedure, and then the 
Random Forest is used to predict test data. The final 
classification results are decided by all the votes [13,14]. 

Random Forest has two most significant parameters, 
one is the number of features used for splitting each node 
of decision tree (m, m   M where M is the total num-
ber of features), another parameter is the number of trees 
(k). In this work, and m is equal to M , k is equal to 
500. Random Forest algorithm is implemented by using 
the package in R software [15] (http://www.r-project.org/). 
One obvious properties of the algorithm is that it doesn’t 
produce overfitting phenomenon when the characteristic 
parameters of higher dimension are used. 

b) Support Vector Machine (SVM) Algorithm. 
The Support Vector Machine (SVM) is a promising 

binary classification method developed by Vapnik [16]. 
As a supervise machine learning technology, the algo-
rithm had been used for many kinds of pattern recogni-
tion problems. In addition, because the algorithm of 
Support Vector Machine is a convex quadratic optimiza-
tion problem, the local optimal solution is certainly the 

global optimal one. But other algorithms (such as ANN) 
don’t have these features of SVM. In this paper, we use 
SVM to predict β-hairpin motifs. SVM has been widely 
used by transforming the input vector into a high-di- 
mension Hilbert space and seeking a separating hyper-
plane in this space. The form of the decision function is: 

( ) ( )
1

sgn
N

i i i
i

f x y K x x bα∗ ∗

=

 = ⋅ +  
∑        (1) 

In this paper, we select the radial basis kernel function 
(RBF) ( ( ) 2exp( )i iK x x g x x⋅ = − − ). The optimal val-
ues of parameters C and g are default. SVM has been 
compiled into the software packages; we use libsvm-2.89 
SVM software packages  
(http://www.csie.ntu.edu.tw/~cjlin/libsvm). 

3) The Selection of the Characteristic Parameters 
a) The Selection of the Fixed-length Pattern 
According to Hu’s [7] ideas, β-hairpin motifs with the 

loop length of 2 to 8 amino acid residues in the dataset 
are extracted as research object and the fixed-length pat-
tern of 12 amino acids are selected. Particular rules de-
scribed as below: 

i) The first amino acid (beginning) of loop locates the 
fifth position of the fixed-length pattern (5 - 12). 

ii) End of loop locates the eighth position of the 
fixed-length pattern (8 - 12). 

iii) The loop locates the center of fixed-length pattern. 
If the loop length is odd, the central coil is mapped and 
six residues (excluding the central coil) from the left- 
hand side and five residues from the right-hand side are 
taken. If not, the central two coils are mapped and five 
residues (excluding the central two coils) from both the 
sides were taken (Lr-12). 

For above three rulers, if pattern length was <12, resi-
dues flanking the peptide in the amino acid sequence 
were appended at both the ends. 

b) Amino acids component of position (A) 
We statistically analyze the amino acid compositions 

at 12 positions of the fixed-length pattern of β-hairpin 
and non-β-hairpin motifs. The results show that conser-
vation of position is stronger in the fixed-length sequence 
fragments. So amino acids component of position is ex-
tracted as sequence information. Because of the fixed- 
length pattern are generated using three rules, amino ac-
ids component of position is described as a vector of 21 × 
12 dimensions (21 denotes 20 amino acids and one ter-
minal residue) for each ruler. 

c) Hydropathy component of position (Q) 
Because of protein structure is seriously influenced by 

hydropathy characteristics of amino acids. So hydropathy 
component of position is extracted as sequence informa-
tion. Similarly, hydropathy component of position is de-
scribed as a vector of 7 × 12 dimensions (7 denotes 6 
hydropathy characteristics for amino acids and one ter- 
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Table 1. Hydropathy characteristics for 20 amino acids. 

Classification Amino acids Classification Amino acids 

Strongly hydrophilic or polar R, D, E, N, Q, K, H Proline P 

Strongly hydrophobic L, I, V, A, M, F Glycine G 

Weakly hydrophilic or Weakly hydrophobic S, T, Y, W Cysteine C 

 
minal residue) for each ruler, classification of hydropathy 
characteristics [17] for 20 amino acids are showed in Ta- 
ble 1. 

d) Increment of Diversity (ID) 
In the state space of s dimension, the diversity measure 

for diversity sources S: {m1, m2… ms} is defined as [18]: 

( ) log logi i
i

D S M M m m= −∑          (2) 

