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ABSTRACT 

A new computational method for solving the fifth order Korteweg-de Vries (fKdV) equation is proposed. The nonlinear 
partial differential equation is discretized in space using the discrete singular convolution (DSC) scheme and an expo- 
nential time integration scheme combined with the best rational approximations based on the Carathéodory-Fejér pro- 
cedure for time discretization. We check several numerical results of our approach against available analytical solutions. 
In addition, we computed the conservation laws of the fKdV equation. We find that the DSC approach is a very accu- 
rate, efficient and reliable method for solving nonlinear partial differential equations. 
 
Keywords: Fifth Order Korteweg-De Vries Equations; Discrete Singular Convolution; Exponential Time Discretization 

Method; Soliton Solutions; Conservation Laws 

1. Introduction 

The study of travelling wave solutions of nonlinear par- 
tial differential equations (PDEs) is the major subject in 
many fields of physical and nonlinear sciences. Concepts 
like solitons, peakons, kinks, breathers, cusps and com- 
pactons have entered into various branches of natural 
sciences such as chemistry, biology, mathematics, com- 
munication and particularly in almost all branches of phy- 
sics like the fluid dynamics, plasma physics, field theory, 
nonlinear optics and condensed matter physics. Among 
these nonlinear PDEs there exists an important class of 
the fifth order Korteweg-de Vries equations  

2
3 2 5 0,t x x x x xu uu u u u u u             (1) 

where k k
kxu u x

us a better understanding of the erratic and often unpre- 
dictable nature of natural phenomena, and soliton theory 
helps explain natural phenomena that are surprisingly 
predictable and regular even under conditions that would 
normally destroy such properties. A soliton is a solitary 
wave which preserves its shape and velocity after non- 
linearly interacting with other solitary waves or (arbitrary) 
localized disturbances. 

In general, Equation (1) does not admit exact solutions, 
therefore one has to resort to numerical methods. Due to 
the fifth-order terms in these equations, it is very difficult 
to compute the solutions of these equations accurately 
and efficiently. Recently, Shen [5] proposed a new dual- 
Petrov-Galerkin method for the third and higher odd- 
order equations. His approach was proven to be very ef- 
fective for the KdV type equations in bounded domains 
[5] and in semi-infinite intervals [6]. In [7], a numerical 
scheme based on the dual-Petrov-Galerkin method was 
proposed and implemented for the Kawahara and modi- 
fied Kawahara equations.  

     ,   and   are real numbers. 
This class includes the well-known Lax [1], Sawada-Ko- 
tera (SK) [2], Kaup-Kupershmidt (KK) [3] and Ito [4] 
equations. The knowledge of close form solutions of 
nonlinear PDEs facilitates the verification of numerical 
solvers, aids physicists to better understand the mecha- 
nism that governs the physic models, provides knowl- 
edge to the physical problem, provides possible applica- 
tions and helps mathematicians in the stability analysis of 
solutions. While strange attractors and chaos theory give 

In this paper, we propose a discrete singular convolu- 
tion method to solve fifth order Korteweg-de Vries equa- 
tions. Discrete singular convolution (DSC) methods be- 
long to the family of local spectral (LS) methods. They 
were proposed by Wei [8] as a potential approach for  
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numerical realization of the Hilbert transform, Abel 
transform, Random transform and Delta transform. The 
DSC algorithm has been essential to many practical ap- 
plications, such as nonlinear equations [9], structural ana- 
lysis [10,11], compressible and incompressible fluid flows 
[12,13], electromagnetic wave propagation, scattering [14, 
15] and image analysis [16]. 

Recently, Pindza and Maré [17] utilized a combined 
fourth order exponential time differencing of Adams type 
and the DSC method to solve the generalized Korteweg- 
de Vries. Their approach revealed exponential conver- 
gence. The advantage of the DSC methods is that they 
exhibit exponential convergence of spectral methods [18] 
while having the flexibility of local methods for complex 
boundary conditions [10,19]. 

The discretization of the generalized Korteweg-de 
Vries equations in space with the DSC method yields a 
system of ordinary differential equations (ODE) that needs 
to be solved by time integration methods. We use the 
fourth order exponential time differencing Runge Kutta 
(ETDRK4) [20] for the solution of the resulting semi- 
discrete equations. The matrix exponential required by 
the scheme is efficiently computed using best rational ap- 
proximations based on the Carathéodory-Fejér (CF) pro- 
cedure [21]. 

