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ABSTRACT 
The structure and function of proteins are closely related, and protein structure decides its function, therefore protein 
structure prediction is quite important. β-turns are important components of protein secondary structure. So develop-
ment of an accurate prediction method of β-turn types is very necessary. In this paper, we used the composite vector 
with position conservation scoring function, increment of diversity and predictive secondary structure information as 
the input parameter of support vector machine algorithm for predicting the β-turn types in the database of 426 protein 
chains, obtained the overall prediction accuracy of 95.6%, 97.8%, 97.0%, 98.9%, 99.2%, 91.8%, 99.4% and 83.9% with 
the Matthews Correlation Coefficient values of 0.74, 0.68, 0.20, 0.49, 0.23, 0.47, 0.49 and 0.53 for types I, II, VIII, I’, 
II’, IV, VI and nonturn respectively, which is better than other prediction. 
 
Keywords: Support Vector Machine Algorithm; Increment of Diversity Value; Position Conservation Scoring Function 

Value; Secondary Structure Information 

1. Introduction 
Protein secondary structure prediction is an intermediate 
step in overall tertiary structure prediction. The second-
ary structure of a protein consists of regular, local regular 
and non-regular secondary structure. Local regular sec-
ondary structure contains tight turns and Ω loops. Tight 
turns can be divided into δ-, γ-, β-, α- and π-turns ac-
cording to the number of residues involved [1,2]. β-turns 
are the most common and largest number turns, which 
constitute about 25% of the residues in proteins [1,3-5]. 
β-turn is a four-residue reversal in a protein chain that the 
distance between the residues i and i + 3 is less than 7Å 
and the two central residues (i + 1 and i + 2) must not be 
helical. According to the ψ/ϕ values of the central resi-
dues i + 1 and i + 2, β-turns are classified into nine types: 
I, II, VIII, I’, II’, VIa1, VIa2, VIb and IV [3-7]. Mostly, 
β-turn types VIa1, VIa2 and VIb are merged into one 
type, called type VI [3,5]. 
β-turn plays a vital role in protein, such as folding sta-

bility, recognition and structure assembly [2,8] and can 
provide templates information for drug molecule design, 
such as anesthetic, pesticide and antigen, etc. [1]. Ac-
cording to the ψ/ϕ values of β-turn residues we can build 
up a complete three-dimensional structure for a given 
primary sequence. Thus, it is important to develop a me-
thod, which can predict β-turn types with high accuracy 
[4]. 

Some methods have been developed for prediction of 
β-turn types, such as propensities [5,6,9], sequence-cou- 
pled model [3], neural networks (NN) algorithm [4,7,8] 
and support vector machine (SVM) algorithm [10]. In 
2008, Kirschner and Frishman [7] using NN algorithm to 
predicting the β-turn types, obtained the best prediction 
performance among above works, the Qtotal for types I, II, 
VIII, IV, I’ and II’ are 85.4%, 96.2%, 93.0%, 85.2%, 
98.8% and 98.6%, and the MCC are 0.31, 0.34, 0.08, 
0.19, 0.36 and 0.14, respectively. 

In this work, we improved the input parameters of the 
SVM and used the seven-fold cross-validation to predict- 
ing the β-turn types in the widely used database which 
contained 426 protein chains, achieved better prediction 
result than previous studies. Furthermore, to test the ef-
fect of the database size, we also predicted β-turn types 
in other two databases contained 547 and 823 protein 
chains, respectively. 

2. Materials and Methods 
1) Database 
In this paper, we used the database contained 426 pro-

tein chains, called SET426. The SET426 described by 
Guruprasad and Rajkumar [11] that has been widely used 
in β-turn type prediction [4,5,7]. And we also used other 
two databases contained 547 and 823 protein chains, call- 
ed SET547 and SET823, respectively. The SET547 and 
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SET823 described by Fuchs and Alix [5]. The databases 
contain chains solved by X-ray crystallography with a re- 
solution better than 2.0 Å, and no two protein chains 
have >25% identity. The numbers of β-turn types and 
nonturn are shown in Table 1. 

There are one hundred and ninety one proteins in the 
SET426 are contained in the SET547, ninety proteins in 
the SET426 are contained in the SET823 and two hun-
dred and ten proteins in the SET547 are contained in the 
SET823. 

