
Theoretical Economics Letters, 2013, 3, 306-316 
Published Online December 2013 (http://www.scirp.org/journal/tel) 
http://dx.doi.org/10.4236/tel.2013.36052 

Open Access                                                                                            TEL 

w-MPS Risk Aversion and the CAPM* 

Phelim P. Boyle1, Chenghu Ma2# 
1School of Business and Economics, Wilfrid Laurier University, Waterloo, Canada 

2School of Management & Fudan Finance Center, Fudan University, Shanghai, China 
Email: #machenghu@fudan.edu.cn 

 
Received September 29, 2013; revised October 29, 2013; accepted November 6, 2013 

 
Copyright © 2013 Phelim P. Boyle, Chenghu Ma. This is an open access article distributed under the Creative Commons Attribution 
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 
In accordance of the Creative Commons Attribution License all Copyrights © 2013 are reserved for SCIRP and the owner of the 
intellectual property Phelim P. Boyle, Chenghu Ma. All Copyright © 2013 are guarded by law and by SCIRP as a guardian. 

ABSTRACT 

This paper establishes general conditions for the validity of mutual fund separation and the equilibrium CAPM. We use 
partial preference orders that display weak form mean preserving spread (w-MPS) risk aversion in the sense of Ma 
(2011). We derive this result without imposing any distributional assumptions on asset returns. The results hold even 
when the market contains an infinite number of securities and a continuum number of traders, and when each investor is 
permitted to hold some (arbitrary) finite portfolios. A proof of existence of equilibrium CAPM is provided for finite 
economies by assuming that when preferences are constrained on the market subspace spanned by the risk free bond, 
the market portfolios admit continuous utility representations. 
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1. Introduction 

This paper provides general conditions for the classical 
CAPM as an equilibrium model in economies with a fric- 
tionless market. First, we show that, if equilibrium exists, 
then the asset returns must satisfy the CAPM if all in-
vestors are risk averse in a sense of mean-preserving 
spread1 (Theorem 1). Second, we prove the existence of 
equilibrium satisfying the CAPM for economies with 
w-MPS risk averse investors, without assuming complete 
markets (Theorem 2). Our results advance the literature 
and lead to deeper understanding of the extent to which 
the CAPM holds in equilibrium: 1) preferences satis-  

fy w-MPS risk aversion, and such preferences can be 
incomplete and non-transitive; 2) the population space, 
or investors’ type space, can be finite or continuum infi-
nite; and 3) the market may contain a finite, or a count-
able infinite number of securities, while the market port-
folio is composed of a (fixed) finite number of risky as-
sets2. 

It has been known for a long time that if all investors 
have mean-variance preferences, then the CAPM holds 
([5-7]). It is also known that mean-variance preferences 
persist for general probabilistic sophisticated expected 
and non-expected utility functions when asset returns are 
elliptically distributed ([8,9]). It is, therefore, of particu-
lar interest to explore if the CAPM holds when prefer-
ences do not fall into the mean-variance class, particu-
larly when asset returns may follow arbitrary distribu-
tions3. Since the existence of equilibrium CAPM docu-

*This paper has benefitted from discussions with Jonathan Berk, Ber-
nard Cornet, Darrell Duffie, Editya Goenka, Chiaki Hara, Atsushi Kajii
Juan Pedro Gómez, Patrick Leoni, Ning Sun, Dong Chul Won, and 
Zaifu Yang.  
Ma acknowledges financial supports from the Economic and Social 
Science Research Council, UK (R000223337), the Nature Science 
Foundation of China (70871100, 71271058), and the Fudan Finance 
Center (EZH4301102/020). 
#Corresponding author. 
1An investor exhibits w-MPS risk aversion if, for all random payoffs 

 and X Y X   , the investor would prefer  to whenever X Y

  0 Cov   and . The notion of mean-preserving-spead 

used in this paper is weaker than the notion of MPS in [1,2], and is thus 
denoted w-MPS. Our w-MPS risk averse preferences correspond to the 
strict variance averse preferences used by [3]. 

