
Journal of Software Engineering and Applications, 2013, 6, 630-637
Published Online December 2013 (http://www.scirp.org/journal/jsea)
http://dx.doi.org/10.4236/jsea.2013.612075

Open Access JSEA

Intelligent Agent Based Mapping of Software Requirement
Specification to Design Model

Emdad Khan, Mohammed Alawairdhi

College of Computer and Information Sciences, Al-Imam Muhammad Ibn Saud Islamic University, Riyadh, KSA.
Email: emdad@ccis.imamu.edu.sa, awairdhi@ccis.imamu.edu.sa

Received September 23rd, 2013; revised October 20th, 2013; accepted October 28th, 2013

Copyright © 2013 Emdad Khan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In accor-
dance of the Creative Commons Attribution License all Copyrights © 2013 are reserved for SCIRP and the owner of the intellectual
property Emdad Khan et al. All Copyright © 2013 are guarded by law and by SCIRP as a guardian.

ABSTRACT

Automatically mapping a requirement specification to design model in Software Engineering is an open complex prob-
lem. Existing methods use a complex manual process that use the knowledge from the requirement specifica-
tion/modeling and the design, and try to find a good match between them. The key task done by designers is to convert
a natural language based requirement specification (or corresponding UML based representation) into a predominantly
computer language based design model—thus the process is very complex as there is a very large gap between our
natural language and computer language. Moreover, this is not just a simple language conversion, but rather a complex
knowledge conversion that can lead to meaningful design implementation. In this paper, we describe an automated
method to map Requirement Model to Design Model and thus automate/partially automate the Structured Design (SD)
process. We believe, this is the first logical step in mapping a more complex requirement specification to design model.
We call it IRTDM (Intelligent Agent based requirement model to design model mapping). The main theme of IRTDM
is to use some AI (Artificial Intelligence) based algorithms, semantic representation using Ontology or Predicate Logic,
design structures using some well known design framework and Machine Learning algorithms for learning over time.
Semantics help convert natural language based requirement specification (and associated UML representation) into high
level design model followed by mapping to design structures. AI method can also be used to convert high level design
structures into lower level design which then can be refined further by some manual and/or semi automated process. We
emphasize that automation is one of the key ways to minimize the software cost, and is very important for all, especially,
for the “Design for the Bottom 90% People” or BOP (Base of the Pyramid People).

Keywords: Software Engineering; Artificial Intelligence; Ontology; Intelligent Agent; Requirements Specification;

Requirements Modeling; Design Modeling; Semantics; Natural Language Understanding; Machine
Learning; Universal Modeling Language (UML); ICT (Information and Communication Technology and
BOP (Base of the Pyramid People)

1. Introduction

Converting requirement specification or model to design
model followed by an implementation is an important
part of software engineering, especially for a large scale
software. It is both information conversion and know-
ledge conversion, and it involves both art and science.
Hence the process is complex. In fact, the various levels
of abstractions involved in such mapping (e.g. from
requirement model to design model, to architecture, to
implementation) make the process even more complex.
Designers use their expertise and various available tools

to successfully complete the process. Since software cost
is an important factor for many organizations (in fact, it
is a key factor for almost all countries as it is a sig-
nificant part of GDP, Gross Domestic Products), it is
important that we keep the software cost minimal. This is
even more true for underdeveloped and developing
countries dominated by BOP (Base of the Pyramid
People)—many of them are poor i.e. income is less than
$2 per day. Minimizing software cost will help such
countries afford ICT (Information and Communication
Technologies) and associated software; and thus will
provide the benefits of the Information Age to such

Intelligent Agent Based Mapping of Software Requirement Specification to Design Model 631

population. This fits well, with “Design for the bottom
90% people”. Automation is one of the key ways to
minimize the software cost [1].