2) Extracted Segments 
According to the Fuchs and Alix’s [5] work, the pre-

diction of the β-turn types on a given window which con- 
tained L amino acids, that the center amino acid is a β- 
turn (residues i to i + 3) with m flanking residues on the 
left (i-m to i-1) and n flanking residues on the right (i + 4 
to i + 3 + n). In Fuchs and Alix’s [5] work, they selected 
the window which contained 12 amino acids. In our work, 
we found that the optimal window size is 10 residues 
long (m = n = 3). So we selected the window which con-
tained 10 amino acids to predict the β-turn types in pro-
teins.  

3) The Position Conservation Scoring Function (DF) 
The position conservation scoring function algorithm 

is a simple but effective forecast model. In this work, we 
only calculate the scores of β-turn types, the score of seg- 
ment S can be defined as [2]. 

20

,min
1

20

,max ,min
1

( )

( )

i ij i
i

i i i
i

C p p
S

C p p
=

=

−
=

−

∑

∑
    (1) 

( 20)
( )

ij i
ij

i i

n NP
N N

+
=

+
          (2) 

20

1

100 ( log log 20)log 20i ij ij
j

C P p
=

= +∑      (3) 

Where j is the 20 amino acids, Ni is the number of 
amino acids in the position i, nij is the number of amino 
acids j in the position i. Pi,min and Pi,max are the minimal 
and maximal values of amino acid probabilities at posi-
tion i, respectively. Pij is the observed probability of ami- 
no acid j at position i, Ci is the conservation index vector 
at position i. 

The frequencies of 20 amino acids at each position are 
selected as the basic parameters. Using the training set of 

 
Table 1. The numbers of β-turn types and nonturn extract- 
ed from the three databases. 

Type I I’ II II’ VIII IV IV Nonturn 
SET426 2457 302 924 168 672 2542 132 21371 
SET547 2640 314 992 183 739 2672 144 25279 
SET823 3808 500 1393 271 971 3794 226 35313 

seven β-turn types and nonturn, arbitrary sequence seg-
ments can obtain 8 DF values which be calculated by (1). 

4) The Increment of Diversity (ID) 
The increment of diversity algorithm is essentially a 

measure of the composition similarity level for two sys-
tems which has been applied in the recognition of protein 
structural class [12] and the prediction of subcellular 
location of proteins [13]. In this work, we only calculate 
the increment of diversity values of β-turn types. 

In the state space of s dimension, the diversity measure 
for diversity sources S: {m1, m2,…, ms} is defined as 
[12,13]: 

( ) log logi i
i

D S M M m m= −∑        (4) 

In the same state space, ID between the source of di-
versity X: {n1, n2,…ns} and Y: {m1, m2,…, ms} is defined 
as: 

(5) 
Where ,i i

i i
N n M m= =∑ ∑ . 

The frequencies of 20 amino acids at each position are 
selected as the basic parameters. Construct 8 diversity 
sources using the training sets of seven β-turn types and 
nonturn, arbitrary sequence segments can obtain 8 ID 
values which be calculated by (5). 

5) Support Vector Machine (SVM) 
SVM is an extremely successful learning machine bas- 

ed on statistical learning theory and first proposed by 
Vapnik [14,15], which is a convex optimization problem, 
thus local optimal solution is the global optimal solution. 
The machine conceptually implements the following idea: 
input vector are non-linearly mapped to a very high-di- 
mension feature space. 

In this feature space a linear decision surface is con-
structed [10,14]. In this paper, our work is a non-linearly 
problem, so we only introduce the linear non-separable 
case. 

In order to allow for training errors, “soft margin” 
technique was introduced, which were slack variables 

0iξ >  and the relaxed separation constraint: 
( ) 1i i iy w x b ξ⋅ + ≥ −  (i = 1,..., N)         (6) 

The optimal separating hyperplane can be found by: 
2
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Here C is a regularization parameter used to decide a 
trade-off between the training error and the margin. 

The form of the decision function is: 

1
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Here, ( , )i jK x x  is the kernel function. In this paper, 
we select the radial basis kernel function  
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(
2

( , ) exp( )i j i jK x x g x x= − − . 
Figure 1 is an example of a separable problem in a 

two dimensional space, which comes from [14]. The sup- 
port vectors, marked with grey squares, define the mar-
gin of largest separation between the two classes. 