 , 0X  

2The validity of CAPM, along with existence of equilibrium CAPM, for 
the case of a finite number of securities and a finite number of investors 
was documented in [4], Chapter 5. This paper can be thus regarded as a 
generalization of [4] to infinite economies. 
3In Duffie’s book [3] it contains a derivation of CAPM. Duffie’s deri-
vation rests on several explicit and implicit technical assumptions on 
asset returns: first, the existence of a continuous linear pricing rule in 
the market span; second, the market subspace is assumed to be a closed 
subset in 2 . Whilst the linearity of the pricing rule is necessarily im-
plied by the no-arbitrage condition as part of the equilibrium conditions, 
the closedness assumption on the market space is somewhat arbitrary. 
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mented in literature can be largely built up on the finite 
specification with respect to the number of tradable secu-
rities and the number of investors, it is thus also desirable 
to consider infinite economies. 

In comparison with the above cited work, this paper 
makes no distributional assumption on asset returns, and 
purely focuses on investor’s risk preferences over the 
random payoffs. The assumption of w-MPS risk aversion 
is appealing because 1) it captures investor’s psycho-
logical aversion towards “increase in risk” in a natural 
way, 2) w-MPS risk averse preferences are not restricted 
to certain classes of expected or non-expected utility 
functions. Therefore, they are not subject to criticisms 
such as the well-known Allais Paradox and other defi-
ciencies associated with expected utility functions. It is 
noted that expected utility functions may violate w-MPS 
risk aversion—and it could even be argued that this con-
stitutes another drawback of expected utility functions. In 
fact, we shall show that CAPM holds even when inves-
tors’ preferences are not complete, nor transitive. 

The relationship between mean-variance utility func-
tions and the w-MPS risk averse preferences has been 
analyzed. It is shown in [10] that, when the market con-
tains a finite number of risky assets (but no less than 
three) and when the market span forms a convex cone of 

2  if the w-MPS risk averse preference is represented 
by continuously Frechét-differentiable (in the 2 -norm) 
utility functions, then the preference must admit a mean- 
variance utility representation. Nevertheless, one may 
still want to treat the mean-variance preferences as a sub- 
set of the w-MPS risk averse preferences. In fact, a bi-
nary relationship satisfying the w-MPS risk aversion 
property constitutes a partial order, which may not admit 
an utility representation. As an illustrative example, con-
sider the following Lexicographic binary relation  
defined on  : For a given positive integer , 





2 n 

X Y  if X  dominates  by the first order stochas-  Y

tic dominance (i.e., 
dist

X Y   , where 0   and  
0  ); or, if there exists  such that (a) 2 m n 

i iX Y       
  1

1
m

 for , and (b) 0 i m 

1
mm   1 mX Y
        . In this binary relation,  

in order to rank random payoffs X  and Y , which may 
not dominate each other by first order stochastic domi-
nance, one may need to compare their moments up to the 

th order. The binary relation displays w-MPS risk 
aversion property, yet it does not admit a mean-variance 
representation! Indeed, most of the analyses to be carried 
out in this paper do not rely on the assumption on the 
existence of a mean-variance utility representation. 

n

Equilibrium with continuum of traders was thoroughly 
studied in literature ([11-13]). [13] also contains an ab-
stract treatment of equilibrium with incomplete orders. 
Existence of equilibrium with incomplete and non-transi- 

tive preferences (with finite number of traders) traces to 
[14,15]. The w-MPS risk averse preferences assumed in 
this paper is neither complete, nor transitive, thus falls 
into the category studied in [14]. Also, in this paper we 
adopt general population type space with arbitrary po- 
pulation mass distribution functions which may accom-
modate the case of finite, countable infinite, as well as a 
continuum range of investors. 