In the same state space, increment of diversity between 
the source of diversity X: {n1, n2,… ns} and Y: {m1, m2… 
ms} is defined as: 

( , )
( ) log( ) ( ) log( )

log log log log

i i i i
i

i i i i
i i

ID X Y
M N M N m n m n

M M N N m m n n

= + + − + +

− − + +

∑

∑ ∑

  (3) 

Here ,i i
i i

N n M m= =∑ ∑ . Amino acids component  

of position is selected as the basic parameter, and then 
constructs 2 diversity sources for β-hairpin and non-β- 
hairpin motifs. Because of the fixed-length pattern are 
generated using three rules, arbitrary sequence segments 
can obtain 6 ID values (ID (A)) which be calculated by 
Equation (3). Similarly, hydropathy component of position 
is also selected as the basic parameter. Arbitrary sequence 
segments obtain 6 ID values (ID (Q)) which be calculat- 
ed by Equation (3). 

e) Scoring function(S) 
The position weight scoring function is a simple but 

effective forecast algorithm. Here we only calculate the 
scores of β-hairpin and non-β-hairpin motifs as characte-
ristic parameters, the score of segment can be defined as 
[19]: 

     (4) 

             (5) 

      (6) 

          (7) 

Where j is amino acid j or terminal residue, Ni is the 
number of amino acids and terminal residue at the posi-
tion i, nij is the number of amino acid j or terminal resi-
due at the position i, wi, min and wi, max are the minimal  
and maximal values of position weight at the position i, 
respectively. wij is the observed position weight at the 
position i, Ci is the conservation index vector at position i. 
Amino acids component of position is selected as the 
basic parameter. Because of the fixed-length pattern are 
generated using three rules, arbitrary sequence segments 
can obtain 6 S values (S12 (A)) which be calculated by 
Equation (4). 

f) Predicted secondary structure information (SS) 
In the research of predicting β-hairpin motifs, litera-

ture [2,3] had used predicted secondary structure infor-
mation as the characteristic parameters; better prediction 
results were obtained. In order to improve the prediction 
effect, we also extract predicted secondary structure in-
formation. These are obtained by using the PHD [2] soft-
ware, and are represented by a vector of 3 dimensions 
which are the frequency of predicted secondary structure 
(α-helix, β-sheet and coils). 

3. Results and Discussion 
1) Performance Measures 
In order to evaluate the correct prediction rate and the 

reliability of a predictive method, we use the following 
standard measures. Accuracy of prediction ( Acc ); Mat-
thew’s correlation coefficient ( MCC ); sensitivity of 
β-hairpin ( ( )o HQ ); sensitivity of non-β-hairpin prediction 
( ( )o NHQ ); specificity of β-hairpin prediction ( ( )p HQ ); 
specificity of non-β-hairpin ( ( )p NHQ ) [7]; calculating 
formula as follow: 

( ) 100%( )
p rAcc p r o u
+ = ×+ + +  

      (8) 
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( ) 100%( )p NH
rQ r u

 = ×+  
         (13) 

Here p and r denote the number of correctly predicted  
β-hairpin and non-β-hairpin, respectively; u denotes the 
number of the β-hairpin that are predicted as non-β-hair- 
pin, o denotes the number of the non-β-hairpin that are 
predicted as β-hairpin. 

2) The Predictive Results Using of 5-fold Cross-vali- 
dation 

By using of the composite vector with increment of 
diversity (ID(A) + ID(Q)), scoring function (S12(A)) and 
predicted secondary structure information (SS) as cha-
racteristic parameters. When RF algorithm is applied to 
predict β-hairpins, for 5-fold cross-validation, Acc and 
MCC are 82.0% and 0.55, respectively. However, when 
SVM is used as prediction algorithm, Acc and MCC are 
only 79.4% and 0.49, respectively. Besides, the Qo(H), 
Qo(NH), Qp(H), and Qp(NH) of RF algorithm are all higher 
than SVM. The results show that RF algorithm is better 
than SVM. In addition, to compare our method with oth-
ers, we also list previous prediction results in Table 2. It 
can be seen that our prediction overall accuracy of using 
RF algorithm is slightly higher than Hu’s [7,8] results. 
But the Matthew’s correlation coefficient is lower than 
Hu’s [7,8] results. 