Many researchers have been working on automating
various parts of the software engineering including soft-
ware development process. e.g. to help architectural
design, and various models have been proposed like
Structural Models, Framework Models, Dynamic Models,
Process Models and Functional Models ([2-5]). A
number of different Architectural Description Languages
(ADLs) have been developed to represent these models
([6,7]). Similarly, to help requirement modeling, various
languages have been developed e.g. Requirement Model-
ing Language, RML ([8,9]). However, we could not find
any citation regarding automatically mapping a Require-
ment Model to a Design Model. A few somewhat related
researches are covered in ([10,11]).

In this paper, we present an Intelligent Agent (IA)
based automated method to map Requirement Model to a
Design Model. It is called IRTDM (Intelligent Agent
based requirement model to design model mapping). The
IA uses Artificial Intelligence (AI), semantic represen-
tation using Ontology or Predicate Logic, Design Struc-
tures (DS) using some well known design framework and
Machine Learning algorithms for learning over time. We
specifically focus on mapping Requirement Model to
Architecture. Mapping to other key software areas/steps
(e.g. converting the architecture into operational software)
is also possible using similar approach but not covered in
this paper.

Section 2 provides a brief high level overview of
IRTDM (Intelligent Agent based requirement model to
design model mapping). Section 3 describes the basics of
the Flow-Oriented Requirement modeling to Data-Flow
architecture mapping method as done by experienced
designers. Section 4 describes an automated version of
Section 3 using Natural Language Processing/Under-
standing, Artificial Intelligence and an Intelligent Agent.
Section 5 describes the Architecture and Algorithms for
more general and versatile Intelligent Agent. It also
briefly discusses how to apply the concept for other types
of mapping, Section 6 describes future work and Section
7 provides conclusions.

2. High Level Overview of IRTDM

There is a good correspondence between requirement
model and design model (Figure 1). Various parts of the
Requirement Model have corresponding mapped parts in
the design model. E.g. class-based elements map to data/
class, architecture and component design parts in the
design model. In fact, designers use such basic mapping
as a basis to come up with an architecture. Designers also
use various levels of architectural abstractions (e.g. Ar-

chitectural Genre, Architectural Styles, Archetypes) to
come up with the structure showing key blocks or com-
ponents. Our main theme is to use designers approach to
come up with an automated approach. It is important to
note that for some cases there is no practical mapping
from requirement model to some architectural styles. But
for many cases such mapping exists. A good example is
mapping Flow-Oriented Requirement modeling to Data-
Flow architecture style. Since enough abstractions al-
ready exist and the manual method is understood rea-
sonably well, we can convert the same into appropriate
steps that can be done by an Intelligent Agent (IA) i.e. IA
in IRTDM. First we discuss a simple IA to automati-
cally handle Flow-Oriented Requirement modeling to
Data-Flow architecture. Then we discuss more general
IA.

The key issues a general IA needs to address are:
1) Use of proper rules in doing the mapping.
2) Use of semantics to ensure correct mapping.
3) Use of appropriate rules and semantics to help map/

transform one architectural style to another (e.g. Data-
flow architecture to Layered architecture).

4) Use of Learning to improve the outcome.
5) Use of Verification to ensure correctness.
6) Help Ensure that Implementation (coding) can also

be automated in a similar way.
7) Other key issues as appropriate (e.g. refactoring,

generating test vectors and performing basic tests).

3. Flow-Oriented Requirement Modeling to
Data-Flow Architecture Mapping

A mapping technique called Structured Design (SD) is
often characterized as a data flow-oriented design me-
thod [10] as it provides a convenient transition from a
data flow diagram (DFD) to software architecture. Such
transformation involves the following 6 steps:

a) The type of data (information) flow is established.
b) Flow boundaries are determined.
c) The DFD is mapped into the program structure.
d) Control hierarchy is defined.
e) Resultant structure is refined using design measures

and heuristics, and
f) The architectural description is refined and elabora-

ted.
In order to design optimal module structure and inter-

faces two principles are crucial [12]:
 Cohesion which is “concerned with the grouping of

functionally related processes into a particular mo-
dule” and

 Coupling relates to “the flow of information, or para-
meters, passed between modules. Optimal coupling
reduces the interfaces of modules, and the resulting
complexity of the software”.

