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ABSTRACT 

Differential equations to describe elasticity are derived without the use of stress or strain. The points within the body are 
the independent parameters instead of strain and surface forces replace stress tensors. These differential equations are a 
continuous analytical model that can then be solved using any of the standard techniques of differential equations. Al- 
though the equations do not require the definition stress or strain, these quantities can be calculated as dependent pa- 
rameters. This approach to elasticity is simple, which avoids the need for multiple definitions of stress and strain, and 
provides a simple experimental procedure to find scalar representations of material properties in terms of the energy of 
deformation. The derived differential equations describe both infinitesimal and finite deformations. 
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1. Introduction 

Euler, Lagrange, and Poisson all described the deforma- 
tion of materials in terms of positions of points and forc- 
es within the body. Cauchy introduced the concepts of 
stress and strain, which are now the standard for elastic- 
ity equations (An accessible early history is found in Ref 
[1] with pointers to the source documents). In this paper, 
I will return to the earlier use of points and forces to de- 
scribe elasticity. Surprisingly, only a few basic assump- 
tions are required. 

2. The Differential Equations 

Using the notation of Spencer [2], the points within the 
body before deformation are described as Xi = (X1, X2, 
X3), with 1 2 3, ,X X X

i

 corresponding to the initial x, y, 
and z coordinates of each point, respectively. The corre- 
sponding points within the body after deformation are 
described as  1 2 3, , x x x x





1 1

. The position of each point 
after deformation is a function of the original location of 
that point, i.e. 1 2 3, ,x f X X

 
X

, ,
, x2 = f2(X1, X2, X3), 

and 3 3 1 2 3x f X X X . 
When an elastic material is deformed, work is done on 

the material and energy is stored in the material. As the 
material is returned to its original shape, the energy re- 
turns to its original value. Thus the energy depends only 

upon the final position of the points within the body. Ex- 
perts in elasticity theory call this hyperelasticity. Hype- 
relasticity will be assumed for the remainder of this pa- 
per. 

The differential equations are derived by assuming the 
energy per unit volume of the material is a function of 
the final point locations, ix , and the relative displace- 

ments of near-by points, i

j

x

X




. The total energy of the 

body is then 

, d .             (1) i
tot i

j

x
E x V

X

 
    


It is also assumed that when the body is moved or de- 
formed, the internal points within the body move so as to 
minimize the total energy. That is 

1 1 3, d d di
tot i

j

x
E x X X X

X
 

 
0    

     (2) 

for i = 1, 2, 3 and j = 1, 2, 3 and where the integral is 
taken over the entire body. 

Minimizing this energy function Equation (2) results 
in the following three Euler-Lagrange equations, 

 
d

0 for 1,2,3.
di j i j

E E
i

x X x X

 
 

   
    (3) 
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These are the differential equations of elasticity. All 
that remains is to appropriately describe the energy func- 
tion E and the boundary conditions.  

2.1. Energy 

To describe the energy per unit volume E, divide the en- 
ergy into two parts. body  which defines the energy as- 
sociated with body forces and def  which defines the 
energy associated with the deformation of the body. 

body  is typically only a function of the positions of the 
points within the body. (e.g., the energy per unit volume 
associated with a gravitational force would be just 3

E
E

E

gx , 
with the 3x  axis vertical.) def  is typically a function 
only of the relative positions of the body, i.e. a function  

E

only of i

j

x

X




. The total energy associated with the body  

is then the sum of the contributions from these different 
energies, 

  .i
body i def

j

x
E E x E

X

 
    

           (4) 

The energy of deformation, def , must be invariant to 
coordinate translations and rotations. A common way of 
accomplishing this [3] is to define energy in terms of the  

E

invariants of the deformation gradient tensor, i
ij

j

x

X





 . 

