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ABSTRACT 

This paper introduces Soccer League Competition (SLC) algorithm as a new optimization technique for solving 
nonlinear systems of equations. Fundamental ideas of the method are inspired from soccer leagues and based on 
the competitions among teams and players. Like other meta-heuristic methods, the proposed technique starts 
with an initial population. Population individuals called players are in two types: fixed players and substitutes 
that all together form some teams. The competition among teams to take the possession of the top ranked posi-
tions in the league table and the internal competitions between players in each team for personal improvements 
results in the convergence of population individuals to the global optimum. Results of applying the proposed al-
gorithm in solving nonlinear systems of equations demonstrate that SLC converges to the answer more accu-
rately and rapidly in comparison with other Meta-heuristic and Newton-type methods. 
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1. Introduction 

Solving systems of nonlinear equations is one of the 
main concerns in a diverse range of engineering applica-
tions such as computational mechanics, weather forecast, 
hydraulic analysis of water distribution systems, aircraft 
control and petroleum geological prospecting. Many pre-
vious efforts have been made to find a solution for sys-
tems of nonlinear equations. Results of these studies 
comprise some theories and algorithms [1-4]. Among 
such approaches, Newton’s method is one of the most 
powerful numerical methods and an important basic me-
thod which has a quadratic convergence if the function F 
is continuously differentiable and if a good initial guess 
x0 is provided [5]. Frontini and Sormani [6] proposed a 
third-order method based on a quadrature formula to 
solve systems of nonlinear equations. Cordero and Tor-
regrosa [7] developed some variants of Newton’s method 
based on trapezoidal and midpoint rules of quadrature. 
Also, Darvishi and Barati [8-10] presented some high 
order iterative methods and Babajee et al. [11] proposed 

a fourth-order iterative technique. Luo et al. [12] solved a 
system of nonlinear equations using a combination of 
chaos search and Newton-type methods. More recently, 
Mo et al. [5] presented a combination of the conjugate 
direction method (CD) and particle swarm optimization 
(PSO) for solving systems of nonlinear equations. 

The convergence and performance characteristics of 
Newton-type methods are highly sensitive to the initial 
guess of the solution supplied to the methods and the 
algorithm would fail if the initial guess of the solution is 
improper. However, it is difficult to select a good initial 
guess for most systems of nonlinear equations [13]. The 
system of nonlinear equations is considered as follows: 
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Applying the global optimization methods, the system 
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of Equation (1) is transformed to an optimization prob-
lem. This is achieved by using the auxiliary function: 

     2
1 2

1

min , , , ,
n

i
i

nF f x x


  x x x x



 (2) 

Global minimum of above formulation is zero and  
is a root for the corresponding system of equations if 

. This paper presents a new meta-heuristic 
algorithm, called Soccer League Competitions (SLC), for 
solving Equation (2). 

*x

 * 0F x 

In Section 2, the basic concepts of SLC are defined. In 
Section 3, the performance and effectiveness of SLC are 
validated by some examples. Finally, the conclusions are 
presented in Section 4. 

2. Soccer League Competitions 

Level one soccer league consists of teams (clubs) com-
peting each other during a season. In this environment, 
some stronger teams aim to sit in the first positions of the 
league table while some weaker teams plan to survive in 
the level one league in order to prevent a crash out to the 
second level league. During the course of a season, each 
team plays the others twice, once at their home stadium 
and once at that of their opponents. Teams receive 3 
points for a win and no point is awarded for a lost. Teams 
are weekly ranked by total points and the club with the 
most point is crowned champion at the end of each sea-
son. The number of matches in each season depends on 
the team numbers. For instance, in a league consisting of 
M teams the total number of matches is calculated as 
follows: 

 Total Match 1 2M M           (3) 
In this league, each team participates in 1M   inde-

pendent matches, and totally,  1 2M M   compe-
titions are being held during a season.   

There is always an intense competition between the 
teams at the bottom of the league table. As a rule, the two 
bottom table teams are crashed out to the second level 
soccer league (relegations spots) at the end of the season. 
In return, two first table teams of the second level league 
(promotions spots) replaced with the relegated teams. 
Generally, promotions spots import new players to the 
league which may have potential of being a future star. 