Open Access JSEA

Intelligent Agent Based Mapping of Software Requirement Specification to Design Model

Open Access JSEA

632

Analysis Model

use-cases - text
use-case diagrams
activity diagrams
swim lane diagrams

data flow diagrams
control-flow diagrams
processing narratives

f l ow- or i e nt e d
e l e me nt s

be ha v i or a l
e l e me nt s

c l a ss- ba se d
e l e me nt s

sc e na r i o- ba se d
e l e me nt s

class diagrams
analysis packages
CRC models
collaboration diagrams

state diagrams
sequence diagrams

D a t a / Cla ss D e sig n

A rc h it e c t ura l D e sign

In t e rf a c e D e sig n

Co m p on e n t -
L e v e l D e sig n

Design Model

Figure 1. Flow-Oriented Requirement Modeling to Data-Flow Architecture Mapping (Courtesy [12]).

[Note: In general, Structured Design (SD) and
Structured Analysis (SA) are methods for analyzing
and converting business requirements into specifi-
cations and ultimately, computer programs, hard-
ware configurations and related manual procedures.
SA includes Context Diagram, Data Dictionary,
DFD, Structure Chart, Structured Design and Struc-
tured Query Language (SQL)].

One form of information mapping is called Trans-
form mapping where incoming data is transformed into
an internal form by a transform center. The transformed
data then flows to external world using outgoing flow.
Another form of information mapping is called Transac-
tion mapping in which a single data item triggers one or
a number of information flows that effect a function im-
plied by the triggering data item. The data item is called
a transaction.

The above mentioned steps are done by designers (all
types of designers including database and data warehouse
designers and system architects) using the Requirement
Model (in this case the Flow-oriented model) and the
design structures including Design Genre, Design Styles
(in this case data flow architecture), set of archetypes (e.g.
Controller, Detector, Indicators, Node), basic classes
(some of which are described in the Requirement Model)
and some basic design guidelines. Refer to “Software

Engineering: A Practitioner’s Approach” by Roger Press-
man [12] for a detailed example. We basically automate
these steps using NLU, AI and an Intelligent Agent as
described below in Sections 4 and 5.

4. Automating Flow-Oriented Requirement
Modeling to Data-Flow Architecture
Mapping

Converting Flow-Oriented Requirement Modeling to
Data-Flow Architecture is a good start because of its
simplicity. In this case there is a direct correspondence
between the requirement modeling steps and architec-
tural mapping steps as both use the same DFD.

4.1. Basic Ideas

Use the requirement modeling flow information and
match it using AI rules to the corresponding Data-Flow
Architecture. Since there is 1-1 correspondence (refer to
Figure 1), Flow-Oriented elements have 1-1 correspon-
dence with the Design Model blocks like Architectural
Design), developing such rules are straight forward (refer
to Sections 4.2, 4.3 and the example in Section 5). The
rules are needed mainly to map DFD to the program
structure, determine control hierarchy, complete refine-
ment and elaboration.

Intelligent Agent Based Mapping of Software Requirement Specification to Design Model 633

Referring to Figure 1, there is a 1-1 correspondence
from the DFD Requirement Model to Architectural De-
sign, Interface Design and Component Level Design.
Thus, we need appropriate rules to map to all such design
levels. Cohesion and coupling are appropriately used to
ensure optimal design module structures and interfaces.
Any standard automatic/semi-automatic technique can be
used to determine the optimal design module structures
and interfaces. All these key steps can be iterated during
the refinement process (steps #e and #f in Section 3).