It is noted that the existing proofs of equilibrium pro-
vided in these earlier studies cited above are all with re-
spect to the standard Warasian equilibrium in a context 
of certainty. In contrast, the existing proof provided in 
this paper is for a particular stochastic finance economy. 
Specifically, we assume that the financial market can be 
incomplete, and that the economy consists of an arbitrary 
(finite, countable infinite or continuum) number of inves- 
tors and each investor has (incomplete and non-transitive) 
a preference order displaying w-MPS risk aversion. The 
key assumption underlying the existing proof in our pa-
per is that when investor’s preference is restricted to the 
market subspace of efficient portfolios, it admits a con-
tinuous utility representation, even though an utility rep-
resentation over the entire market span may not exist. 

From technical point of view, our existing proofs are 
very much in line with those in the literature ([16,17]). 
[16] assumes a finite number of mean-variance investors 
and a complete market, while [17] assumes a finite num-
ber of investors and that each investor has an well-de-
fined utility function defined on the market subspace 
spanned by the risk free bond and a common risky asset 
—the market portfolio. The literature contains several 
other existing proofs for the equilibrium CAPM, all re- 
lying crucially on the assumption of mean-variance pref-
erences (See, for instance, [18,19]). 

The derivation of CAPM provided in this paper fol-
lows the heritage of the traditional approach ([5,6]). It is 
based on the relevance of mean-variance efficient fron-
tier to investor’s optimal portfolio holdings. Following 
the standard treatment in literature ([18,20]) we restrict 
investors to hold portfolios involving in only a finite 
number of securities even though the market may contain 
an infinite number of tradable securities. The finiteness 
assumption on the market portfolio is not restrictive since, 
in practice, the market portfolio is an index of a finite 
number of stocks. Derivative securities written on the 
stocks and indeces of stocks, which represent a large or 
even an infinite number of traded financial securities, are 
not in the composite of the market portfolio. Our model 
thus provides a useful mechanism to price, which pro-
vides not only those primitive securities in the composite 
of the market portfolio, but also securities out of the 
composite of the market portfolio. 

The remainder of the paper is organized as follows: 
Section 2 describes the model and summarizes the main 

Open Access                                                                                            TEL 



P. P. BOYLE, C. H. MA 308 

results. Section 3 introduces the notion of generalized 
efficient frontiers. Section 3 also discusses w-MPS risk 
averse investor’s optimal portfolio choice problem and 
its relevance to the generalized efficient frontier. Section 
4 includes a formal derivation of the CAPM, along with 
the two-fund separation theorem. The proofs of the exis-
tence of equilibrium are outlined in Section 5. Section 6 
concludes the paper. 

2. Outline of the Model and Main Results 

This section describes the basic framework and summa-
rizes the main results of the paper. We start with several 
useful notations. Let  and f g  be two real-valued 
functions (vectors). We write  if f  g    f t g t  for 
all ;  if t f g    f t  g t  for all t  and gf  ; and 
f g  if    f t g t  for all t . 

We consider a two-period exchange economy with a 
frictionless capital market and heterogenous agents. The 
uncertainty is summarized by a probability state space 

 with probability measure . The topological 
properties of the state space are otherwise not specified. 
There exists a countable set of non-redundant risky secu-
rities  available for trade4. Let 

 , 





1, , ,J j   #J  
j

 
be the number of tradable (risky) securities. Security  
is associated with a state-contingent random payoff 

. Security 0 is a risk free bond with unit 
payoff in all future states (i.e., ). Let 

 , 2
j 

0 1 jp  be the 
price for security . The (total) return on security  is  j j

thus given by 2 ,
j

j

j

R
p


     (if ). The  0jp 

return for the risk free bond is denoted fR . 
Let #J    be a set of admissible portfolios on J 5. 