Each team consists of 11 fixed players (FP) and some 
substitutes (S). A team’s power depends on the power of 
its players. Moreover, powerful teams have a higher 
chance of winning their matches. However, it is not pos-
sible to predict the exact winner of a specified match 
before the game ends.  

As well as the league competitions among teams, there 
is an internal competition in each team. Players compete 
with each other to attract the head coach’s attention by 
improving their performance. This internal competition 
leads to a growth in the quality and power of a team.  

In each team, there is a key player which is called Star 
Player (SP). SP has the best performance among other 
players in the team. Moreover, there is a unique player in 
each league which is called the Super Star Player (SSP). 
SSP is defined as the most powerful player in the league. 

After every match, players included in winner and 
loser teams of each match adopt different strategies for 
improving their future performance. When a team wins a 
match, fix players try to imitate the team’s SP, and the 
SSP of the league (this strategy is simulated by Imitation 
Operator in this study). They aim to experience a promo-
tion to the SP or, optimistically, occupy the place of SSP 
in the league. But, the main provocation of winner’s sub-
stitutes is being a fixed player in the team. For this pur-
pose, they try to have a performance approximately equal 
to the average level of fixed players in the team (this 
tendency is described by the Provocation Operator in this 
study). In other words, higher provocation for advance-
ment gives them more chance of being a fixed player in 
the future.  

On the other hand, loser teams seek for ways of im-
proving their performance for reaching better results in 
future matches. For this reason, fixed players of these 
teams have to revise their playing style. This revision 
may include a change in some aspects of their older hab-
its (this strategy is defined as the Mutation Operator in 
this study). In addition, head coach usually considers 
new combinations of substitutes in order to stop the fail-
ures in the future (this change is performed by the Sub-
stitution Operator in this study). 

Above mentioned strategies improve the overall per-
formance of the teams after each match. Therefore, 
team’s powers progressively increase while all teams 
play much better at the end of the season. Obviously, 
players with a noticeable progression increase the win-
ning chance of their team. 

As the first rank teams of each league have better fi-
nancial affordance, they are able to recruit powerful 
players of other teams. This intensifies their power for 
future seasons. In the next section, the solving style of an 
optimization problem using the Soccer League Competi-
tion (SLC) algorithm is discussed.  

2.1. Soccer League Competition (SLC)  
Algorithm 

Competitions between teams in a soccer league for 
reaching success, and among players for being a SP or 
SSP can be simulated for solving optimization problems. 
Similar to a soccer league in which every player desires 
to be the best (SSP), in an optimization problem each 
solution vector seeks for the global optimum position. 
Therefore, each player in a league, Star Player (SP) in 
each team, and the Super Star Player (SSP) can be as-
sumed as a solution vector, a local optimum, and the 
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global optimum, respectively.  
Each team consists of 11 fixed players (defined by 

principal solution vectors in the SLC algorithm) and 
some substitutes (described by reserved solution vectors 
in SLC algorithm). For each player, an objective function 
is calculated which stands for the power of its corre-
sponding player. In a minimization problem smaller val-
ues of objective functions (cost function) illustrate pow-
erful players (PP). The total power of a team is defined 
as the average power value of its players including fixed 
and substitute. The following formula shows how a 
Team’s Power (TP) is calculated.    

    
nPlayer

1

1 nPlayer ,
j

TP i PP i j


  



      (4) 

nPlayer is the total number of players in the ith team. 
 is the power of jth player in the ith team  ,PP i j

    , 1 cost ,i jPP i j . In each match, the team with 
more power has a higher chance of winning. The prob-
ability of victory for each team in a match is given by: 

        Pv k TP k TP i TP k         (5) 

        Pv i TP i TP i TP k          (6) 

Pv stands for the probability of victory. It should be 
noted that the sum of Pv(k) and Pv(i) equals 1. 

After each match, the winner and the loser are noticed 
and some players (solution vectors), including fixed and 
substitute, experience changes. These changes, which are 
aimed to improve performance of both players and teams, 
are simulated with the following operators: 

-Imitation Operator 
-Provocation Operator 
-Mutation Operator 
-Substitution Operator 
In the next part, detailed description of operators is de-

fined. 