The layout of this paper is as follows. We describe the 
formulation of the DSC method in Section 2. In Section 3, 
we discuss the exponential time integration methods for 
solving the semi-discrete system resulting from the spa- 
tial discretization of the nonlinear PDEs. Numerical re- 
sults illustrating the merits of the new scheme are given 
in Section 4 and we present our conclusions in Section 5. 

2. Discrete Singular Convolution Methods 

Discrete singular convolution (DSC) methods are rela- 
tively new numerical techniques in the field of nonlinear 
equations. They are defined as follow. Consider a distri- 
bution,  and  an element of the space of test 
functions. A singular convolution can be defined by  

T  t

     d exF t T t x x x



           (2) 

where  is a singular kernel. For many science 
and engineering problems, an appropriate choice of  
has to be done. For instance, in the field of interpolation 
of surfaces and curves the singular kernel of delta type 

T t x 
T

   T x

 T x

t

   n t

 is very important. For numerical solutions 
of partial differential equations, the kernel  

 is essential, where the sub- 
script n denotes the -th order derivative of the distri- 
bution with respect to parameter 

, 0,1,n  
n

,

x . While using the 
DSC method, numerical approximations of a function 
and its derivatives can be treated as convolutions with 

some kernels. According to the DSC method, the -th 
derivative of a function 

n
 f x

x 

 can be approximated as 
[22]  

         , , , 0,1,
Mn n

M h k kk M
f x x f x n 


 ,   (3) 

where  is the grid spacing, kh x  is the set of discrete 
grid points which are centered around x , and 2 1M   
is the effective kernel, or computational bandwidth; and 
is usually smaller than the whole computational domain. 

In the present paper, we focus our attention on the re- 
gularized Shannon kernel (RSK) 

 
  

 

   

2

22

,

sin π
e , ,

π

kx x

k
h k

x
x x


 

   
 
 

   0
k

h x

h x x


  


 

(4) 

to provide discrete approximations to the singular con- 
volution kernels of the delta type (3). The required deri- 
vatives of the DSC kernels can be easily obtained using 
([12]) 

       , , ,

d

d
i

n
n n

i j i j i j h i jn
x x

x x x x
x   



     (5)    

The error estimation of the regularized Shannon kernel 
(RSK) delivers very small truncation errors when it uses 
the above convolution algorithm ([23]) 

Theorem 2.1 (Qian [23]). Let  
     2 nf L L C      be a function and band 

limited to  πB B nh , 

, 0,
2

nr
n rh M M  
     

 
  .  Then 

   
 

2

, 2
exp ,

2
n n

M L
f f

r


 
    

         (6) 

where   2min , πM r Bh    and  

 
     2

e 1 !
2

πn

r n
B f

h 


 
π

2
L L

r f    

Here  is the number of grid points. The N L  error 
given by (6) decays exponentially with respect to the in- 
crease of the DSC band width .M  

The proof of the above theorem is beyond the scope of 
this paper. We refer the reader to [23] for a detailed dis- 
cussion on the Shannon’s sampling theorem. 

Using (4) and (5), the entries of the first, second, third 
and fifth differentiation matrices , ,  and 

 are given explicitly by  

 1D  2D  3D
 5D

 
 
 

 22

1 2
,

1
exp ,

2

0,

i j

i j

h i j
i j

h i j

i j

 

          


     (7) 
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 

 
 

 22
1

2 2 22

2
,

2

2 2

1 1
2 1 exp

2

1 3 π
,

3 2

i j

i j

h i j

h i j

i j

i j

 
,



 

 
         

       
      

(8) 

 

 
     

   

2

3 3 23

22
3
, 4 2

2

2 2

π 2 3
1

3
exp ,

2

1 3 π
,

3 2

i j

i j

h i j h i jh i j

h i j h h i j
i j

i j




 

 


 
   

  
          


 
     







   

(9) 

 

 
 

 

 
 


 

    
 

 

384

5 3

26 4

6 4 3 2

4 22 4 2 2 4

5
, 3 4

22

2

π 24
1 5

122 3

10π 2

exp ,
2

0,

i j

i j

h i j

i j i j

h hh i j h

i j i j

h i j h i j

i j

h i j
i j

i j



  

 







       

  
    
   
        
       
 






  

(10) 

Note that the differentiation matrix in (5) is in general 
banded. This gives rise to great advantage in large scale 
computations. Extension to higher dimensions can be re- 
alized by tensor products. 