We restrict  to consist of portfolios that involve only 
a finite number of risky assets; that is,  



  # : sup : 0 .J
jj J             (1) 

Here, j  represents the number of shares in risky 
security . The market span  consists of 
all possible portfolio payoffs obtainable by trading: 

j 2 ,   

.  2 , :  s.t.d d              (2) 

Following the standard literature, we may refer the 
composite of a portfolio by its weight allocated to each 
of the risky assets, as well as the number of shares in-
vested in the assets. Precisely, let  be a copy of   . 
Let  be the initial wealth. Let 0W    be a portfolio 
with j  representing the proportion of initial wealth 
invested in risky security . The number of shares in  j

security  held is thus given by j 0j

j

W

p


, and the amount 

invested in the risk free bond is 0 1 1W    , where 

#1 J  is the vector of unit elements. For each  


, 

the portfolio return is  j
f jj J

R R R 


   fR , with  

expected portfolio return and standard deviation respec-
tively denoted by     and    . 

There is a bunch of investors, indexed by t T .  
can be taken as a closed interval, say 

T
0,1 , o he Eucli- 

dean space  . The opulation distribution is summa-
rized by a positive measure     on such t  for 
each Borel set B T ,  population mass 
belonging to B . Typ t  invest r is endowed with an 
vector of shares 

n
 p

 t

hat,T  
e B  is th

o


e 
 e t  . Investors express preferences 

over  . The type t  investor’s preference is summa-
rized by a partial binary relation t  on 

  
. 

With these, the exchange economy is summarized by  

       , , ; , , ,t

t T
T e t


     .          (3) 

Economy  is finite if the state space  contains 
only finite elements; otherwise, it is infinite. For finite 
economies, it is sensible to assume the number of non- 
redundant securities is finite and no more than the num-
ber of states. Throughout this paper, we make the fol-
lowing assumptions for : 

 


A1 0 

0

 and the payoffs for the risky securities 
have a positive definite (infinite-dimensional) covariance 
matrix  ; that is, for all , , and  x 0 0x x 

0 0x x x    . 
A2   satisfies Feller’s property: Let  be an open 

set in , and 
O

 O  be the closure of . For any real-val-
ued integrable function  on , 

O
f TO  tyy ,f  to be 

continuous on , O  -a.s., implies    , d
T

y f y t  t   

to be continuous on ; particularly, for all O 0y O , 
       d

0 0
lim , lim ,y y y yT T

df y t f y t t  t    

whenever the limit on the right hand side converges6. 
A3  is :e T   -measurable with   0e t   . 

Moreover, 


 
T
e t  0 dtm      and 

0m m  

   . 

A4  is :T      -measurable. And, for each , 
 is strictly monotonic and homothetic, and displays 

w-MPS risk aversion in the sense that 

t
t

tX Y  when-  

ever 
dist

Y X   , where   0   and  Cov , 0X   ,  

and that the preference strictly holds if 0  .  4By non-redundancy, we mean that for each security , its payoff j j
cannot be duplicated by holding a finite portfolio   of other 

tradable securities. 
5Much of the analysis below applies for a general admissible set such as 

 defined in Section 3, which may contain portfolios with an 

infinite number of securities. 

 2  

When trading takes place at time 0, after observing 
security prices #

0 , , , J
jp p p       investor  t

6The Feller’s condition is purely technical. It obviously holds true when 
the economy consists of a finite number of investors. In this case, 
corresponds to a measure of finite supports. 
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may assess his initial wealth  and revise 
his portfolio holding accordingly. 

   0W t p e t 
   is feasible (for 

) if . A feasible allocation t  0p W t     is 
optimal (for ) if tt        for all    that is 
feasible for . By strict monotonicity of the preference 
relation, at the optimum, the budget constraint must hold 
with equality; that is, . 

t

0

 0W tp  
If security prices are all non-zero as must be the case 

when   , the optimality condition can be expressed 
in terms of portfolio weights  

 0 0W t 

,

 allocated to each 
risky securities. For instance, for , we have  

    is optimal if, for all   tR R  

m

 

:T  
   d

T
t t

. 