SVM has been compiled into the software packages, in 
this paper, we use the libsvm-2.89 software packages, 
which can be downloaded from  
http://www.csie.ntu.edu.tw/~cjlin/libsvm. The following 
steps were performed to predict β-turn types: first, select 
the input vector of the SVM; second, inputting the vector 
into SVM for training, we can obtain the optimal values 
of parameters C and g are all 0.5; third, a classifier is 
constructed, and then use this classifier to predict β-turn 
types. 

6) Performance Measures 
In order to measure the performance of prediction me-

thod, the four most frequently-used parameters [4,5,7] 
percentages of observed β-turn types that are correctly 
predicted (Qobs), percentages of correctly predicted β-turn 
types (Qpred), the Matthews Correlation Coefficient 
(MCC) and the overall prediction accuracies (Qtotal ) have 
been calculated by following equations. 
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Where ai is the number of correctly classified β-turn 
type i, bi is the number of correctly classified nonturns, ci 
is the number of β-turn type i incorrectly classified as 
nonturns or some other turn type, di is the number of 
nonturns incorrectly classified as β-turn type i. 

3. Results and Discussion  
1) Predictive Results of β-turn Types in the SET426 

 

 
Figure 1. A separable problem in a two dimensional space. 

Widely believed, the prediction performance of β-turn 
types can be greatly improved by using the predictive se- 
condary structure information (PSI) [4,5,7]. So in this pa- 
per, we selected the PSI as input parameter of SVM. The 
PSI from PSIPRED [16] is encoded as follows: helix→ 
(1, 0, 0), strand→ (0, 1, 0), coil→ (0, 0, 1). 

Because the prediction methods of β-turn types mostly 
used seven-fold cross-validation to assess the accuracy [4, 
5,7], in this work we also employed seven-fold cross-va- 
lidation to evaluate the performance of our method. 

Using composite vector with 8 DF, 8 ID and 3 PSI as 
input parameter of SVM to predict the β-turn types in the 
SET426. The predictive result for seven-fold cross-vali- 
dation is shown in Table 2. In Table 2 the MCC for 
every β-turn types are higher than 0.47 (except β-turn 
types VIII and II’). Particularly, the MCC for β-turn 
types I and II reach 0.74 and 0.68 respectively. The Qtotal 
for every β-turn types exceed 91.8%. The Qpred for every 
β-turn types exceed 83.6% (except β-turn types II’ and 
Ⅵ). 

In order to comparing with other methods, the predic-
tive result of other methods [4,5,7] for seven-fold cross- 
validation in the SET426 are also shown in Table 2. 

Comparing with other methods, the prediction perfor-
mance of our method is better than other methods. For 
example, in previous work, the MCC in Kirschner’s [7] 
work is the best among other works (except β-turn type 
IV), but the MCC in our method are better than Kirsch- 
ner’s [7] work. 

2) Predictive Results of β-turn Types in the SET547 
and SET823 
To evaluate the predictive method, we selected the 

composite vector with 8 DF, 8 ID and 3 PSI as input pa-
rameter of SVM to predict the β-turn types in the SET547 
and SET823, respectively. The seven-fold cross-valida- 
tion results were shown in Table 3. The prediction per-
formance in the SET823 is better than in the SET547. 
For example, the MCC in the SET823 is better than in 
the SET547 (except β-turn type I’). Compared Tables 2 
and 3, in the SET426, we obtained the best prediction 
performance among the three databases. The prediction 
results of our method in three databases are different, but 
the trend remained the same. The results are consistent 
with the Fuchs and Alix’s work [5]. It denoted our me-
thod presented a strong stability whatever the database 
size. 

4. Conclusion 
In this work, we selected the frequencies of 20 amino 
acids at each position as basic parameters and in order to 
avoid overfitting, we used the position conservation 
scoring function and increment of diversity algorithms to 
reduce the dimension. The values of the DF, ID and PSI 
were used to construct the composite vector as input pa- 
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Table 2. The predictive result using different methods in the SET426 using the 7-fold cross-validation. 