4.2. Requirement Modeling and Natural
Language Processing (NLP)

Requirement Modeling methods usually use natural lan-
guage words or equivalent methods. For example, in a
Use Case diagram, the concept is expressed using natural
language type concept. Class based, Behavioral based
and DFD approaches also use natural language type
concept. Thus, it is important to use Natural Language
semantics and Natural Language Processing (NLP) in
automating the mapping of Requirement Modeling to
Design process. In case of DFD based modeling (as al-
ready mentioned), we would need semantics and NLP to
map DFD to the program structure, determine control
hierarchy, complete refinement and elaboration.

Besides, in a typical design,
a) The software must be placed into context i.e. the

design should define the external entities (other systems,
devices, people) that the software interacts with and the
nature of the interaction.

b) A set of architectural archetypes should be identi-
fied—an archetype is an abstraction (similar to a class)
that represents one element of system behavior.

c) The designer specifies the structure of the system by
defining and refining software components that imple-
ment each archetype.

NLP becomes handy in automating all these activities.
Let’s use an example to demonstrate the use of semantics
and NLP:

Refer to Figure 2—it shows a simple DFD with rea-
sonable details (i.e. say level 3 DFD). An analog signal is
input to an Analog to Digital conversion unit (the Trans-
form center circle or bubble #2) after doing some filter-
ing operation by circle #1. The transform center outputs
the digital signal in two format—binary (bubble #3) and
hexadecimal (bubble #4). All bubbles are labeled with
words that are easily understandable to human being as
these are natural language words. Our goal is to use the
semantic meaning of these words to come up with a de-
sign structure as designers usually do.

Consider the words “Analog to Digital Conversion” in
bubble #2. The semantic meaning of this is “Conversion
from an analog signal to digital signal takes place here”
(see Section 4.3 below how such semantics is derived/
programmed). Once the program knows this semantics, it
can determine the corresponding design archetypes and
top level design box using AI rules which are based on
the domain knowledge, semantics, and the DFD itself.
Figure 3 shows the corresponding design structure. Such
as structure is achieved using the following concept (the
corresponding rules are given in Section 4.3):

1) The boundaries shown in Figure 2 are used to focus
on the design of bubble #2. This is as per standard DFD
based design process as outlined in Section 3.

2) Such boundaries can easily be done by representing
the DFD using a Graph which can be implemented using
netlist.

3) Since bubble #2 is taking one input and producing 2
outputs of different data formats, bubble #2 is doing a
“Transform flow”.

4) The outputs of the transform flow are detailed out in
the DFD itself. So, corresponding design blocks can eas-
ily be constructed (Figure 3 shows this using DFD
based mapping to a Call and Return architecture).

5) As bubble #2 is doing a transform operation, it
needs to do a “control function” in addition to do the
main “transform function”. This again is part of the
standard design process that de signers use in a Struc-
tured Design.

Convert To
Digital - 2

Filter Input
Analog
Signal -1

Binary
Format - 3

Hex
Format - 4

Figure 2. A Simple Transform Flow DFD. “Convert to Digital” circle (bubble) is the Transform Center. Input is an Analog
signal which is converted by the Transform Center into Digital signal with two formats—Binary and Hexadecimal. The se-
mantics of the “label” words of each bubble are used to automate the Design Process—see texts in Section 4.2 for details.

Open Access JSEA

Intelligent Agent Based Mapping of Software Requirement Specification to Design Model 634

Analog To Digital
Converter Executive

Input Signal
Controller

Analog to Digital
 Converter

Output Signal
 Controller

Binary
Format

 Hex
Format A2D

Figure 3. Design structure constructed by using the DFD in Figure 2. Semantics of the bubbles 2, 3 and 4 in Figure 2 and
corresponding rules are used to make the construction. Semantics and all associated rules are implemented using First Order
Logic (FOL). See Section 4.2 and Section 4.3 for details.

