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ABSTRACT 

Remote sensing techniques are proven methods for quantifying chlorophyll-a levels by inference algal concentrations in 
reservoirs. One traditional method is to use Landsat imagery and field data from a limited time period to develop a 
model for a reservoir which relates reflectance in various bands to measured algal (or chlorophyll-a) concentrations and 
use that model and associated imagery to determine spatial algal concentrations in the reservoir. In this work, we extend 
these techniques to use historical Landsat data over long time periods to develop seasonal models that will more accu- 
rately describe the conditions throughout the growing season. Previous work at Deer Creek included the development of 
a chlorophyll-a model using data from the months of August to September. This model did not account for seasonal 
variation and algal succession, which affects the relationship between measured reflectance and algal concentration. 
Early summer algal blooms are dominated by diatoms (yellow-brown), while the algae vary from chlorophyta (green) in 
the mid-summer to cyanobacteria (blue-green) in late summer months. This study presents and explores the develop- 
ment and use of seasonal algorithms based on reflective characteristics of various algal communities to create a more 
accurate model for the reservoir. This study uses water quality data collected over a 20-year period during non-ice con- 
ditions along with associated Landsat data. As the field measurements were not taken to support remote sensing meas- 
urements, this study evaluates the use of historical data to support remote sensing analysis. It is assumed that reservoir 
conditions do not change rapidly, the field data can be used to develop correlations with satellite imagery taken within a 
day of the field measurements, and the seasonal algal communities have different reflective properties (or colors). We 
present statistical analysis that shows the seasonal algorithms better fit the data than the non-seasonal model and the 
traditional model calibrated with late-season data. We recommend the use of sub-seasonal algorithms to more accurate- 
ly model and predict water quality throughout the growing season. 
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1. Introduction 

Deer Creek Reservoir, located in the Rocky Mountain 
region of the United States, covers approximately 12 
square kilometers [1]. The reservoir was formed in 1941 
by the creation of an earth-fill dam and today provides 
water for agricultural and domestic uses for major met- 
ropolitan areas in the State of Utah including Salt Lake 
City. The contributing watershed is approximately 1870 
square kilometers, and includes agricultural and livestock 
grazing, as well as some urban and suburban develop- 
ment. Deer Creek is a popular recreation spot, offering 
year-round fishing, camping, and water sports. 

In the early 1980s, the reservoir was classified as high- 
ly eutrophic, with significant algal blooms, high levels of 

phosphorus, and low dissolved oxygen concentrations. 
Phosphorus dissolved oxygen and total coliforms exceed- 
ed state water quality standards [1]. Problems associat- 
ed with the large algal blooms ranged from low dissolved 
oxygen concentrations to reduced recreational use of the 
reservoir. Ongoing efforts have been made to lower the 
nutrient loading and to reduce the growth of algal blooms. 
Initially, these efforts were focused on point pollution 
sources including municipal wastewater and fish hatch- 
ery discharge. Other non-point concerns were nearby dai- 
ry operations and erosion. To support these mitigation ef- 
forts, a program was implemented to monitor water qual- 
ity using field sampling methods [1].  

Still, as late as 1992, the average Trophic State Index  
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for the reservoir was 45.44, indicating a highly mesotro- 
phic condition, though conditions have improved in sub- 
sequent years. Continuing development within the wa- 
tershed, construction of the upstream Jordanelle reservoir, 
and on-going mitigation efforts affect nutrient loading 
and the resultant reservoir conditions. These long-term 
monitoring data from 1984 to the present, along with sig- 
nificant changes in the watershed, have made Deer Creek 
Reservoir optimal for study and analysis. 

2. Algae Species and Seasonal Succession  

In a study from 1991, over 45 unique taxa of algal phyto- 
plankton were identified in Deer Creek [1]. These algae 
include diatoms, green, and blue-green algae. Monitoring 
data show that throughout the growing season of April- 
September, the reservoir experiences a regular succession 
of algae growth as the phytoplankton communities domi- 
nate during different periods. Studies have shown that in 
freshwater lakes, diatomic algae peak during the spring, 
and low production of diatoms occurs during the late 
summer months [2]. During the low production of dia- 
tomic algae, blue-green algae dominate freshwater lakes. 
Data show that Deer Creek generally follows this cycle.  