 Our Kirschner’s [7] Fuchs’ [5] Kaur’s [4] Our Kirschner’s [7] Fuchs’ [5] Kaur’s [4] 

 MCC Qtotal (%) 

I 0.74 0.31 0.31 0.29 95.6 85.4 84.5 74.5 

I’ 0.49 0.36 0.23 - 98.9 98.8 94.4 - 

II 0.68 0.34 0.30 0.29 97.8 96.2 91.0 93.5 

II’ 0.23 0.14 0.11 - 99.2 96.8 94.6 - 

VIII 0.20 0.08 0.07 0.02 97.0 93.0 90.7 96.5 

IV 0.47 0.19 0.11 0.23 91.8 85.2 84.9 67.9 

VI 0.49 - - - 99.4 - - - 

Nonturn 0.53 - - - 83.9 - - - 

 Qobs (%) Qpred (%) 

I 63.0 48.7 50.0 74.1 92.4 31.7 30.8 22.1 

I’ 27.9 21.9 51.8 - 85.7 59.3 11.6 - 

II 52.3 25.2 52.8 52.8 92.0 50.2 22.2 25.5 

II’ 38.3 16.3 32.8 - 66.7 12.7 4.6 - 

VIII 24.2 19.0 18.7 2.8 98.9 8.0 6.0 7.2 

IV 29.5 29.3 17.7 72.0 83.6 26.0 20.7 18.6 

VI 42.1 - - - 57.1 - - - 

Nonturn 98.2 - - - 83.2 - - - 

 
Table 3. The predictive results in the SET547 and SET823 
for 7-fold cross-validation. 

Type 
SET547 SET823 SET547 SET823 

MCC Qtotal (%) 

I 0.51 0.63 93.0 94.2 

I’ 0.53 0.48 99.0 98.9 

II 0.55 0.63 97.3 97.6 

II’ 0.34 0.37 99.3 99.3 

VIII 0.09 0.11 97.0 97.3 

IV 0.29 0.30 91.1 91.0 

IV 0.35 0.48 99.4 99.5 

Nonturn 0.36 0.43 80.6 82.0 

 Qobs (%) Qpred (%) 

I 37.7 53.9 78.0 80.7 

I’ 37.5 29.6 75.0 77.8 

II 42.3 47.7 76.0 84.8 

II’ 23.1 18.0 50.0 77.8 

VIII 17.0 22.0 56.9 60.0 

IV 14.4 15.5 71.4 70.6 

IV 25.0 33.3 50.0 68.8 

Nonturn 97.2 97.3 81.2 82.3 

 
rameter of SVM to predict the β-turn types in the SET426, 
the predictive results were better than the previous me-
thods. In addition, we predicted the β-turn types in SET547 
and SET823 respectively, better results were also obtain- 
ed. 

5. Acknowledgements 
This work was supported by National Natural Science 
Foundation of China (30960090), the Natural Science 
Foundation of the Inner Mongolia of China (project 
No.2009MS0111) and Project for university of Inner 
Mongolia of China (project, NJZY08059). 

REFERENCES 
[1] K. C. Chou, “Prediction of Tight Turns and Their Types 

in Proteins,” Analytical Biochemistry, Vol. 286, 2000, pp. 
1-16. http://dx.doi.org/10.1006/abio.2000.4757 

[2] X. Z. Hu and Q. Z. Li, “Using Support Vector Machine to 
Predict β- and γ-Turns and in Proteins,” Journal of Com- 
putational Chemistry, Vol. 10, 2008, pp. 1-9. 

[3] K. C. Chou and J. R. Blinn, “Classification and Prediction 
of Beta-turn Types,” Journal of Protein Chemistry, Vol. 
16, 1997, pp. 575-595.  
http://dx.doi.org/10.1023/A:1026366706677 

[4] K. S. Kaur and G. P. Raghava, “A Neural Network Me-
thod for Prediction of Beta-Turn Types in Proteins using 
Evolutionary Information,” Bioinformatics, Vol. 16, 2004, 
pp. 2751-2758.  
http://dx.doi.org/10.1093/bioinformatics/bth322 

[5] P. F. J. Fuchs and A. J. P. Alix, “High Accuracy Predic-
tion of β-Turn and Their Types Using Propensities and 
Multiple Alignments,” Proteins, Vol. 59, 2005, pp. 828- 
839. http://dx.doi.org/10.1002/prot.20461 