6) Netlist of the DFD is used to move and identify the
new boundaries (by the automation software i.e. IA), find
the new transform center and complete the design for
new transform center, e.g. Binary Format-3 bubble and
Hex Format bubble (Figure 3).

The following Section implements these concepts us-
ing semantics, NLP and AI. And all these are part of the
Intelligent Agent, IA.

4.3. Predicate Calculus and Mapping Rules

The rules mentioned above can be represented by Predi-
cate Calculus rules. Predicate Calculus can also be used
to define semantics. We can also use Ontology to define
semantics. In this paper, we are using Predicate Calculus
to describe the rules and semantics.

Consider the words “Analog to Digital Conversion” in
bubble #2 in Figure 2 (as described in Section 4.2). The
semantic meaning of this is “Conversion from an analog
signal to digital signal takes place here” or simply “Con-
version from an analog signal to digital”. In predicate
calculus (or First order logic, FOL), we can use the fol-
lowing to represent this semantics:

Converts (Convert to Digital-2, AnalogToDigital) …(1)
AnalogToDigitalConverter (Convert to Digital-2) …(2)
Converts (AnalogToDigitalConverter, AnalogToDigi-

tal) …….………………………………..……………(2a)
When “Convert to Digital-2” label is seen in DFD

bubble #2, the semantics determines that this is an analog
to digital converter. Hence, all the design structures have
the key blocks needed to implement the function of an
analog to digital converter (Figure 3).

To make it more general, we use universal quantifier
“for all” i.e. ∀ to say,

“All analog to digital converters convert analog signal
to digital signal” ………………………..……………(3a)

Which can be written in FOL
∀x AnalogtoDigitalConverter (x) ⇒ Converts (x,

AnalogToDigital) ……………………….….…….….(3b)
Using the universal quantifier, we allow to use any

analog to digital converter in our knowledgebase or li-
brary.

[Note: mathematically, x can be any variable, in-
cluding an instance of a non-AnalogToDigitalCon-
verter [13]. This, however, can be avoided in vari-
ous ways. We take care of this by only allowing
analog to digital converters in the corresponding li-
brary].

In addition, an Executive control block (Analog To
Digital Converter Executive) and a few other associated
control blocks (e.g. input signal controller and output
signal controller) are generated (Figure 3) as per stan-
dard design technique used in DFD model. Similarly,
using the semantics of other bubbles, blocks to handle
the binary and hex format are constructed. The FOL rules
are used to describe all these as shown below:

If x is AnalogToDigitalConverter then Blocks are
“Analog To Digital Converter Executive”
AND “Analog To Digital Converter”
AND “Input Signal Controller”
AND “Output Signal Controller” ……………..…...(4)
If x is Binary Format then Blocks are “Binary For-

mat” …………………...……………………….….….(5)
If x is Hex Format then Blocks are “Hex For-

mat” ...…………………………………………….......(6)
The actual blocks for the analog to digital converter

can have more than one block and also multi-level blocks
as appropriate. But the whole thing can be labeled in the
knowledge base as one block (e.g. A2D as shown in Fig-
ure 3) so that it is placed properly when such a rule (i.e.
Equation (4)) is fired (see Section 4.3 for more details).
The same is true for all other blocks and associated rules
(e.g. Binary and Hex format blocks in Figure 3). Note, in
a rule (e.g. Equation (4)), the semantics that it is an Ana-
log To Digital Converter is derived using Equations (1)
and (2) [see Section 4.4 for more details].

It may seem trivial that we could just use the label di-
rectly to construct the design structure using appropriate

Open Access JSEA

Intelligent Agent Based Mapping of Software Requirement Specification to Design Model 635

blocks. Yes, it is true for simple cases. But label may be
more complex (can have more words and mean multiple
operations), the format and words may vary considerably
and the like. Use of NLP & FOL can define the meaning
in a more flexible and reliable way, especially for com-
plex cases. NLP & FOL become more important for re-
fining the resultant structure (step #e in Section 3), and
when the architectural description is refined and elabo-
rated (step #f in Section 3). See Section 5 and Section 6
for more details.