Hardy and Shmidheiser [4] noted that the invariants for 
isotropic bodies can be describe as singular value de- 
compositions ( 1 , 2 , 3 ) of the matrix ij  or differ- 
ent algebraic combinations of these invariants. A par- 
ticularly useful set of these invariants is 



2 2 2
1 1 2 3

2 2 2 2 2 2
2 1 2 1 2 2 3

3 1 2 3

I

I

I

  

     
  

  

  



        (5) 

which can also be written directly in terms of the matrix 
elements of  as  ij

          
 

1

2

3

I

I

I

     

           

  

a a b b c c

a b a b a c a c b c b c

a b c






 (6) 

where , , and  are the column vectors of . a b c ij

The invariants for anisotropic bodies can be the six 
values produced by a Gram-Schmidt QRDecomposition 
of ij . This QRDecomposition results in an upper tri- 
angular matrix, 





11 12 13

22 23

33

0

0 0

T T T

T T T

T

 
 
 
 

            (7) 

The elements of this upper triangular matrix can also 
be written in terms of the column vectors of  as fol- 
lows: 

ij

   

   
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T

T
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


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
   

 


   

a a

a a
a b

a a
a c

a a

a b a b

a a

a b a c

a a a b a b

a b c

a a a b a b

        (8) 

Any algebraic combination of these 6 values can also 
be used as invariants for anisotropic bodies. 

2.2. Boundary Conditions 

Boundary conditions for material deformation problems 
usually consist of either specifying the final positions of 
boundary points, or the forces on the surfaces. The 
Dirichlet boundary conditions consist of simply defining 

ix  at the desired surfaces. The Neumann boundary con- 
ditions require converting the surface forces into deriva- 
tives of ix . This can be accomplished by first noting 
that once  1 2 3, ,ix X X

d 
X  are known for a given defor- 

mation, E an tot  are known. Thus the change in en- 
ergy due to the work done on the body is a function of 
only the initial and final positions of the points within the 
body. This implies that the deformation forces are con- 
servative. As a result the internal forces within the body 
can be written as the negative gradient of the energy, 

x totF    , which is equivalent to 

1 2 3d d di
i

E
F X X X

x


 

            (9) 

Care must be taken here, however, because the gradi- 
ent of E is with respect to ix , whereas the integral is 
over the original iX . Using Equation (3), 

  1 2

d
d d d

di
j i j

E
3F X X X

X x X


 

        (10) 

Applying the n-dimensional divergence theorem gives 

 
di j

i j

E
F A

x X


 

             (11) 

where iF  is the  component of the force at the sur- thi
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face defined by the vector d jA  with 1 2d d d 3A X X , 

2 1 3d d dA X X , 3 1 2d d dA X X . 
These internal forces must be balanced by an equiva- 

lent surface force in the opposite direction. Since this 
must be true for all surfaces, the surface forces d surface

iF  
are 

 
d d .surface

i j

i j

E
F A

x X



 

ij

         (12) 

Once the energy per unit volume, E, is expressed in 
terms of the invariants of , which are in turn func-  

tions of i

j

x

X




, Equation (12) provide the constraint  

equations for the Neumann boundary conditions. 

3. Some Applications 

The differential equations of elasticity have now been 
completely described. No reference has been made to the 
magnitude of the deformation. As a result, Equation (3) 
apply to both infinitesimal and finite elastic deformations. 
Also they apply to both isotropic and anisotropic materi- 
als. Although the equations are general, for simplicity I 
will limit the rest of this paper to isotropic materials. 

3.1. Infinitesimal Elasticity 

In order to make the connection between the differential 
equations of elasticity given here and the “standard” dif- 
ferential equations of infinitesimal elasticity, I will show 
that a Taylor expansion of def  for an isotropic body 
yields the infinitesimal free energy as described by Lan- 
dau [5] (Equation 4.1, p. 9). This infinitesimal free en-
ergy when substituted into Equation (3) results in the 
differential equations for infinitesimal deformations that 
Landau derived assuming strain to be the independent 
parameter. 

E

The Taylor expansion of i
def

j

x
E

X

 
  

  yields 

 

 

   

0

3 3

1 1
0

3 3 3 3

1 1 1 1

00

1

2

i
def def

j

def

i j i j

k l i j k l

i i k

j j l

x
E E

X

E x x

X Xx X

E

x X

x x x x

X X X X

 

   

 
   
     
      




    

                      





m

0

0

i i

j j

def

i j

k

l

x X

  
      

  
  

    

.

 




 (13) 

where the “0” subscript corresponds to no deformation 

(i.e. when mx X  and 
0

i
ij

m

x

X


 
  

). 