The market equilibrium for   consists of a price 
vector  and an asset allocation  that is p

 -measurable such that (i)   
p

   



:T   

; and (ii)  

for all ,  is optimal w.r.t.  for type t  inves- 
tors. 

t  t

Again, for the case when equilibrium security prices 
are all non-zero, and when investors’ initial wealth at  
are all positive, the equilibrium condition can be equiva-
lently stated in terms of portfolio allocation   

p

with condition (i) replaced by  d0j m
jT

j

t W

p

 t
t 



    

for all , in addition to the optimality condition (in term 
of 

j
  ) for all type investors. 

Let  be the market portfolio with  m 

,
m
j j

m

p
j J

p




 


m
j . Let  be the return of the market  mR

portfolio, and let m mR  . We state the first main 
result of the paper: 

Theorem 1 Suppose conditions A1-A4 hold. If the 
economy achieves its equilibrium at  (with p 0jp   
for all ) with equilibrium portfolio allocation j   , then 

(1) there exists :T  
d 1t 

, that is -measurable and  
satisfies , such that   

T
t     t mt     

for all ; t T


(2) the capital asset pricing model (CAPM) holds 

   ,fR f mR   

 
 

            (4) 

where 
Cov

Var


 

, m

m

R R

R
.  

Theorem 1-(1) is about mutual fund separation of 
equilibrium allocation—investors of all type optimally 
hold a proportion of the market portfolio, in addition to a 
position in the risk free bond. It extends the well known 
Black's two-fund separation theorem [21] to this infinite 
economy. The proof of the statement is based on insight 
on the mathematical properties of the efficient frontier 
covered in Section 3. The notion of efficient frontier, 

direct extension to that of Markowitz ([22,23]) by con-
sidering the possibility of an infinite number of tradable 
securities. Proof of the equilibrium CAPM outlined in 
Theorem 1-(2) is summarized in Section 4. 

To find an equilibrium price vector, we

which is formally introduced below in Definition 3.1, is a 

 work with a 
set of “normalized prices” satisfying the CAPM, and the 
term “normalized prices” will be made precise in Section 
5. Let # J    be the set of normalized price vector 
satisfying APM. We shall show that the set  the C   
forms a straight line on the vector space # J  (Re: Lem- 
mas 4 and 5), and that, for each p , i estor’s opti-

 
nv

 expre

 the market subspace spanned by 
th

mal portfolio, if it exists, must be ssed as a combi-
nation of the risk free bond and the market portfolio (Re: 
Lemma 8). 

Denote by 0,m    
nd and the risk free bo e market portfolio. We write 

 : , .mx y x y               0,m (5) 

Recall that, by assumption A3, m  is finite and 
 ,m

    is bounded. To prove e existence of 
 assume further that investor’s preference 

restricted on 0,m  admits an utility representation7. Put 
this formally 

A5 For eac t


equilibrium, we

th

h , the restriction of  on  ad-
m

 t 


 0,m
nd,its a utility representation: 0,:t mU   . A  the 

utility function   , tx y U x my  tinuous and 
strictly quasi-co

Assumption A5 is logi

 is con
n ve.  ca

cally consistent with the w-MPS 
ris

ite and satisfies A1-A5. 
Th

heorem 2 is contained in Section 5. For 
th

e restriction of on the market subspace 
sp

 we see that A5’ implies A5 when 
se

3. MV Analysis and Portfolio Choice 

-variance 

k averse behavioral assumption (A4) since there exists 
no w-MPS dominating relations for each bundles in 

0,m . The second main result of this paper concerns the 
ence of equilibrium CAPM. 

Theorem 2 Suppose   is fin
exist

en, the equilibrium exists and, at equilibrium, the 
CAPM holds.  

The proof of T
e validity of Theorem 2, we may replace A5 with A5’ 

below: 
A5’ Th  t  
anned by those efficient portfolios (if exists) admits a 

utility representation.  
In fact, by Lemma 8,
curity prices are governed by the CAPM. 