In temperate regions, such as central Utah, the suc- 
cessive cycle is primarily caused by the minimum and 
maximums of solar radiation [3], changes in water tem- 
perature, sunlight, and nutrient concentration [4]. The re- 
latively high altitude of 5400 ft intensifies these changes. 
Various phytoplankton communities respond differently 
to these seasonal conditions, resulting in a definite pat- 
tern of succession. In the early months diatoms (yellow- 
brown in color) dominate, while green algae dominates 
the mid-summer months, and blue-green algae, including 
cyanobacteria dominates the reservoir in the later sum- 
mer months. This effectively divides the growing season 
into three sub-seasons relating to the type of dominant al- 
gae. 

Blue-green algae are considered particularly dangerous 
due to health issues caused by the toxins present in cya- 
nobacteria [4,5]. However, diatoms also have the capac- 
ity to negatively affect humans, fish, and the overall eco- 
system of a reservoir [6]. For instance, the diatom didy- 
mosphenia geminata can cover up to 100 percent of sub- 
strate with a thickness of 20 centimeters, significantly 
impacting the ecosystem and negatively affecting recrea- 
tional activities. This particular species of diatom has been 
reported in northern Utah [7] and is a potential threat to 
lakes in the area, such as Deer Creek Reservoir.  

The different populations of algae vary in pigment com- 
position, size and structure, which affect their specific 
absorption and reflective properties measured by remote 
sensing techniques [8]. Stuart, Sathyendranath et al. (2000) 
show that diatoms have lower absorption coefficients 
compared to other phytoplankton populations and warn 

that the use of a universal algorithm may produce sig- 
nificantly under-estimated phytoplankton concentrations. 
Poor evaluations of algal blooms may occur simply be- 
cause the physical characteristics of the dominant algae 
differ from that of the algae on which the remote sensing 
algorithm was based. We present this case study which 
utilizes three sub-seasonal algorithms to address these 
issues. These models are based more closely on the phy- 
sical characteristics (reflectance) of the algae that typical- 
ly dominate that sub-season. The models are based on 
historical data and because these data did not necessarily 
directly coincide with satellite measurements, we use 
spatial averaging and statistical techniques to develop the 
correlations. 

Previous Remote Sensing Studies (Late  
Growing Season Chlorophyll-A) 

Many remote sensing studies focused on the estimation 
of chlorophyll levels use data from later months of the 
growing season which is typically the critical time for 
algal blooms and other water quality issues [9]. Many of 
these studies develop chlorophyll estimation algorithms 
with targeted, but limited data, meaning few images or in 
a narrow range of dates, and taken from the growing 
season when blue-green data is typically at a maximum 
with field data collections timed to coincide with satellite 
measurements [7,10,11]. The data are used to develop 
models to use remotely sensed image provides spectral 
radiance or reflectance values to provide an estimation of 
the chlorophyll level and by inference algal concentra- 
tions.  

However, these models often ignore the beginning of 
the growing season in the development of a single algo- 
rithm. It is important to note that the maximum algal 
concentrations may not always occur during these later 
months [12] and that the relationships between reflec- 
tance and algal concentration are dependent on the domi- 
nant phytoplankton community.  

If the maximum for a particular year occurs in May 
when diatoms are dominant, then an algorithm that was 
developed using data when blue-green algae was preva- 
lent may not provide an accurate description of the con- 
ditions of the lake. Each type of algae possesses unique 
reflective characteristics [8], indicating that each type of 
algae may be best identified by a unique algorithm. 

3. Objectives 

The purpose of this study is to explore the possibilities of 
sub-seasonal models that more closely mirror the algal 
succession patterns in the reservoir. By developing sea- 
sonal models that follow the pattern of algal succession, 
the entire growing season may be evaluated with greater 
accuracy. This study also uses historical data that were 
not collected with the intent to support remote sensing 

Open Access                                                                                           AJPS 



Development of Sub-Seasonal Remote Sensing Chlorophyll-A Detection Models 23

evaluations and do not coincide time-wise with satellite 
collections. To use these data we assume that reservoir 
conditions are relatively constant. This work provides a 
case study which uses statistical correlation to indicate 
that these approaches give improved accuracy and can pro- 
vide a description of trends and reservoir behavior using 
historical data. These techniques should allow for more 
accurate predictions of current conditions. 