2.1.1. Imitation Operator 
Fixed players (FP) of the winner team, imitate both the 
Star Player (SP) in their own team and the Super Star 
Player (SSP) in the league to improve their future activi-
ties. Similarly, solution vectors relating to the fixed 
players in the winner team move toward the best solution 
of the own team and the best solution vector of the 
league. In the SLC algorithm, Imitation is performed by 
the following formulas: 

      
    

1 1

2

, ,

,

,FP i j FP i j SSP FP i j

SP i FP i j

 



  

 
  (7) 

     
    

2 1

2

, ,

,

where  1 ~ ,U   ,  2 ~ 0,U  ,  1 ~ 0, 2U , and 
 2  are random numbers with uniform distri-

bution. 
~ 0, 2U

 ,FP i j  stands for the jth fixed player of the 
ith team, and  SP i  is the star player of the ith team. It 
is also proposed that: 1 2  , 0 1  . 

First, solution vector of fixed players (FP) in the win-
ner team experiences a big move toward the resultant 
vector direction of SP and SSP (Equation (7)). If the 
newly generated solution vector at this new position was 
better than the older solution vector, it is replaced with 
the old one. Otherwise, the solution vector experiences a 
medium move toward the resultant vector (Equation (8)). 
If this solution was better than the older one, it is re-
placed with the old vector. In the case that none of the 
discussed movements gave a better solution vector, the 
player is kept in its position with no change.  

2.1.2. Provocation Operator 
Substitutes of a winner team (S) have to prove a per-
formance equal to the average performance level value of 
the fixed players in their team in order to be a fixed 
player. This process, which is performed by the Provoca-
tion Operator in SLC algorithm, is described by 

       1, ,S i j C i C i S i j       (9) 

       2, ,S i j C i S i j C i       (10) 

where  1 ~ 0.9,1U , are random 
numbers with uniform distribution, and 

2 ~ 0.4,0.6U 
 C i  is the 

average value of fixed player’s solution vectors in the ith 
team. S(i,j) is the jth substitute of the ith team. 

Firstly, solution vector of the weakest substitute player 
in the winner team experiences a forward move toward 
the gravity center of fixed players (Equation (9)). If the 
newly generated solution vector relating to this new posi-
tion was better than the last one, it is replaced by its old 
vector. Otherwise, mentioned player will experience a 
backward movement toward the gravity center (Equation 
(10)). If this solution was better than the weakest solution, 
this vector is replaced with the old one. In the situation 
that none of the discussed movements gave a better solu-
tion vector for improving the weakest solution, a new 
vector is generated randomly and replaced with the old 
one. In an overall view, provocation operator acts on the 
weakest substitutes of winners. If advancement was evi-
dent in their performance, they are kept in the team. Oth-
erwise, they are exported from the team while new ran-
dom players (solution vectors) are entered for future 
games.   

2.1.3. Mutation Operator 

,FP i j FP i j SSP FP i j

SP i FP i j

 



  

 
  (8) 

Fixed players of loser team in a match should revise their 
activity in order to prevent failure in future games. To 
perform this operation, the positions of some players are 
randomly changed. This mechanism is similar to muta-
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tion process in Genetic Algorithm (GA) for creating di-
versification in solutions.  

2.1.4. Substitution Operator 
The head coach usually considers new combinations of 
substitutes for future games. Similarly, a random-based 
approach is applied to reflect the head coach impact in 
this algorithm. To do this, a pair of new substitute vec-
tors is being tested. If a suitable answer was obtained, 
this effective pair is entered to the team. This process, 
which is performed by the Substitution Operator in SLC 
algorithm, is described by 

      , , 1NEWS i j S i j S i k      ,

,



n

  (11) 

       , , 1NEWS i k S i k S i j         (12) 

~ 0,1U  is a random vector with uniform distribu-
tion. The number of new examined pairs is proposed to 
be equal to the number of team substitutes. 