The first term in the expansion is a constant and is 
physically irrelevant. To evaluate the second term, I will 
choose to define the initial state, when no deformation 
has occurred, as corresponding to the state of the body 
when all internal forces are zero. Since this must be true 
for all points within the body, Equation (11) gives 

 
0

0def

i j

E

x X

 
  
    

          (14) 

which is the coefficient of the second term in the Taylor 
expansion, Equation (13). As a result, the third term, is 
the leading term in the Taylor expansion. Before evalu- 
ating this however, let’s see what constraint Equation (14) 
provides. To do this, express def  in terms of the three 

i

E
I  invariants for an isotropic body given in Equation (6) 
Then 

   
0 0

.def def r

ri j i j

E E I

Ix X x X

      
          






   (15) 

Direct substitution of the rI  invariants in terms of 

i

j

x

X




 into this equation yields 

1 2 30 0 0

2 4def def defE E E

I I I

       
0.             

    (16) 

It now remains to expand and evaluate the third term 
in the Taylor expansion. Again writing def  in terms of 

r

E
I  allows us to proceed. The third term in the Taylor 
expansion can be expanded quickly using algebraic com- 
putation software like Mathematica. It is a bit more tedi- 
ous by hand, but the result of either is the free energy 

 as defined by Landau [5], defE

    2

0
2def def ii ikE E u 2u            (17) 

with 
1

2
i k

ik
k i

u u
u

X X

  
    

 and , so that i iu x X  i

i i
ij

j j

u x

X X


 
 

 
 where 

2 2 2

1 1 2 1 3 10 0 0

2 2 2

2 2 3 2 3 3 1 00 0 0

4 16 4

16 8 2

def def def

def def def def

E E E

I I I I I I

E E E E

I I I I I I I


       

                      

         
                           

 

(18) 

and 
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1 20 0

2 2def defE E

I I


    
        

.         (19) 

If this Taylor expansion of def  is substituted into 
Equation (3) and a gravitational body force i

E
g  is add- 

ed, we get Landau’s equation [5] (Equation 7.1, p. 16) of 
equilibrium for isotropic bodies of an infinitesimal de- 
formation: 

     
2 2

2
0

2 1 2 1 1 2
i l

i
i lk

u uY Y
g

X XX


  
 


    

  (20) 

where Young’s modulus 
 3 2

Y
  

 





 and Pois- 

son’s ratio 
 2


 




. 

The boundary conditions for classical infinitesimal 
elasticity consist of setting stress and strain on bounda- 
ries. To complete the comparison, stress and strain need 
to be defined. There are many different definitions of 
stress and strain in the literature. As an example, the La- 
grangian strain tensor is 1 2ij ki kj ij     , and stress 
as defined by Landau [5] can be inferred from Equation 
(12) to be 

 
.ij

i j

E

x X
 


  

             (21) 

Note that this stress corresponds to force divided by 
original area. We can now conclude that all of the solu- 
tions to problems in classical infinitesimal elasticity de- 
scribed by Equation (20) are also solutions of Equation 
(3). 

One other observation should be made here. As de- 
fined by Landau, ij  defined in Equation (21) is the 
stress exerted by the surroundings on the material vol- 
ume. Noting this and considering the case where the ma- 
terial is in the gravitational field of the earth, we see that 
Equation (2) are just the equations of equilibrium 

 in terms of stress, i.e.  0F 

0ij
j

i

g
X





 


             (22) 

where  0,0,jg g  . 

3.2. Finite Elasticity 

The real power of Equation (3) is not that they can re- 
produce standard infinitesimal elasticity equations, but 
that they apply equally well to finite elasticity. Consider 
for example a finite deformation with no body forces.  

Since E is a function only of i

j

x

X




, the derivative of E in  

Equation (3) results in equations with every term con- 

taining a second derivative of ix  with respect to jX . 
As a result, any homogeneous deformation without body 
forces automatically solves Equation (3), depending only 
upon the boundary conditions. 

Consider two such homogeneous deformations. The 
first homogeneous deformation simulates the experimen- 
tal results of Rivlin [6]. These experimental results can 
be used to define an energy function E. The second ho- 
mogeneous deformation uses this energy function to cal- 
culate the surface forces necessary to produce a simple 
shear of 25˚, which is much larger than would be possi- 
ble with infinitesimal elasticity theory. 