The choice of M ,   and  was suggested by 
Qian and Wei [23]. For instance, if the  norm error is 
set to 

h
2L

 10 0    the following relations must be satis- 
fied 

 π 4.6   and  4.6
M

r Bh
r

         (11) 

where r h  and  is the frequency bound of the 
underlying function 

B
f . 

To illustrate the procedure of discretization of PDEs 
by the DSC method, we consider the computation of fifth 
order KdV equations given by 

2
3 2 5 0,t x x x x xu uu u u u u u           (12) 

where k k
kxu u x   ,  ,   and   are real numbers 

and  ,x t Cu u   . 
This equation was previously considered in [24] where 

its properties were studied and its analytical soliton solu- 
tions were revealed. In the present paper we mainly focus 
on numerical solutions of Equation (12) via the use of 
DSC method. 

The semi-discretized version, at the th row, of the 
equation in consideration is obtained by substituting the 
relations (3) and (5) into (12), yielding 

i

       
       

     
   

3
,

3 3
, ,

2 3
,

3
,

, , ,

, ,

, ,

,

M

M

i i i j jj M

M M

i j j i j jj M j M

i i j jj M

M

i j jj M

u
x t u x t u x t

t

u x t u x t

u x t u x t

u x t

 

  

 





 






 









 






   

(13) 

where  1
,i j ,  2

,i j ,  3
,i j  and  5

,i j are the typical ele- 

ments of matrices , ,  and , respec-   1D  2D D 3  5D
tively. Therefore, Equation (13) can be expressed in the 
following matrix form 

     d
,

d

u t
Lu t N t u t

t
           (14) 

where  5L D  represents the linear part of the system  

and            3 1 2 2N u D u D u D u u D u      1  

represents the nonlinear part. 
The main difficulty when dealing with systems of the 

type (14) is that the use of explicit time integrators is 
inefficient because the system typically suffers from in-
stability due to the higher order derivative. This was 
emphasized by Pindza [25]. Consequently, the time step 
size must be significantly reduced in order to fulfill the 
drastic stability condition present in explicit time inte-
grators. In this paper we use the fourth order exponential 
time differencing Runge-Kutta method. 

3. Exponential Time Differencing 

Exponential time differencing (ETD) schemes are known 
for a long time in computational electrodynamics; see 
[26] for a comprehensive review of ETD methods and 
their history. In this section, we describe the exponential 
time differencing fourth-order Runge-Kutta (ETD4RK) 
method which was proposed by Cox-Matthews [27]. 

The main idea of the ETD methods is to multiply both 
sides of a differential equation by some integrating factor, 
then we make a change of variable that allows us to solve 
the linear part exactly and, finally, we use a numerical 
method of our choice to solve the transformed nonlinear 
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part. 

3.1. Overview of the Method 

In order to elaborate on this approach, let us consider the 
following semi-linear partial differential equation 

   ,tu Lu t N u t              (15) 

where  and  are the linear and nonlinear operators, 
respectively. The semi-linear partial differential equation 
is discretized in space with the discrete singular convolu- 
tion method. Therefore, we obtain a system of ordinary 
differential equations (ODEs) 

L N

   ,u Lu t N u t              (16) 

The exponential time differencing (ETD) methods can 
be obtained by integrating Equation (16) exactly between 
the time steps  and  with respect to t , 
to obtain 

nt 1n nt t   h

n 1 0
e e e , dLh Lh Lh

n n

h

nu u N u t t  
      (17) 

There exist various ETD methods for the evaluation of 
(17). The purpose of this work is not to give a complete 
classification of ETD methods. We focus specifically on 
the fourth order exponential time differencing Runge- 
Kutta (ETDRK4) given by 

 

 

  

  
   



 