In an overall view, 4 described operators have the fol-
lowing effects in the algorithm: 

The Imitation Operator expedites the searching capa-
bility of the algorithm.  

The Provocation Operator provides high accurate solu-
tions to the complex optimizations problems.  

The Mutation and Substitution Operators help the 
proposed algorithm to escape from local minimums and 
plateaus.  

After each game, 4 discussed operators act on the 
players (solution vectors) and team’s powers are updated 
according to the new solutions. Obviously, powerful 
teams are more likely to be successful in their future 
matches. This process continues to the end of the season 
and the Super Star Player (SSP) of the league yields the 
Global Optimum (best solution) for the optimization 
problem. After each season, players are arranged taking 
into account their updated power. Before commencing a 
new league, top players are devoted to the best teams, 
medium players are allocated to the teams with an aver-
age performance, and the weakest players are transferred 
to the bottom teams in the league table.  

In the next section, the steps and flowchart of SLC al-
gorithm are presented. 

2.2. Steps and Flowchart of SLC Algorithm  

Step 1. Initialize the problem and algorithm pa-
rameters 

In this step, the optimization problem is specified as 
follows: 

    2
1 2

1

Min , , , ,
n

i
i

F f x x


  x x x x   (9) 

where F(x) is an objective function; x is a set of each 
decision variable xi; n is the number of decision variables; 
and Xi is the set of possible range of values for each deci-

sion variable. Then, the number of seasons (nSeason), the 
number of teams included in the league (nTeam), the 
number of fixed players (nFixedPlayer), and the number 
of substitutes (nSubstitute) are determined.  

Step 2. Generate samples 
The total number of players in a league is calculated 

by the following formula: 

 nPlayers nTeam nFixedPlayer nSubstitute  
 

In most problems, it is suggested that 

3 nTeam 5,   
nFixedPlayer 11,  

nSubstitute 11  
In this step, randomly solution vectors are generated as 

many as the number of players in the league and each 
vector is devoted to a specified player. Hence the matrix 
TEAM which is generated randomly is given as: 

1

2

nFixedPlayer

1

2
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1 1 1
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1 2
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 
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 
 
 
 
 
  

  (10) 

Next, an objective function relating to each solution 
vector (player’s power) is calculated. 

Step 3. Teams assessment 
In this step, all players are arranged according to their 

calculated power and are devoted to teams. Each team’s 
power is equal to the average power of its players.    

Step 4. Start the league 
In this step, competitions are started between all pos-

sible pairs of teams in the league, the winner and the 
loser of every match are determined, the Imitation Op-
erator acts on fixed players in winner teams, the Provo-
cation Operator acts on substitutes of winner teams, the 
Mutation Operator acts on 3 out of 11 from fixed players 
of loser teams, and the Substitution Operator acts on re-
served players in the loser teams. Then, player’s powers 

OPEN ACCESS                                                                                         IJIS 



N. MOOSAVIAN, B. K. ROODSARI 11

and the team’s powers are updated. This process is con-
tinued by the end of the season.  

Step 5. Relegation and promotion 
In this step, the worst team (relegation spot) is ex-

ported from the first level league, and in return, a new 
team (promotion spot) is imported to this league. It 
should be noted that this step is only applied for complex 
optimization problems. 

Step 6. Check the stopping criterion 
In this section, Steps 3, 4, and 5 are repeated until the 

termination criterion (nSeason) is satisfied.  
Figure 1 illustrates the flowchart of SLC procedure 

for solving optimization problems. 

3. Numerical Results 

In this section, the solutions for some systems of nonlin-
ear equations are described. All of computations were 
executed in MATLAB programming language environ-
ment using five independent nonlinear systems with an 
Intel(R) Core(TM) 2Duo CPU P8700 @ 2.53 GHz and 
4.00 GB RAM. For the examples 3 to 5, the stopping 
criterion is considered to be   310nF x . 

In all problems it is considered that β = 1 and θ = 0.7. 