3.2.1. Matching Experimental Data 
Any of the many models of elasticity expressed in terms 
of invariants of ij  (e.g. Ogden [3]) can be used for 

def  in Equation (3) as long as they span the range of 
deformation conditions to be encountered in the simula- 
tion. As a specific example, consider  given as 


E

defE E

     22

1 3 1 1 2 2 13 1 2 4E a I b I c I c I c c I        2 3.   

(23) 

Note that the coefficient of 3I  has been chosen so that 
Equation (16) is satisfied (i.e. so that the forces with no 
deformation are zero). Considering solutions of Equation 
(3) of the form i i ix a X , the deformation gradient ma- 
trix is 

1

2

3

0 0

0

0 0

i
ij

j

a
x

a
X

a

 
     

 

 0 
          (24) 

and the singular value decomposition of  gives ij

i ia  . 

1F , 2F , 1 , and 2  were measured by Rivlin. No 
force was applied in the z direction, so 3 . Table 1 
in Rivlin’s paper [6] recorded computed stress,  where  

0F 
ti

i
i i

i

F h
 where w = original width = 8 cm, h =  f t

w 
 

original thickness = 0.7 mm of the deformed rubber sam- 
ple. This information allows the measured 1F  and 2F  
to be reconstructed. Substituting these iF  values into 
Equation (12) provides three constrain equations for find- 
ing a, b, 1 , and 2 . Unfortunately Rivlin assumed the 
rubber he deformed to be incompressible, so  and 
b can not be evaluated using his data. However, if a, 1 , 

2  are computed assuming incompressibility, an esti- 
mate of b can be obtained using compressibility 

c c
1=3I

c
c

  16 250.5 kg cm10
   from Wood [7],  

 1 2 3    , Equation (18), and Equation (19). The 
result of this fit is 0.0346918a  , , c1 = 
2.0902, c2 = −0.127399 all in Rivlin’s units of 

9 901.8b
2cmkg  

 310 m 4 J9.81 . Poisson’s ratio is 0.499888 and 
Young’s modulus is 213.3046 kg cm . These results are 
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at least consistent with Rivlin’s data. The process fol- 
lowed here to derive def  is not ideal. What is really 
needed is experimental data for the entire energy cube as 
describe by Hardy and Shmidheiser [4]. Lacking that 
experimental data, I will use the energy function Equa- 
tion (23) to demonstrate a case of finite simple shear. 

E

1 1

3.2.2. Simple Shear 
A simple shear, corresponding to a 25˚ deformation in 
the y direction, is 2 tan 25x X  X  , 2 2x X , and 

3 3x X

2f  

. The forces required for this deformation on a 
cm cube can be found using Equation (12) and the en- 
ergy function that fits Rivlin’s data, Equation (23). The 
result is ,  

y , and z  all in 
Newtons, with 

 75, ,0 
7, 0,0,f  

8.7xf
0.13,0.295

18.49
 0  0.2473

xf , yf , and zf  being the force against 
what was the original yz, xz, and xy face, respectively. 

Of course not all deformations are homogeneous, but 
Equation (3) are appropriate for finite element or any 
other technique for solving differential equations for 
more complicated problems when homogeneous defor- 
mations do not satisfy the boundary conditions of a par- 
ticular problem. 

4. Conclusion 

Elasticity theory has been dominated by Cauchy’s stress 
and strain. Cauchy’s approach works well for infinitesi- 
mal elasticity as used in most engineering applications. 
For finite deformations, however, Cauchy’s approach be- 
comes unduly complicated, spawning a number of new 
definitions of stress and strain. The Euler-Lagrange ap- 
proach presented here avoids these complications. In ad- 
dition, material properties in terms of the energy of de- 
formation are easily input into the elasticity equations, 
Equation (3). It is my hope that engineers and physicists 
who require computer models of finite deformations will 

consider the Euler-Lagrange approach. I also hope that it 
will encourage experimentalists to “map out” the energy 
of deformation for more materials as Rivlin has done 
with rubber. 
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