This section starts with a discussion of mean
efficiency and generalized mean-variance efficiency as 
an infinite dimensional extension to Markowitz mean- 
variance efficiency. It follows with an in-depth discus-
sion on the relevance of the mean-variance efficiency to 

7Since payoffs within the market subspace do not display mean pre-
serving spead to each other, assumption A5 is thus logically consistent 
with assumption A4. 

Open Access                                                                                            TEL 



P. P. BOYLE, C. H. MA 310 

optimal portfolio choice by w-MPS risk averse investors. 

3.1. Efficient Frontier 

 price vector Taking as given an arbitrary #Jp  with 
0jp   for all j  so that the asset returns are well-de-

r all trad le securities. Let #fined fo ab J   be an ad-
missible portfolio space. For each   , the portfolio 
return has its mean return and standa viation respec-
tively given by  

 

rd de

     
1

21 , ,f fR R             

where   and represent the vector of expected re-  
arturns a  the v iance-covariance matrix of the risky 

returns. Similarly, for two arbitrary risky portfolios 
nd

  
and   , the covariance of the two portfolio returns is 
 ,       . For pure risky portfolios    we have 
1 1 .   

The f owing definition of efficient portfolio and effi-
ci

 For 

oll
ent frontier for   applies whether or not there is a 

risk free asset. 
Definition 1 0  , 0   is said to be effi-

cient at 0  if     0 : 0arg min       . The 
curve 

       , : is efficient          (6) 

is referred to as the mean-variance efficient fronti

ro y of 
ef

t 

er, or 
simply the “efficient frontier”, with respect to  .  

The next proposition describes a general p pert
ficient portfolios. 
Proposition 1 Le 0   be an efficient portfolio 

with mean 0 . For all    with   0 ,    we 
have: R R 0    with   0  and 

Cov
 

 00 , .R   
Proof. Consider the set of portfolios  

nvex combina- 1 :       formed by co 0

tions of 0  and  . The
rn

se portfolios all have the same 
mean retu  given by 0  Since 0  is efficient at 0  
with standard deviation 0  ,   01        m  
achieve its minimum at 0;

ust
   that is,  

 2 20 arg min       2 2
02 1 , 1


0              

The first order condition leads to   2
0 0,    . Let   

0R R   . We have:   0   and Co  0v , 0R   . ■ 

Notice th f does n uire assumption
th

ite portfolios, 
w

e that is relevant to choices made 
by

at this proo ot req  on 
e finiteness of the number of securities, nor requires the 

covariance matrix   to be non-singular. 
Since investors are restricted to hold fin

e shall naturally pay special attention to the efficient 
frontier    with respect to   . In contrast to 
the finit ensional case orig  considered by 
Markowitz in [22,23], we do encounter one technical dif- 
ficulty; that is, when the number of tradable securities is 
infinite the efficient frontier    could be empty and 

thus not well defined. 
There is another cas

e dim inally

 w-MPS risk averse investors, and is of particular in-
terest. This refers to the efficient frontier for  2   . 
Here,  

   #
2 :J           

is an Hilbert space with inner product ,   


    

and norm ,  
 
 . The portfolio space  forms

t not closed su

  

a dense bu bset of  2  . Since elements 
in  2   are with possibly infi mber of securi-
ties ficient frontier w.r.t.  2  , denoted 

nite nu
, the ef g , is 

called the generalized efficient fr g.e.f.). 
Unlike 

ontier (
  , we shall show that g  is well de-

fined under  general conditions (see Proposition 3). 
Similar to the finite dimensional case, an analytic ex-
pression for the g.e.f. can be obtained. As it turns out, 

fairly

g  forms a hyperbola on the μ-σ plane in absence of 
 free asset. And, in presence of risk free asset, risk g  is 

well defined when the mean return for the minimu isk 
portfolio differs from the risk free interest rate. For this 
latter case, 

m r

g  is composed of the generalized tangent 
ray and the reflection of the generalized tangent ray. Ac-
cordingly, the classical Black-Tobin mutual fund separa-
tion theorems (see [21] and [24]) extend to this infinite 
dimensional setting for  2  . 