Case study 1. Geometry size of thin wall rectangle 
girder section: 

    

    

     

1

33

2

2 2

3

2 2 165

2 2
9369

12 12

2
6835,

2

f x bh b t h t

b t h tbh
f x

h t b t
f x

h b t

    

 
  

 
 

   
 

 

Figure 1. SLC procedure for solving optimization problems. 

where h is the height, b is the width and t is the thickness 
of the section. Mo et al. [5] solved this system using 
conjugate direction particle swarm optimization. In an- 
other study, Luo et al. [12] presented a solution for men-
tioned system using a hybridization of chaos search and 
Newton-type methods. Also, Jaberipour et al. [13] used a 
new version of particle swarm optimization (PPSO) for 
solving this system. In this research, the SLC algorithm 
is applied to solve above-mentioned problem. The bound 
variables were set between 0 and 30 m. As shown in 
Table 1, different intervals of χ1, χ2 are examined to find 
the best performance of SLC algorithm. As it can be seen 
in this problem, if χ1 = 1 and χ2 = 0.5, SLC reaches to the 
average accuracy level of 1024 after 100000 function 
evaluations and 20 independent runs. Therefore, we set χ1 
= 1 and χ2 = 0.5. According to the Table 2, the best solu-
tion equals zero that is the global optimum of this prob-
lem. In Table 2, values of the best, worst, mean, standard 
deviation and number of function evaluations are consid-
ered after 20 different runs. It is assumed that number of 
teams, fixed players, and substitutes equal 3, 6 and 6, 
respectively. In case A, all operators are taken into ac-
count in SLC algorithm while in case B mutation and 
substitution operators are exempted from the algorithm. 
As can be seen in case A, the best solution equals zero 
which is the exact value of the global optimum, but in 
case B, the best solution equals 1.29e26. 

To verify the performance of the proposed algorithm, 
Particle Swarm Optimization (PSO) and Differential 
Evolution (DE) algorithms are applied to solve this sys-
tem. As it can be seen in Table 3, the best solution of DE 
after 100,000 function evaluations equals 0.639, and PSO 
reaches to 267.594 and 1.89e25 after 10,000 and 100,000 
function evaluations, respectively. It should be noted that 
PSO algorithm can converge to the global optimum in 
one out of 20 runs. The initial population in DE and PSO 
are considered to be 20, and 300, respectively.  

Table 4 presents the solution obtained from SLC and 
previous studies. According to the results, the SLC pro- 
 
Table 1. Comparison results (Objective Functions) of SLC 
for different values of χ1 and χ2 (Number of function 
evaluations = 100,000). 

χ1 χ2 best worst mean Stda 

0.5 - 1.5 0 - 1 0.1781 48.6241 9.9851 11.5017

0.7 - 1.2 0.3 - 0.7 4.567E−09b 17614b 916.7857b 3931.8

0.8 - 1.1 0.4 - 0.6 1.26E−21 4.63E−08 2.48E−09 1.03E−08

0.9 - 1 0.45 - 0.55 4.35E−24 1.19E−11 5.94E−13 2.66E−12

1 0.5 0 7.91E−24 1.38E−24 1.87E−24

aStandard Deviation. bValue of objective function.  
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Table 2. Reviewing effects of different parameters for SLC 
in cases A and B. 

 Case A 

SLC best worst mean std FCN 

3a 

6b 

6c 

0d 7.91E−24 1.38E−24 1.87E−24 10,000

 Case A 

 best worst mean std FCN 

3 

6 

6 

0 1.87E−24 4.76E−25 4.91E−25 100,000

 Case B 

 best worst mean std FCN 

3 

6 

6 

1.29E−26 9.25E−25 4.86E−25 3.18E−25 10,000

 Case B 

 best worst mean std FCN 

3 

6 

6 

5.17E−26 3.32E−24 6.02E−25 7.28E−25 100,000

aNumber of teams. bNumber of fixed players. cNumber of substitutes. dValue 
of objective function. 
 

Table 3. Results of PSO and DE for case study 1. 

 best worst mean std FCN 

DE 0.639a 3023.6a 663.8763a 949.29 100000

PSO 267.594 10000 9513.4 2176.2 10000 

PSO 1.89E−25 10000 8500 3663.5 100000

aValue of objective function. 

 
Table 4. Comparison of SLC solutions with other methods 
in case study 1. 