[6] E. G. Hutchinson and J. M. Thornton, “A Revised Set of 
Potentials for Beta-turn Formation in Proteins,” Protein 
Science, Vol. 3, 1994, pp. 2207-2216. 

http://dx.doi.org/10.1006/abio.2000.4757�
http://dx.doi.org/10.1023/A:1026366706677�
http://dx.doi.org/10.1093/bioinformatics/bth322�
http://dx.doi.org/10.1002/prot.20461�


X. B. SHI, X. Z. HU 

Copyright © 2013 SciRes.                                                                                 ENG 

390 

http://dx.doi.org/10.1002/pro.5560031206 
[7] A. Kirschner and D. Frishman, “Prediction of β-Turns 

and β-Turn Types by a Novel Bidirectional Elman-Type 
Recurrent Neural Network with Multiple Output Layers,” 
Gene, Vol. 422, 2008, pp. 22-29. 
http://dx.doi.org/10.1016/j.gene.2008.06.008 

[8] A. J. Shepherd, D. Gorse and J. M. Thornton, “Prediction 
of the Location and Type of Beta-turns in Proteins using 
Neural Networks,” Protein Science, Vol. 8, 1999, pp. 
1045-1055. http://dx.doi.org/10.1110/ps.8.5.1045 

[9] C. M. Wilmot and J. M. Thornton, “Analysis and Predic-
tion of the Different Types of Beta-turn in Proteins,” 
Journal of Molecular Biology, Vol. 203, 1988, pp. 221- 
232. http://dx.doi.org/10.1016/0022-2836(88)90103-9 

[10] Y. D. Cai, X. J. Liu, Y. X. Li, X. B. Xu and K. C. Chou, 
“Support Vector Machines for the Classification and Pre-
diction of Beta-Turn Types,” Journal of Peptide Science, 
Vol. 8, 2002, pp. 297-301.  
http://dx.doi.org/10.1002/psc.401 

[11] K. Guruprasad and S. Rajkumar, “Beta-and Gamma-Turns 

in Proteins Revisited: A New Set of Amino Acid Turn- 
Type Dependent Positional Preferences and Potentials,” 
Journal of Bioscience, Vol. 25, 2000, pp. 143-156. 

[12] Q. Z. Li and Z. Q. Lu, “The Prediction of the Structural 
Class of Protein: Application of the Measure of Diversity,” 
Journal of Theoretical Biology, Vol. 213, 2001, pp. 493- 
502. http://dx.doi.org/10.1006/jtbi.2001.2441 

[13] Y. L. Chen and Q. Z. Li, “Prediction of the Subcellular Lo- 
cation of Apoptosis Proteins,” Journal of Theoretical Bi- 
ology, Vol. 245, 2007, pp. 775-783.  
http://dx.doi.org/10.1016/j.jtbi.2006.11.010 

[14] C. Cortes and V. Vapnik, “Support Vector Network,” Ma- 
chine Learning, Vol. 20, 1995, pp. 273-293. 
http://dx.doi.org/10.1007/BF00994018 

[15] V. Vapnik, “Statistical Learning Theory,” Wiley-Inter- 
Science, New York, 1998. 

[16] D. T. Jones, “Protein Secondary Structure Prediction Bas- 
ed on Position-Speck Scoring Matrices,” Journal of Mo- 
lecular Biology, Vol. 292, 1999, pp. 195-202. 
http://dx.doi.org/10.1006/jmbi.1999.3091 

 

http://dx.doi.org/10.1002/pro.5560031206�
http://dx.doi.org/10.1016/j.gene.2008.06.008�
http://dx.doi.org/10.1110/ps.8.5.1045�
http://dx.doi.org/10.1016/0022-2836(88)90103-9�
http://dx.doi.org/10.1002/psc.401�
http://dx.doi.org/10.1006/jtbi.2001.2441�
http://dx.doi.org/10.1016/j.jtbi.2006.11.010�
http://dx.doi.org/10.1007/BF00994018�
http://dx.doi.org/10.1006/jmbi.1999.3091�

	1) Predictive Results of β-turn Types in the SET426
	2) Predictive Results of β-turn Types in the SET547 and SET823