4.4. Design Structures

In order to properly execute steps (#c to #f) in Section 3,
namely,

c) The DFD is mapped into the program structure.
d) Control hierarchy is defined.
e) Resultant structure is refined using design measures

and heuristics, and
f) The architectural description is refined and elabo-

rated.
Designers follow various policies and processes. An

architectural genre (e.g. Operating System or Artificial
Intelligence), architectural style (e.g. Data-centric or Call
and Return) and a set of Archetypes (e.g. Nodes, Detec-
tor, Indicator, Controller) need to be selected/defined.
These are heavily influenced by designer’s experience
and knowledge. Such knowledge and experience need to
be put in the knowledgebase using appropriate rules and
predefined structures and blocks. Here, the designers
have the option to make the automated system very effi-
cient. Such structures and blocks need to be refined on a
regular basis for continuous improvement.

To make the design modeling & construction of the
design structure flexible and efficient, and to better sup-
port refinement and elaborations, design structures/
blocks needs to be configurable via some parameters.
This scheme will better support the flexibility in the A2D
implementation as mentioned in Section 4.3.

4.5. The Automation Process

The automation process involves the following key steps:
1) Create a good knowledgebase (KB) that has key in-

formation that designers follow in converting a require-
ment model to design model or structure. Designers use
various policies and processes. Such a knowledgebase
need to include all architectural genre, architectural
styles, and set of archetypes.

2) The KB also would need to include all rules to
convert a DFD (other representations used for Require-
ment Modeling) to design structures and blocks.

3) Design library needs to have all the key structures,
blocks, components with appropriate parameterization.

4) Establish mechanism to continuously improve the

library and the design process based on learning from
previous design structures. This part can be automated
using separate rules and semantics.

Once the above keys steps are completed, the IA (see
Section 5), can take a DFD directly and produce a design
structure as shown in Figure 3. IA accomplishes this by
taking the DFD netlist and implementing (i.e. converting)
each bubbles using the semantics of the bubbles and the
rules.

The facts and the rules are combined using an infer-
ence mechanism, like Modus-Ponens.

Multiple rules can be fired and Forward Chaining, or
Backward Chaining can be used to derive the final de-
sign structure. A short example is shown below using the
AnalogToDigitalConverter example discussed in Sec-
tions 4.2 and 4.3:

AnalogToDigitalConverter (Convert to Digital-2) ….(2)
[a Fact—Convert to Digital-2 is an AnalogToDigital-

Converter]
∀x AnalogtoDigitalConverter (x) ⇒ Converts (x,

AnalogToDigital) …………………………..……...(3b)
[Rule—for all x, if x is an AnalogtoDigitalConverter,

then it converts AnalogToDigital]

[Using Modus-Ponen] Converts (Convert to Digital
-2, AnalogToDigital) [New derived fact]

Note that the new derived fact by using Modus-Ponens
is already shown in Equation (1). But it is shown there to
express the semantics of the bubble #2 in Figure 2. But it
is not used to represent a fact there. When it is derived as
a fact, then Equation (4) will fire and will create the de-
sign structure (Rule represented by Equation (4) is not an
implication as used in Equation 3(b). However, it can be
converted to an implication form). Also, while Forward
and Backward Chaining are sound, neither is complete.
This means that there are valid inferences that cannot be
found using these methods alone. An alternative infer-
ence technique called Resolution is sound and complete
but computationally expensive [13].