Methods B h t f1(x) f2(x) f3(x)

SLC 22.057 20.294 2.1705 165 9369 6835

PPSO [8]  43.156 10.129 12.944 709.24 9369 528.04

Mo et al. [11] 8.9431 23.271 12.913 165 9369 529.32

Luo et al. [10] 12.566 22.895 2.7898 166.72 9544.3 2585.5

vides exact solution and outperforms other discussed 
methods.  

Case study 2. Consider  

        1 2, , , mF f x f x f x x  with 

   
   
   

1 1 1 2

1 1

10 10 10 9

3 5 1 2 0

3 5 1 2 0, 2, ,9

3 5 1 0,

i i i i i

f x x x x

f x x x x x i

f x x x x

 

    

      

    

  

The above system has ten unknown variables and ten 
equations.  

SLC was used for solving this system. Maximum and 
minimum of decision variables were set between −1 and 
0. In Tables 5 and 6, performance of SLC is verified for 
different number of players and teams. Values of χ1, χ2 

are assumed based on explanations of section 2.1.2 of 
this paper. Due to the results of both case A and B, the 
best performance is reached when the number of teams, 
fixed players, and substitutes are assumed to be 5, 10, 
 
Table 5. Reviewing effects of different parameters for SLC 
in case A. 

Case Aa 

SLC Best worst mean std FCN 

3 

10 

10 

3.63E−25 1.89E−05 1.49E−06 4.51E−06 10,000

 Best worst mean std FCN 

5 

10 

10 

9.40E−13 1.06E−06 5.29E−07 2.36E−07 10,000

aSLC with all operators. 

 
Table 6. Reviewing effects of different parameters for SLC 
in case B. 

Case Ba 

SLC best worst mean std FCN 

3 

10 

10 

7.64E−31 1.66E+00 1.67E−01 5.25E−01 10000

 best worst mean std FCN 

5 

10 

10 

4.70E−20 4.76E−12 5.08E−13 1.21E−12 10000

aSLC without mutation and substitution operators. 
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vious from Table 8 that SLC finds the exact solution 
more accurately comparing with other discussed meth-
ods.  

and 10, respectively. In other words, better solutions are 
reached when the number of fixed players and substitutes 
equals the number of decision variables. PSO and DE 
algorithms are also used to solve this system. As shown in 
Table 7, the mean solution value of DE (considering in- 
itial population = 20) equals 7.12e−12, while PSO reaches 
to 2.72e−4 and 1.22e−7 when the initial population equals 
100 and 1000, respectively. It should be mentioned that 
the mean solution of SLC equals 5.08e−13 (Table 6).  

Case study 3. Consider 

        1 2, , , mF f x f x f x x  with 

 
 

1

1

1, 1, 2, , 1

1,

i i i

m m

f x x x i m

f x x x

   

 


 

Table 8 demonstrates the best solution obtained from 
SLC algorithm, and compares this solution with results 
of Differential Equation (DE) and Particle Swarm Algo-
rithm (PSO). It should be noted that the number of func-
tion evaluation in all methods is equal 10,000. It is ob- 

When m is odd, the exact zeros of F(x) are (1, 1, ···,1) 
and (1, 1, ···,1). Shin et al. [14] solved the above 
system for various values of m using Newton-Like 
methods. They set the initial guess to be (0.5, 0.5, ···,0.5) 
for all methods.  

 
Table 7. Results of DE and PSO for case study 2. 

 best worst mean std FCN 

DE 2.89E−13 4.13E−11 7.12E−12 1.23E−11 10,000 

PSOa 2.76E−08 0.0025 2.72E−04 6.16E−04 10,000 

PSOb 6.61E−08 7.27E−07 1.22E−07 1.54E−07 10,000 

aPopulation = 100. bPopulation = 1000. 

 
Table 8. Comparison of SLC solutions with other methods in case study 2. 