4. Data 

The data used in this study is a combination of in-field 
measurements taken by the Central Utah Water Conser- 
vancy District (CUWCD) and Landsat images downloaded 
from the United States Geological Survey (USGS) web- 
site. The data from the CUWCD were collected at four 
reservoir locations within a depth of 2 meters below the 
surface. The sampling sites were located in the upper 
portion of the reservoir, middle of the reservoir, near the 
dam at the bottom of the reservoir, and in the narrow arm 
to the southeast of the reservoir (Figure 1). The Landsat 
images used in this study were chosen based on matching 
satellite acquisition dates with dates in-field data collec- 
tion and lack of cloud cover over the reservoir. 

Deer Creek is well suited to analysis using Landsat 
imagery, the Department of Forest Resources of the Uni- 
versity of Minnesota, recommends Landsat images for 
bodies of water over 0.08 square kilometers (20 acres) in 
size [13]. At 12 square kilometers of surface area, the re- 
solution of 30 × 30 m pixels was sufficient to show spa- 
tial trends within the reservoir in addition to temporal  
 

 

Figure 1. Sampling sites at deer creek reservoir. 

trends. We selected Landsat data because of low cost and 
availability to download long-term historical data. Deer 
Creek data are acquired from Landsat paths 37 and 38, 
row 32 which creates a pattern of acquisition of 7-9-7 
days [14]. Only images within 24 hours of the in-situ 
measurements were used, providing a total of 55 satellite 
images over the monitoring period of 1985-2005. 

5. Methods 

5.1. Data Processing 

The Landsat images were downloaded from the USGS 
Earth Explorer Database. The images were calibrated, 
with digital numbers converted to reflectance values. The 
images were then atmospherically corrected using the 
dark subtraction algorithm in ENVI. Atmospheric correc- 
tion mitigates the impacts of solar reflectance, pollution 
from aerosols and small particulate matter, and water va- 
por on the data. 

5.2. Statistical Analysis 

Within each satellite image, we created regions of inter- 
est using a 3 × 3 grid surrounding the location of each 
in-field sampling site [14,15]. A 3 × 3 grid was used to 
minimize image noise and spatial variation. This pro- 
vides a more average measure of the reservoir condition 
and reflects the fact that the field data were not collected 
at the exact same time as the satellite data. The data for 
each band were averaged over the 9 pixels and the re- 
sulting mean reflectance values were assumed to repre- 
sent each sampling site.  

To develop the sub-seasonal models we used a regres- 
sion test to compute the correlation between the two data 
sets (remotely sensed data and in-situ measurements). 
This approach requires that the data be normally distrib- 
uted. We checked this assumption and found that the data 
for each of the spectral bands were normally distributed. 
However, according to the Shapiro-Wilk goodness-of-fit 
test, the p-value of the in-situ measurements of chloro- 
phyll was less than 0.0001, indicating that the distribu- 
tion was not normal, but the p-value for the Shapiro-Wilk 
test of the natural log of the in-situ measurements was 
0.046, so the natural log of the in-field measured chloro- 
phyll levels was used to provide a more normal distribu- 
tion, shown in Figure 2. 

We performed a stepwise linear regression analysis, 
evaluating combinations of each of the bands and the ra- 
tios of bands to be fit to the values of in-field measure- 
ments. Using a forward selection process, the bands and 
ratios of bands were included in the model until no more 
improvements to the model were made by the inclusion 
of additional data (either bands or band ratios). We creat- 
ed models using up to 4 variables (bands or band ratios) 
with a stepwise regression computed for each sub-season 
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Figure 2. Distribution of ln(Chl-a) field measurements. 
 
to produce three unique regression models for each of the 
three sub-seasons. Finally, we developed a model using 
the data set for the entire growing season to allow for 
comparison between sub-seasonal and an overall model. 

We tested the data for the influence of outliers with the 
Hat, Studentized Residual, Cook’s Difference Influence 
tests. These tests identify the influence or leverage of 
univariate outliers and whether or not they should have 
been included in the regression analysis. The Leverage 
test is a measure of the distance between the predicted 
value and the average of the predicted values in the entire 
data set. An individual predicted value typically has a 
high potential for influence according to (1), 

2ih p n                   (1) 

where h is the hat value, p is the number of regression 
coefficients, and n is the number of samples [16]. The 
Studentized Residual test suggests that those predicted 
values that are outside the range of −2 and 2 should be 
considered for high influence. Finally, the Cook’s Dis- 
tance test analyzes the effect of omitting a case on the es- 
timated regression coefficients. The typical cutoff for in- 
fluential values is those with a distance above 1. 

Only one value failed more than one test for influence 
and was excluded from the regression analysis. Follow- 
ing the exclusion of this value and a second regression 
analysis, the correlation coefficient was improved by 3%, 
and no additional data points were flagged for high in- 
fluence or rejected as outliers. 