12 2

12 2

12 2

22 3
1

e e , ,

e e , 2 ,

e e 2 , 2 ,

e 4 e 4 3

, 2 2 e 2

, 2

Lh Lh

n n n n

Lh Lh

n n n n

Lh Lh

n n n n n n

Lh Lh
n n

Lh
n n

n n

a u L I N u t

b u L I N a t h

c u L I N b t h N u t

u u h L I hL I hL hL

N u t I hL I hL

N a t h







 


 
    

 
 

     
 
 

       
 

         

      
 

,

  
    2

, 2

4 3 e 4 ,

n n

Lh
n n

N b t h

I hL hL I hL N c t h



        

 

(18) 

The main computational challenge in the implementa- 
tion of exponential time differencing (ETD) methods is 
the need for fast and stable evaluations of exponential 
and related  -functions 

   
 1 1 1

0

1
e d ,

1 !
z j

j z j
j

   
  0,      (19) 

i.e., functions of the form  e 1z z . The computation 
of these functions depends significantly on the structure 
and the range of eigenvalues of the linear operator and 
the dimensionality of the semi-discretized PDE. Unfor-  

tunately, for DSC methods the linear part have eigenval- 
ues approaching zero, which leads to complications in 
the computation of the coefficients. Saad [28], and Ho- 
chbruck and Lubich [29] introduced Kyrlov methods to 
compute  -functions. Kassam and Trefethen [20] used 
Cauchy integral representation on a circle for a stable 
computation of  -functions. Our evaluation of expo- 
nential and related  -matrix functions follows the idea 
of Schmelzer and Trefethen [30]. This method is based 
on computing optimal rational approximations to the ma- 
trix functions on the negative real axis using the Cara- 
théodory-Fejér (CF) procedure [21], closely. The  - 
functions (19) can be computed explicitly by a recursive 
formula 

 

     
0

1 1

e

0
, 1

z

j j
j

z

z
z j

z



 
  

 

 

 


      (20) 

Another way to compute the functions j  is to use 
the Taylor series representation. Therefore, for all com- 
plex numbers , we have z

  1

!
k j

j k j
z

k
  


  z            (21) 

However, it is known that the computation of these 
functions in their explicit or Taylor series form suffers 
from computational inaccuracy for matrices whose ei- 
genvalues are equal to or approaching zero. This is gen- 
erally the case when the spatial discretization is based on 
spectral methods. In order to overcome the numerical dif- 
ficulties encountered in the computation of (20) and (21), 
a different tactic for evaluating the function was propos- 
ed in [20]. The key idea is to approximate the functions 
(for matrices or scalars) by means of contour integrals in 
the complex plane 

    
Γ

1 1
d e

2π
Mj i

j jj

s
z s z

i s z M


 


 
  

 ,  (22) 

where 
2π

M
 


. If the contour  encloses the spec-  

trum of the non-diagonal matrix  we have L

     11
d .

2πj jL s sI L
i

  


  s       (23) 

If the size of the matrix  is large, it is more advan- 
tageous to compute the product of the functions 

L
 j z  

and vectors  rather than to compute  explicitly. 
We have 

b  j z

    

 

1

1

1

1
d

2π

,

j j

n

A b sI Ls b s
i

c s I L b

  







 

 



  

     (24) 

where s  and  are the poles and the residues, re- 
spectively. The sum in (24) is evaluated by solving at  

c
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most  shifted linear systems. The poles and the resi- 
dues are computed efficiently in standard precision by 
the Carathéodory-Fejér method [21,30]. 

n is a diagonal or a block diagonal matrix containing the 
eigenvalues of . If N  Re 0L   , then the fixed 
point  is stable for all 0u  . 

The stability region is four-dimensional, if both  
and 

L
  are complex. The two-dimensional stability re- 

gion is obtained if both  and L   are purely imaginary 
or purely real, or if   is complex and  is fixed and 
real. 