3.2. Portfolio Choice 

mber of a risky asset, it is well When there is a finite nu
known that the optimal portfolio for mean-variance in-
vestors, if it exists, must be located on the Markowitz 
mean-variance efficient frontier. The existing literature 
tells us little about the relevance of efficient frontier for 
portfolio choices made by investors whose preferences 
are not in the mean-variance class8. The difficulties in 
establishing such relevancy are well known: First, an in- 
vestor’s optimal portfolio may not exist even though the 
efficient frontier is well defined. This occurs, for exam-
ple, when the security prices violate the no-arbitrage con- 
ditions which are necessary for the existence of an opti-
mal portfolio for all investors with increasing and con-
tinuous utility functions. Second, even if optimal portfo-
lio exists, the efficient portfolio with mean return corre-
sponding to that of the optimal portfolio may not exist. 
This occurs, for instance, when the mean return of the 
minimum variance portfolio is equal to the risk free rate. 
Finally, when the optimal portfolio and efficient portfolio 
both exist, it is still not obvious if the investor would 
choose to optimally hold the efficient portfolio because 
8See [25,26] for results on two-fund separation for investors with risk 
averse expected utility functions. They prove that, the separating port-
folios, if they exist, must be on the efficient frontier. See also [27] for 
conditions on asset returns and the expected utility functions that are 
sufficient for both two-fund separation and the CAPM. 
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the investor may care about higher moments beyond the 
first two. In this section, we study the optimal choice 
behavior for risk averse investors and explore the rele-
vance of the efficient portfolios in their optimal choices. 
Here, we restrict our attention to investors who are risk 
averse in the sense of w-MPS risk aversion. 

Recalling first the definition of w-MPS risk aversion. 
An investor is said to display w-MPS risk aversion if  

X Y  whenever 
dist

Y X   , where   0   and  

Cov X , 0  . The rence hold 0strict prefe s if   . In 
this case, we say that Y  is identical in distrib o a 
w-MPS of 

ution t
X . 

For w-MPS risk averse investors, our next result fol-
lows as a corollary to Proposition 1. 

Proposition 2 Let    be an optimal portfolio holding 
for a w-MPS risk ave  investor. Let rse   be the portfo-
lio mean return for the optimal portfolio   . Then, if the 
efficient portfolio at   exists, the optimal portfolio 
must be efficient.  

It is well known that, with a finite number of securities, 
efficient frontiers are well-defined and all efficient port-
folios can be expressed as a convex combination of two 
efficient portfolios. The optimal portfolio holdings for 
w-MPS risk averse investors can be easily characterized 
because they would have to be located on the efficient 
frontier. When investors face an infinite number of in-
vestment opportunities  # J   , it is not clear if mu-
tual fund separation hold t, as to be illustrated 
below, in presence of infinite number of risky assets, the 
efficient frontier for   is generically not defined (non- 
existence), and the timal portfolio correspondence 
(valued in  ) for the w-MPS risk averse investors is 
generically e pty. 

We first conside

s. In fac

po

m
r the case when the market contains 

pu

d 

rely risky portfolios. We impose the following two 
conditions on the coefficients9: 

C1   is positive definite, an  1 1
2, 1     ; 

C2 N n-degeneracy: o   is not proportional to 1 . 
nd

e following im-

 Suppose conditions C1 and C2 hold. 
Fo

 
Under conditions C1 a  C2, the g.e.f 

     is well defined, and th2g
portant risk decomposition result holds for the general-
ized portfolios: 

Proposition 3
r all  2   , there exists a unique 0 g    such 

that R  be expressed as a w-MPS of R 0 . Moreover, 
for a 0ll  , the generalized efficient portfolio at 0  is 
given by  

   1 1 1
0 0, ,1e A      2      

     (7) 

where   1, , A e e 


   is a  positive definite 
matrix.  