6. Results 

Each of the seasonal subsets of data resulted in unique 
models with different combinations of parameters and 
coefficients. The models for each of the sub-seasons are 
provided below (Equations 2-4). In each model, the bands 
are represented as BX, with X indicating the number of 
Landsat band.  

     
 

Early ln chl 60.215 5 1 +142.922 7 2
65.943 7 3 +3.763

B B B B
B B

   
   

(2) 

   
 

Mid ln chl 129.093 1+5.015 5 1
0.0823 5 3 +10.697

B B
B B

   
 

B
   (3) 

 
 

Late ln chl 233.3 1 171.886 2
0.028 1 7 8.75

B B
B B

    
       (4) 

Along with the models, respective R2 values are prE- 
sented in Table 1 to demonstrate how well the model pa- 
rameters fit the data. Figure 3 presents the in-field mea- 
sured chlorophyll-a versus the predicted chlorophyll-a 
amounts. 

Additionally, a stepwise regression was performed on 
the entire data set. This model was then fit to the in-field 
measured data for the three sub-seasons. The model that 
was developed using only the data from the late growing 
season months was also applied to the earlier sub-seasons 
for comparison. Results of the respective actual versus 
predicted plots are included in Figures 4 and 5. 
 

Sub Season 
Sub-Seasonal 

Model 
Full Season 

Model 
Late Season 

Model 

Early (April-May) 0.417 0.099 0.200 

Mid (June-July) 0.754 0.1599 0.0728 

Late 
(August-September)

0.813 0.801 - 

 
As previously discussed, the traditional modeling ap- 

proach relies heavily on the data from the end of the 
growing season. We used the late season model to pre- 
dict results in the earlier seasons. This showed that the 
correlation coefficient using a model developed using 
late summer data to predict earlier seasonal conditions 
was significantly lower, at R2 = 0.2 for the early-summer 
data and R2 = 0.0728 for the mid-summer data, indicating 
that a model developed using data from the later months 
of the growing may not accurately describe chlorophyll 
levels for the rest of the growing season.  

The predictions for each season using the full-seasonal 
model (the model developed using all the data without 
regard for seasons) were compared against the predic- 
tions for the sub-seasonal models. The regression coef- 
ficient for the model parameters was 0.546, lower than 
any of the sub-seasonal models.  

The correlations between actual and predicted data 
were also significantly lower for the earlier months of the 
growing season, with R2 = 0.0995 for the early season 
data, R2 = 0.1599 for the mid-season data. The exception 
was the late sub-season; however, this correlation was 
still lower than the individual sub-season. The compara- 
tively poor predictive capabilities of the full season mo- 
del for the earlier two sub-seasons indicate that the indi- 
vidual models may better describe the actual chlorophyll 
concentration in the reservoir. 
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(a)                    (b) 

 
(c) 

Figure 3. In-field measured values versus predicted values 
((a) Early, (b) Mid, (c) Late). 
 

Table 1. Regression coefficients for various models. 

Season 
Model Fit (Regression Coefficient 

for Model Parameters) 

Early (April-May) 0.585 

Mid (June-July) 0.859 

Late (August-September) 0.769 

Full Season 0.546 

 

 

Figure 4. Actual versus predicted values for full growing sea- 
son model. 

7. Conclusions 

The results of the regression analysis indicate that sub- 
seasonal models provide more accurate estimations of the 
chlorophyll levels during their respective sub-seasons 
than a model representing the entire growing season. Ad- 
ditionally, the algorithm developed for the late summer 
months does not provide the accuracy of the other algo- 
rithms when it is applied to the earlier months of the 
growing season. This indicates that sub-seasonal algo-  

 

Figure 5. Actual versus predicted values for Late model ap- 
plied to Early and Mid sub-seasons. 
 
rithms may perform better and provide more accurate 
estimations of the chlorophyll throughout the growing 
season. Each of the models is unique, which indicates 
that the hypothesis that the different types of algae dis-
play unique visual characteristics is correct. 

As Stadelmann indicated, the peak algae blooms and 
maximum chlorophyll levels do not always occur during 
the last two months of the growing season [12], so it is 
important to provide accurate estimations of chlorophyll 
throughout the growing season. These sub-seasonal mod- 
els have the potential to better describe the patterns and 
trends of chlorophyll levels by providing more accurate 
remotely-sensed estimations of chlorophyll levels.  
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