L

3.2. Stability Analysis 

In this section, we investigate the linear stability of the 
ETDRK4 method for the nonlinear autonomous system 
of ODEs, 

In the paper, we follow the analysis employed in [27] 
and we only concentrate on the case where  and L   
are real. We define ,  ,n

nu r x y x y  and x Lh . 
Then, applying the ETDRK4 method (18) to the linea- 
rized problem (26) yields 

  ,u Lu N u               (25) 

linearized about a fixed point  such that 

 
 We obtain 

0u

u
 0 0 0Lu N u 

u L u                 (26) 
  2 3

0 1 2 3 4, ,r x y c c x c x c x c x     4      (27) where u is now the perturbation of  and 0u  0N u    

 

0

2 3 2 2 2 3 2 2

1 3 3 3 3 2 2 2 2 2

2 3 2 2 2 3 2 2 2 2

2 4 4 4 4 3 3 3 3 3 2 2 2

2 3 2 2 2 3 2

1 3 3 3 3 2 2 2

e

4 8e 8e 4e 1 4e 6e 4e e

8 16e 16e 8e 5 12e 10e 4e e 1 4e 3e

4 8e 8e 4e 1 4e 6e 4e

y

y y y y y y y

y y y y y y y y y

y y y y y y

c

c
y y y y y y y y y

c
y y y y y y y y y y y y

c
y y y y y y y y



         

            

        
2

2 2

3
2 3 2 2 5 2 2 3 2 2 5 2 2 2

3 5 5 5 5 5 5 4 4 4 4 4 4 3 3 3

e

4 16e 16e 8e 20e 8e 2 10e 16e 12e 6e 2e 2e 4e 2e

y

y y
y y y y y y y y y y y

y

c
y y y y y y y y y y y y y y y



              

 

 
However, one can observe that the computation of 1 , 

2 , 3  and  suffers from computational inaccuracy 
for values of 

c
c c 4c

y  equal to or approaching zero. Therefore, 
it is important to make use of their Taylor expansions 

complex x  plane where 1r  . Hence, the boundary of 
the stability region is determined by writing  

 e , 0,2πir     

 

 

 

 

2 3 4
1

5 6

2 3 4
2

5 6

2 3 4
3

5 6

2 3
4

5 6

1 1 13
1

2 6 320
7

,
960

1 1 1 247 131

2 2 4 2880 5760
479

,
96768

1 1 61 1 1441

6 6 720 36 241920
67

,
120960
1 1 7 19 25

24 32 640 11520 64512
311

.
860160

c y y y y

y y

c y y y y

y y

c y y y y

y y

c y y y

y y

    

 

    

 

    

 

    

 









4y

 

The corresponding families of stability regions are 
plotted in the complex x  plane and displayed in Figure 
1. Note that, in this figure, the horizontal and the vertical 
axes represent  Re x  and  Im x , respectively. Clear- 
ly, as shown in Figure 1, the stability region for the 
ETDRK4 scheme grows larger as . The red 
curve corresponds to the case , where the stability 
region of the ETDRK4 scheme coincides with that of the 
corresponding order fourth order Runge-Kutta (RK4) 
scheme. 

y 
0y 

4. Numerical Results 

method for solving the fifth order KdV equation. To 
show the efficiency of the present method, we report the 
relative infinity and root mean square norm errors of the 
solution defined by 

1

1

max
,

max

j j
jN

j
jN

u u
L

u



             (28) 

We commence our analysis by choosing real negative 
values of  and looking for a region of stability in the  y and 
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Figure 1. Stability regions in the complex x plane. The curv- 
es correspond to , from the outer 
curve to the inner curve respectively. The inner red curve 
corresponds to y = 0. 

; ; ; ; ;8 7 6 4 1 0.5y       

 

 
 

2

1
2 2

1

 
,

 

N

j jj

N

jj

u u

u
L 









          (29) 

respectively, where  is the number of interior points, N

ju  and ju
u

 are the exact and computed values of the 
solution  at point . j

In this paper, we consider two case studies depending 
on the set of parameters of (25) that provide multi-soliton 
solutions. We evaluate the performance the DSC al- 
gorithms for different time increment , spatial discre- 
tization , the support size of DSC kernels 

t
N M  and 

regularization parameter  . 
In our computation, the first set of parameters that we 

select are given by 5, 5, 5     . In this case, the 
fifth order KdV Equation (11) is known as the Sawada- 
Kotera (SK) [2] equation and is given by 

2
3 2 55 5 5t x x x x xu uu u u u u u     0

,

.      (30) 

The SK (30) admits multi-soliton solutions [31]. The 
derivation of these soliton solutions is beyond the scope 
of this paper. We only list them here for testing numeri- 
cal procedures purposes. Single and two soliton solutions 
are given by 