Methods Mo et al. [11] DE PSO SLC 

x1 0.91555 −0.382084413 −0.382101391 −0.382084304 

x2 −0.22226 −0.438097433 −0.438106147 −0.438097493 

x3 −0.41465 −0.445927406 −0.445938190 −0.445927622 

x4 −0.43925 −0.446971289 −0.446966223 −0.446971297 

x5 0.42089 −0.446951503 −0.446961182 −0.446951485 

x6 −0.35459 −0.446355699 −0.446377379 −0.446355653 

x7 −0.13577 −0.444141223 −0.444154249 −0.444141159 

x8 0.42756 −0.436187399 −0.436180807 −0.436187334 

x9 0.75220 −0.407859019 −0.407836044 −0.407858897 

x10 −0.44070 −0.309566750 −0.309547753 −0.309566879 

f1(x) −3.17E−06 −8.6491E−07 −9.9243E−05 2.2204E−16 

f2(x) 3.52E−07 1.2254E−07 −2.5652E−05 0.0000E+00 

f3(x) −1.70E−06 1.5398E−06 −8.0323E−05 8.8818E−16 

f4(x) 1.77E−06 −1.2364E−07 6.7860E−05 1.2212E−15 

f5(x) −1.68E+00 −5.1561E−08 −3.4056E−05 −3.2196E−15 

f6(x) 2.53E+00 −1.9788E−07 −1.2628E−04 −1.2212E−15 

f7(x) −8.42E−01 −3.0441E−07 −8.8738E−05 −2.7756E−15 

f8(x) −3.91E−07 −1.6868E−07 1.5435E−05 −2.2204E−16 

f9(x) 6.81E−07 −1.0542E−06 1.1699E−04 0.0000E+00 

f10(x) 2.34E−07 9.0578E−07 9.3726E−05 −6.8834E−15 
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To verify the performance of SLC algorithm above- 

mentioned problem will be analyzed for 13, 71, 151, and 
201 dimensions. We assume zero and one as the upper 
and lower bounds of unknown variables in SLC algo-
rithm . Values of χ1, χ2 are assumed 
based on explanations of section 2.1.2 of this paper. For 
each considered dimension value (m), the number of 
substitute players equal the number of decision variables 
while the number of fixed players in 3 cases equals the 
substitute players and in one case equals half of this val- 
ue. Calculation results for 20 independent runs are pre-
sented in 

0.5 1.5ix  

Tables 9-12. Similar to the previous examples, 
analysis is performed for 2 cases of A and B. In case A, 
all operators are taken into account in SLC algorithm 
while in case B mutation and substitution operators are 
exempted from the algorithm. According to Tables 9 and 
 
Table 9. Review of parameter variation effect in SLC algo-
rithm for m = 13. 

 Case A Case B  Case A Case B 

3 5 

13 13 

13 

1631a 1057a 

13 

3294a 2226a 

aNumber of function evaluations. 

 
Table 10. Review of parameter variation effect in SLC al-
gorithm for m = 71. 

 Case A Case B  Case A Case B 

9 3 

71 35 

71 

70,024 63,377 

71 

23,827 10,602 

aNumber of function evaluations. 

 
Table 11. Review of parameter variation effect in SLC al-
gorithm for m = 151. 

 Case A Case B  Case A Case B 

9 3 

151 75 

151 

191,370 253,330 

151 

75,137 100,460

 
Table 12. Review of parameter variation effect in SLC al-
gorithm for m = 201. 

 Case A Case B  Case A Case B 

9 5 

201 100 

201 

278,920 404,265 

201 

104,370 151,860

10, the performance of SLC algorithm in case B is better 
than case A when the number of decision variables are m 
= 13 (number of function evaluations = 1057) and m = 71 
(number of function evaluations = 10,602). In contrast, 
SLC algorithm in case A has a better performance when 
the number of decision variables are m = 151 (number of 
function evaluations = 75,137) and m = 201(number of 
function evaluations = 104,370). 