5. Intelligent Agent

An intelligent Agent, IA implements the automation de-
scribed in Section 4.5. It also performs other functions
including some advanced functions needed to handle
requirement models other than DFD i.e. Class based, Use
Case based and State based models or their combinations
that may include DFD. The key functions of IA are men-
tioned in Section 2. The implementation of key functions
are described in Sections 3 & 4 for DFD based mapping
to a Call and Return architecture. Such implementa-
tions are, in general, applicable for all other mappings
with some refinements. Figure 4 shows the architecture
of a general IA. A few key functions not yet described are:

Open Access JSEA

Intelligent Agent Based Mapping of Software Requirement Specification to Design Model 636

Knowledgebase
 (KB)

 Natural Language
 Processing
 & Deriving
 Semantics

 Inference
 Engine

Design Library

 User
 Interface

 Continuous
 Improvement
 Using
 Machine Learning

Verification

 IRTDM

 Input Output

 Other
Functions

Figure 4. IRTDM—Intelligent Agent for requirement mo-
del to design model mapping. Shows all the key blocks. The
KB and Design Library can reside outside. Input is mainly
the requirement model and output is mainly the design
structure and blocks.

1) Use of appropriate rules and semantics to help map/
transform one architectural style to another (e.g. Data-
flow architecture to Layered architecture).

2) Use of Learning to improve the outcome.
3) Use of Verification to ensure correctness.
Architectures for which direct mapping does not exists,

the mapping process becomes complex. The designers
approach the translation of requirements to design for
such cases using their knowledge, more analyses and
considering more architectural tradeoffs. Although there
is no simple steps like steps #a to steps #f as mentioned
in Section 2 for DFD based mapping, the designer’s ap-
proach can be captured into similar flow and steps but
with more natural language descriptions. Thus, for such
cases, the issue of using NLP becomes more important
and semantics & rules become more complex.

The learning over time can be implemented using any
standard good learning algorithms. The verification pro-
cess can be implemented by allowing performing some
basic tests on the constructed system. Each component
will have netlist or behavioral model representation
which can take input vectors and verify the outputs with
some predefined expected outputs (in compliance with
the specification). In some cases, formal verification can
be done using formal mathematical specification of the
software.

6. Future Works

The semantics represented by FOL and other similar
techniques are good but they work satisfactorily mainly
for small domain. As shown in Section 4.3, we need to
define semantics for almost everything i.e. existing

schemes do not allow to automatically derive new se-
mantics from semantics of existing words. In ([14,15])
we have mentioned that while traditional approaches to
Natural Language Understanding (NLU) have been ap-
plied over the past 50 years and have had some good
successes mainly in a small domain, results show insig-
nificant advancement, in general, and NLU remains a
complex open problem. NLU complexity is mainly re-
lated to semantics: abstraction, representation, real
meaning, and computational complexity. We argued that
while existing approaches are great in solving some spe-
cific problems, they do not seem to address key Natural
Language problems in a practical and natural way. In
[16], we proposed a Semantic Engine using Brain-Like
approach (SEBLA) that uses Brain-Like algorithms to
solve the key NLU problem (i.e. the semantic problem)
as well as its sub-problems.

SEBLA can calculate semantics of sentences using the
semantics of words and the semantics of a paragraph
using the semantics of the sentences. Enhanced seman-
tics capability is needed to handle complex mapping
cases mentioned in Section 5. We plan to use SEBLA for
such cases.

We also plan to use SEBLA to automate/partially
automate the implementation of the architecture into final
software form (i.e. converting the architecture into op-
erational software). Note that the automation presented in
this paper is not the implementation in final software
form; it is rather automating the mapping to design
structure or architecture or blueprint of the desired sys-
tem.

7. Conclusions

IRTDM (Intelligent Agent based requirement model to
design model mapping) will significantly help today’s
large software development process. It takes long time to
manually map the requirement model to a design model.
As the software size gets bigger and bigger (a common
trend in the industry), this process will become much
more complex, and need for an automation of this proc-
ess will become mandatory. In fact, automation is al-
ready mandatory to handle existing software design/de-
velopment if we focus on the design for the bottom 90%
people (the so-called Base of the pyramid people, BOP).