    , 6 ln ,
xx

u x t x t            (31) 

where 

 11 exp ,                (32) 

     1 2 12 11 exp exp exp ,a 2           (33) 

respectively, with 

   
   

2 2 2

5
2 2 2

  and  
i j i i j j

i i i i ij

i j i i j i

k k k k k k
k x k t a

k k k k k k
 

  
   

  
 

(34) 

In our computational work, we use the collocation 
points 

  1 , , 1 , , , .
1i N

b a
x a x a i h x b h

N


     


 

   
(35) 

The SK equation possesses infinite conservation laws 
[31]. The first three conservation laws are given as fol- 
low 

2 3
1 2 3

1
d , d , d  ,

3 x
2I u x I u x I u u x

  

  

         (36) 

related to the mass, momentum and energy. The quan- 
tities 1I , 2I  and 3I  are applied to measure the conser- 
vation properties of the collocation scheme, calculated by 

 22 3
1 2 3

1
, ,  .

3j j jj x j
j j

I h u I h u I h u u
 




 

      
 

 
(37) 

The second set of parameters are chosen as  
10, 25, 20     . This is well-known as the Kaup- 

Kupershmidt (KK) [3] equation 

2
3 2 510 25 20 0.t x x x x xu uu u u u u u        (38) 

Multi-soliton solutions can be generated by the follow- 
ing nonlinear transformation of the dependent variable, 

    3
, ln ,

2
.

xx
u x t x t             (39) 

For one soliton solution, the dependent variable func- 
tion is given by 

    5
1 1 1 1 1

1
1 exp exp 2 ,

16
k x k t 1          (40) 

For two soliton solutions, the dependent variable func- 
tion is 

     

   

   
 

1 2

2 12 1 2

12 1 2 1 2

2
12 1 2

1
1 exp exp exp 2

16
1

exp 2 exp
16

exp 2 exp 2

exp 2 2 ,

a

b

b

1  

  



   

 

   

  

     
 

   (41) 

with 
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   
   
   

4 2 2 4
1 1 2 2

12 2 2 2
1 2 1 1 2 2

2 2
1 2 1 1 2 2

12 2 2 2
1 2 1 1 2 2

2 2
,

2

.
16

k k k k
a

k k k k k k

k k k k k k
b

k k k k k k

 


  

  


  

2
      (42) 

The KK equation possesses infinite conservation laws 
[31], the first three are given as follows 

2 3
1 2 3

1 1
d , d , d .

3 8

b b b

xa a a

2I u x I u x I u u x
      


  (43) 

The quantities 1I , 2I  and 3I  are applied to measure 
the conservation properties of the collocation scheme, 
calculated by 

 22 3
1 2 3

1 1
, ,

3 8j j jj x j
j j

I h u I h u I h u u
 




 

      
    

(44) 

In next sections, we study the propagation and the in- 
teraction of single and two soliton solutions, respectively. 

4.1. Propagation of Single Solitons 

In our numerical experiments, we first model the motion 
of a single soliton of the SK (30) and KK (38) equations. 
For the SK equation, the initial condition is taken from 
the exact solutions (32) and (31) at initial profile. Where- 
as for the KK equation, the initial condition is taken from 
the exact solutions (40) and (39) at initial profile. The 
boundary conditions in both cases are chosen so that 

   , 0  and  , 0u t u t    .        (45) 

In the first computation, we would like to investigate 
the convergence of the DSC method with respect to the 
number of grid points  and the DSC bandwidth N M . 
The values of the parameters used in our numerical expe- 
riments are: 1 1  and 0.4 0k  , 0.001t   in both 
cases of the SK and KK equations. In each case, the so-
liton moves to the right across the space interval 

 100,100x   when the time interval is  0,1500t . 
The choice of the DSC bandwidth M  and the regular- 
izer parameter   is done according to the conditions 
(10). Hence if  then 16M  2.5h  . If 32M   
then 3.2h  . If  then 64M 6.2h  . 