To verify the performance of SLC algorithm, PSO and 
DE algorithms are applied to solve this system of 
nonlinear equations. As shown in Table 13, SLC has 
better convergence accuracy in comparison with PSO 
considering all different problem dimensions. It is also 
found that DE is not a good rival for SLC and PSO at all. 
For instance, this algorithm has not yet converged to the 
solution after more than 1 million function evaluations for 
m = 151 and m = 201. To reach the best performance for 
PSO and DE, the initial population in DE algorithm equals 
half of its number of decision variables and in PSO algo-
rithm this value is assumed to be 100* number of decision 
variables. The best solution of DE after 100,000 function 
evaluations equals 0.639, and PSO reaches to 267.594 and 
1.89e−25 after 10,000 and 100,000 function evaluations, 
respectively. It should be noted that PSO algorithm can 
converge to the global optimum in one out of 20 runs. The 
initial population in DE and PSO are considered to be 20, 
and 300, respectively. 

The CPU time results are provided in Table 14. As 
shown in Table 14, the convergence rate in Newton-like 
methods dramatically increases as the problem’s dimen-
sion (number of unknown variables) rises. In contrast, 
the convergence time in SLC has no dependency with the 
dimension parameter. 

It should be mentioned that each linear system of 
equations should be solved in alliterations of the solving 
process [14]. The main reasons in less convergence time 
in SLC method is that it does not require solving linear 
system of equations and it only calls the optimization 
function during each season. 

Considering the discussed examples in this article, 
SLC can properly solve huge system of nonlinear equa-
tions. To sum up, the following suggestions are worth to 
mention after detail preview of the problems: 
1) Choose the values of χ1 and χ2 close to 1 and 0.5, 

respectively. 
2) The number of teams should be selected between 3 

and 5 for problems with dimension of lower than 200.  
3) The number of fixed players should be selected be-

tween the number of decision variables and half of 
this value. 

4) The number of substitute players should be equal to 
the number of decision variables.  

5) To decrease the number of function evaluation in 
problems with small dimensions, Mutation and Subs- 
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Table 13. Results of DE and PSO for case study 3. 

DE m = 13 m = 71 m = 151 m = 201 

FCN 70,400 269,600 1,000,000 1,000,000 

F(x) 0.001 0.001 0.79828 8.2763 

PSO m = 13 m = 71 m = 151 m = 201 

FCN 4290 58,220 135,900 261,300 

F(x) 0.001 0.001 0.001 0.001 

 
Table 14. Comparison results of CPU time for SLC with other methods in case study 3. 

m = 13 m = 71 m = 151 m = 201 
Method 

CPU time(s) CPU time(s) CPU time(s) CPU time(s) 

N-K [14] 0.484375 7.828125 75.03125 272.546875 

Ned1 [14] 0.5 11.890625 121.578125 461.8125 

Ned2 [14] 0.53125 14.46875 172.046875 588.90625 

Ned3 [14] 0.375 10.28125 166.71875 431.984375 

mNm [14] 0.546875 12.109375 138.28125 790.21875 

FM [14] 0.640625 13.75 199.046875 802.640625 

CL [14] 0.421875 8.609375 109.09375 501.546875 

SLC 0. 3121 1.9216 9.0952 16.9021 

 
titution operators can be neglected.  

To find a solution, SLC algorithm rapidly reaches the 
local optimums and considers the best of them as the 
global optimum solution using Imitation operator. Next, 
the local optimum solution is precisely approximated by 
the provocation operator. During the above-mentioned 
operations, both Mutation and Substitution operators 
check the skewed points to prevent the ignorance of any 
other possible local or global optimum points in the do-
main. Combination of 4 discussed operators together 
with the team ranking procedures in leagues, make SLC 
algorithm as an incomparable optimizer among many 
other meta-heuristic and mathematical methods.  

4. Conclusion 

In this article, a new meta-heuristic algorithm was intro-
duced, entitling Soccer League Competitions (SLC), to 
solve nonlinear systems of equations. This algorithm 
seeks for the answer using 4 independent operators and 
rapidly converges to the results. Due to the comparison 
results between the proposed algorithm with other 
meta-heuristic and Newton-like methods, SLC provides 
more accurate answers in a considerably smaller time. 
Furthermore, SLC has the lowest sensitivity to the prob-
lem’s dimensions. In conclusion, the proposed algorithm 
is recommended for huge and complex optimization  

problems and nonlinear systems of equations specifically 
when the running time is considered as an important fac-
tor. 
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