3) The Predictive Results Using of the independent test 
To further compare RF and SVM algorithm, we also 

use the independent test. The 1028 β-hairpins and 643 
non-β-hairpins are selected as training set from 6028 
β-hairpins and 2643 non-β-hairpins, the remaining 5000 
β-hairpins and 2000 non-β-hairpins are independent test-
ing set. By using of the composite vector (ID (A) + ID(Q) 
+ S12(A) + SS) as the characteristic parameters, when 
RF algorithm is applied to predict β-hairpin motifs. Acc 
and MCC are 79.9% and 0.50, respectively. However,  

when SVM algorithm is used as prediction algorithm, 
Acc and MCC are only 77.0% and 0.43, respectively. 
Predictive results are showed in Table 3. It can be seen 
that RF algorithm is still better than SVM. Furthermore, 
it should be noticed that using the small sample to test 
the large one in here. 

4) The Predictive Results Using of higher dimension 
characteristic parameters 

Considering the obvious properties of RF algorithm, 
we directly use the composite vector with amino acids 
component of position (A), hydropaths component of po-
sition (Q), and predicted secondary structure information 
(SS) as characteristic parameters (675 dimensions). Acc 
and MCC of 5-fold cross-validation achieve 83.3% and 
0.59, respectively. It needs to be pointed out that, amino 
acids component of position and hydropaths component 
of position are only based on the first two cutting rules (5 
- 12, 8 - 12) in here. In contrast, we also use of the com-
posite vector (ID(A) + ID(Q) + SS) as the characteristic 
parameters. Acc and MCC of 5-fold cross-validation are 
79.5% and 0.49, respectively. The predictive results are 
decreased. Then we use RF algorithm based on the com-
posite vector (A + Q + SS) to predict β-hairpin motifs. 
For the independent test (I (test)), Acc and MCC are 80.1% 
and 0.50, respectively. Predictive results are showed in 
Table 4. The results indicate that 5-fold cross-validation 
and the independent test are similar when RF algorithm 
is used to predict β-hairpin motifs. 

4. Conclusion 
In this paper, the predictive results of using RF algorithm 
based on the composite vector (A + Q + SS) are better 
than previous. From above results we can seen: 1) RF 
algorithm is better than SVM when the same characteris-
tic parameters and the same test method are used; 2) Due 

 
Table 2. Predictive results using of 5-fold cross validation for β-hairpinsand non β-hairpins in ArchDB40 dataset. 

Method (parameters) Qo(H) (%) Qo(NH) (%) Qp(H) (%) Qp(NH) (%) Acc (%) MCC 
RF(ID(A), ID(Q), S12 (A), SS) 92.0 59.2 83.7 76.4 82.0 0.55 

SVM(ID(A), ID(Q), S12 (A), SS) 89.1 57.3 82.6 69.7 79.4 0.49 
SVM(S, ID) [7] 80.3 79.3 86.1 71.5 79.9 0.59 

QD(S12(a), ID(aa), ID(qq), ID(Af)) [8] 89.1 64.7 85.2 72.2 81.6 0.55 
 

Table 3. Predictive results using of the independent test for β-hairpins and non β-hairpins in ArchDB40 dataset. 

Method(parameters) Qo(H) (%) Qo(NH) (%) Qp(H) (%) Qp(NH) (%) Acc (%) MCC 
RF(ID(A), ID(Q), S12(A), SS) 91.2 54.1 81.9 72.9 79.9 0.50 

SVM(ID(A), ID(Q), S12(A), SS) 87.9 52.1 80.7 65.5 77.0 0.43 
 

Table 4. Predictive results using Random Forest algorithm for β-hairpins and non β-hairpins in ArchDB40datase. 

 parameters dimension Qo(H) (%) Qo(NH) (%) Qp(H) (%) Qp(NH) (%) Acc (%) MCC 

5-fold 
ID(A) + ID(Q) + SS 15 90.8 53.5 81.7 71.9 79.5 0.49 

A + Q + SS 
675 

95.4 55.9 83.1 84.1 83.3 0.59 
I (test) A + Q + SS 91.2 54.7 82.1 73.1 80.1 0.50 
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to RF algorithm doesn’t produce overfitting when the 
dimension of the characteristic parameters is higher, bet-
ter results are still obtained. But the phenomenon will 
appear in this case for the SVM; 3) Previous independent 
test is usually that using the large sample to test the small 
one. However, we still obtain better predictive results by 
using the small sample to test the large one when RF 
algorithm is used. This implies that RF algorithm is steady 
and effective. 
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