Figure 2 illustrates the convergence of the DSC with 
respect to the number of the grid points  and the DSC 
bandwidth 

N
M . We observe that numerical soliton solu- 

tions of the DSC method converge towards the exact so- 
liton solutions as the number of grid points  increases. 
We remark that the convergence of the DSC method also 
relies on the bandwidth 

N

M . The results in Figure 2 
shows that the case  gives a better convergence, 
the case  gives the worst convergence, whereas 
when  we have an intermediate convergence. 

64M 
16M 

32M

 
(a) 

 
(b) 

Figure 2. Convergence the DSC method for the propagation 
of single soliton solution of the SK (a) and the KK (b) 
equations at 10t   with ,  and 1 0.4k  1 0 0.001δt   

and  ,00 1001x  . 

 
In fact when the bandwidth M  is large, the DSC me- 
thod behaves like a global and detains exponential accu- 
racy, whereas for a small value of M , the DSC behaves 
like a local method such as finite difference methods. 
This result is stated by Theorem 2.1. 

Figure 3 represents numerical propagation of one soli- 
ton solutions of the SK (a) and the KK (b) equations. 
These propagations occur for a long period of time with 
no spurious oscillations. 

In the next experiment, we compute the error norms 
L , 2  and conservation quantities 1L I , 2I  and 3I . 
The results are shown in Table 1 for one soliton solution 
of the SK equation and in Table 2 for one soliton solu-
tion of the KK equation. 

From the numerical results given in Tables 1 and 2 it 
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(a) 

 
(b) 

Figure 3. Propagation of single soliton solution of the SK (a) 
and the KK (b) equations with , 1 0.4k  1 0 , 

,  and 0.001δt  200N   ,100 100x  . 

 
is observed that throughout the simulation, the error 
norms  and  are of magnitude  at a long pe- 
riod of time . Whereas the invariants 1

L 2L
150

410

0t I , 2I  
and 3I  at a given time  are equal to those of the ini- 
tial value. Our scheme conserve, the mass, momentum 
and energy. 

t

4.2. Interaction of Two Solitons 

This computational work is related to the interaction of 
two soliton solutions of SK (30) and KK (38) equations 
having different amplitudes and travelling in the same 
direction. For the SK equation, the initial condition is ta- 
ken from the exact solutions (33) and (31) at initial pro- 
file; whereas for the KK equation, the initial condition is 
taken from the exact solutions (41) and (39) at initial pro- 
file. The boundary conditions in both cases are chosen so 
that 

Table 1. Invariants and errors for a single soliton of the SK 
equation. 1 0.4k  , 1 0 , , 200N  0.1δt   and 

 ,100x  100 . 

t L  2L  1I  2I  3I  

50 0 0 2.4000 0.3840 0.0123

250 2.9354E-7 6.4931E-7 2.4000 0.3840 0.0123

500 4.5926E-7 1.2687E-6 2.4000 0.3840 0.0123

750 1.1870E-6 2.6083E-6 2.4000 0.3840 0.0123

1000 7.2493E-6 1.6938E-5 2.4000 0.3840 0.0123

1250 3.8777E-5 9.0258E-5 2.4000 0.3840 0.0123

1500 3.0826E-4 7.1035E-4 2.4000 0.3840 0.0123

 
Table 2. Invariants and errors for a single soliton of the KK 
equation. 1 0.4k  , 1 0 , ,  and  200N  0.1δt 

 ,100100x  . 

t L  2L  1I  2I  3I  

50 0 0 1.2000 0.0730 0.0015

250 2.4116E-7 5.0563E-7 1.2000 0.0730 0.0015

500 4.3930E-7 9.6785E-7 1.2000 0.0730 0.0015

750 6.4347E-7 1.4086E-6 1.2000 0.0730 0.0015

1000 7.2969E-7 1.8528E-6 1.2000 0.0730 0.0015

1250 1.1567E-6 2.3038E-6 1.2000 0.0730 0.0015

1500 1.2106E-6 2.7218E-6 1.2000 0.0730 0.0015

 

   , 0 , 0u t and u t .            (46) 

To allow the interaction to occur, the experiment was 
run from 0t   to  in the region 400  100,100

1k 

. Fig- 
ure 4 shows the interaction of two soliton solutions of 
the SK (top) and KK (bottom) equations for , 

, 
0.4

2 0.6k  1 0 , 2 , ,30  200N  0.001t   and 
 10x  0,100 . It can be seen that the faster pulse in- 

teracts with and emerges ahead of the lower pulse with 
the shape and velocity of each soliton retained. 