IRTDM will also increase the reliability and correct-
ness of the said mapping and associated software. More-
over, with Natural Language Processing/Understanding
and Artificial Intelligence (AI), the IA (Intelligent Agent)
can map the design model to high level design compo-
nents, thus further providing significant help in already
very complex software engineering process.

Thus, our IRTDM will save significant cost for soft-
ware which is a key component of the total yearly ex-
pense of most countries. Lower software cost implies

Open Access JSEA

Intelligent Agent Based Mapping of Software Requirement Specification to Design Model

Open Access JSEA

637

lower price for buying new software; thus allowing many
more people in the world to enjoy the benefits of the In-
formation Age.

We have emphasized the need for enhanced Natural
Language Processing/Understanding to better handle se-
mantics, especially, for the complex software develop-
ment cases. Use of natural semantics (e.g. SEBLA [16]) is
the key to achieve this which we plan to do next.

REFERENCES
[1] E. Khan, “Internet for Everyone: Reshaping the Glob-al

Economy by Bridging the Digital Divide,” 2011.

[2] G. Abowd et al., “Structural Modeling: An Application
Framework and Development Process for Flight Simu-
lators,” CMU Technical Report CMU/SEI-93-TR-014,
1993.

[3] Structured Analysis.
http://en.wikipedia.org/wiki/Structured_analysis

[4] D. Garlan and M. Shaw, “An Introduction to Software
Architecture,” Advances in Software Engineering and
Knowledge Engineering, Vol. I, World Scientific Pub-
lishing Company, 1995.

[5] F. Buschmann, et al., “Pattern-Oriented Software Archi-
tecture, A System of Patterns,” Wiley, 2007.

[6] “Architecture Analysis and Design Language, Software
(AADL),” Engineering Institute, Carnegie-Mellon Uni-
versity, 2004.

[7] P. Clements, “A Survey of Architectural Description Lan-
guages,” Paul C. Clements, Software Architecture, Soft-
ware Engineering Institute, 1996.

[8] S. Greenspan, et al., “A Requirements Modeling Langua-

ge and Its Logic,” Information Systems, Vol. 11, No. 1,
1986, pp. 9-23.
http://dx.doi.org/10.1016/0306-4379(86)90020-7

[9] J. Rumbaugh, et al., “The Unified Modeling Language
Reference Manual,” 2nd Edition, Addison-Wesley, 2004.

[10] “Process Model Requirements Gap Analyzer,” 2012.
http://www.accenture.com/SiteCollectionDocuments/PDF
/Accenture-Process-Model-Requirements-Gap-Analyzer.
pdf

[11] H. E. Okud, et al., “Experimental Development Based on
Mapping Rule between Requirements Analysis Model
and Web Framework Specific Design Model,” Springer-
Plus Journal, Vol. 2, 2013, p. 123.
http://dx.doi.org/10.1186/2193-1801-2-123

[12] R. Pressman, “Software Engineering: A Practitioner’s
Approach,” McGrawHill, 2010.

[13] D. Jurafsky, et al., “Speech and Language Processing: An
Introduction to Natural Language Processing, Computa-
tional Linguistics and Speech Recognition,” Pearson/
Prentice Hall, 2009.

[14] E. Khan, “Natural Language Based Human Computer
Interaction: A Necessity for Mobile Devices,” Interna-
tional Journal of Computers and Communications, 2012.

[15] E. Khan, “Addressing Big Data Problems using Seman-
tics and Natural Language Understanding,” 12th Wseas
International Conference on Telecommunications and
Informatics (Tele-Info ‘13), Baltimore, September 17-19,
2013.

[16] E. Khan, “Natural Language Understanding Using Brain-
Like Approach: Word Objects and Word Semantics Ba-
sed Approaches help Sentence Level Understanding,”
Applied to US Patent Office, 2012.

http://dx.doi.org/10.1016/0306-4379(86)90020-7
http://dx.doi.org/10.1186/2193-1801-2-123