We also investigate the convergence of the DSC me- 
thod with respect to the number of the grid points  
and the DSC bandwidth 

N
M  as we did in the case of one 

soliton solutions. 
All the results are shown in Figure 5. We observe that 

numerical soliton solutions obtained by means of the 
DSC method converge to the exact soliton solutions as 
the number of grid points  increases. We also ob- 
serve that the convergence of the DSC method relies on 
the bandwidth 

N

M . The results on Figure 5 show that 
the case 64M   gives a better convergence, the case 

16M   gives the worst convergence, whereas when   
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(a) 

 
(b) 

Figure 4. Interaction of two soliton solutions of the SK (top) and the KK (bottom) equations with , , 1 0.4k  2 0.6k  1 0 , 

, ,  and 2 30 200N  0.001δt   ,100 100x  . 

 
32M   we have an intermediate convergence. In fact 

when the bandwidth M  is large, the DSC method be- 
haves like a global and detains exponential accuracy, 
whereas for a small value of M , the DSC behaves like a 
local method such as finite difference methods. 

In addition, we compute the error norms , 2  and 
conservation quantities 1

L L
I , 2I  and 2I  are computed. 

The result are shown in Table 3 for two soliton solutions 
of the SK equation and in Table 4 for two soliton so- 

lutions of the KK equation. 
From the numerical results given in Table 3 it is ob- 

served that throughout the simulation, the error norms 
L  and 2  are of magnitude  at a long period of 
time , whereas the error norms  and 2  (Table 
4) are of magnitude 

L
0

510

40 L L
810  at a long period of time. The 

invariants 1I , 2I  and 2I  at a given time  are equal 
to those of the initial value. Numerical checks on the con- 
servation mass, momentum and energy show that the 

t



E. PINDZA, E. MARÉ 14 

  

  
   (a)                                                     (b) 

Figure 5. Convergence the DSC method for the interaction of two soliton solutions of the SK (a) and the KK (b) equations 
with , , 1 0.4k  2 0.6k  1 0 , 2 30 ,  and 0.001δt   ,100 100x  . 

 
Table 3. Invariants and errors for interaction of two soli- 
tons of the SK equation. , , 1 0.4k  2 0.6k  1 0 , 

2 30 , , , 0.001δt  20N  0  ,100 100x  . 

t L  2L  1I  2I  3I  

50 0 0 6.0000 1.6799 0.1056

100 2.3576e-008 4.6137e-008 6.0000 1.6736 0.1056

200 2.6207e-007 6.5108e-007 6.0000 1.5118 0.1056

300 7.2470e-007 2.2323e-006 6.0000 1.6552 0.1056

400 7.7486e-005 2.3119e-004 6.0000 1.6796 0.1056

 
Table 4. Invariants and errors for interaction of two soli- 
tons of the KK equation. 1 0.4k  , , 2 0.6k  1 0 , 

2 30 , , , 0.001δt  45N  0  ,100 100x  . 

t L  2L  1I  2I  3I  

50 0 0 3.0000 0.3194 0.0132

100 4.6168e-009 5.2241e-009 3.0000 0.3194 0.0132

200 2.6397e-009 3.5804e-009 3.0000 0.3194 0.0132

300 2.6443e-009 4.1965e-009 3.0000 0.3194 0.0132

400 8.4855e-009 1.2871e-008 3.0000 0.3194 0.0123

 
three quantities remain constant with respect to time. 

5. Conclusion 

We studied the application of the combined DSC scheme 
in space discretization and the ETDRK4 for time discre- 
tization to solve the SK and KK equations. We consid- 
ered the case of the propagation of a single soliton and  

the interaction of two solitons. Numerical results showed 
that the DSC method converges exponentially with re- 
spect to the number of grid points  and the bandwidth N
M . Numerical checks on the conservation mass, mo- 
mentum and energy revealed that the three quantities re- 
main constant with respect to time . The DSC scheme 
is a robust and reliable numerical method of the fifth or- 
der KdV equation. We are currently investigating the uti- 
lity of the DSC method to solve the GRLW equation. 

t
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