2 2

Proof. The first statement follows the same argument 
as in Proposition 1. Condition C2 implies  is not 
proportional to 

1e
1 , which in turn implies 

1 1 1 1,e e   

  
     , and matrix A  has a  

well-defined inverse 1A . The quadratic optimization 
problem 

  
2

2 1 1
0min : , 1 and ,e


    

   
   


  

can be readily solved with the Lagrangean method, and 
the optimal solution is given by Equation (7). ■ 

Notice that, the risk-decomposition theorem holds for 
all generalized risky portfolios in , thus in par-
ticular for risky portfolios in . That is, re-
turn for each risky portfolio 

 2 
 2  

  in   must admit as a 
w-MPS to that of a generalized efficient portfolio 

 0 2    on g . This implies that w-MPS risk 
averse investors would tend to hold generalized efficient 
portfolios if they were allowed to hold an infinite number 
of securities. In other words, investors would, in general, 
not be satiated with holding any arbitrary finite number 
of securities10. This results in (generic) non-existence of 
optimal portfolio holdings for w-MPS risk averse inves-
tors who are restricted to hold finite portfolios in  . 

Secondly, we consider the case when the market con-
tains a risk free bond, and maintain conditions C1 and C2  

for the risky assets. Let 
1 1

21

1,

1




 







 




11. If fR  ,  

then the generalized tangent portfolio would be well- 
defined and be given by  

1 1

21 1 1

1
.

1, 1

f
m

f

R

R






 

  

 

  


   
        (8) 

When m  contains an infinite number of non-zero 
elements (that is, m  ), all generalized efficient port- 
folios (except the risk free bond) would not be admissible. 
This causes the generic non-existence of optimal portfo-
lios for w-MPS risk averse investors who are restricted to 
hold finite portfolios. For the extreme case when the 
generalized tangent portfolio is finite (that is, m  ), 

10However, there are two exceptions to this statement: (a) when 
# J   , the g.e.f. g  reduces to the Markowitz efficient frontier, 

and all generalized efficient portfolios become efficient; (b) when 
# J   and the (normalized) risky assets contain just a finite number 
distinct expected returns. 
11Here,   is the mean return for the generalized minimum variance 

portfolio 
1

21

1

1












. 

9We consider normalized securities that forms an orthonormal basis of 
the market span . Each normalized security is a finite portfolio in 
J . The set of normalized securities are uncorrelated to each other, and 

they generate the same market span  from the original set of securi-
ties 


J . For normalized securities,   is diagonal with positive di-

agonal elements, its inverse  is also well defined and diagonal. 1
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the tangent ray and its reflection constitute the efficient 
frontier w.r.t.  in presence of an risk free bond. 

Based on this discussion, the optimal portfolio hold-
ings for w-MPS risk averse investors can be character-
ized. 

Proposition 4 Suppose conditions C1 and C2 hold. 
Consider an investor with monotonic and w-MPS risk 
averse preference. 

a) The investor’s optimal portfolio, if it exists, must 
have an expected return no less than the risk free interest 
rate, fR  . 

b) When fR  , the optimal portfolio, if it exists, 
must be on the generalized efficient rays and be ex-
pressed as a combination of the risk free bond and the 
generalized tangent portfolio m . In this case, the gen-
eralized tangent portfolio must be finite; that is, m  . 

c) When fR , the optimal portfolio, if not risk free, 
does not exist.  

If the investor were allowed to hold an infinite number 
of securities, say , the optimal portfolio 
would exist and be expressed as a combination of the risk 
free bond and the generalized tangent portfolio. Since the 
generalized tangent portfolio may not be finite, hence 
does not belong to , the optimal demand correspon-
dence in  for an w-MPS risk averse investor can be 
empty. 

 2  




4. Proof of Theorem 1 

This section builds upon our earlier results to derive the 
CAPM with w-MPS risk averse investors. Recall that 
investors have homogeneous beliefs and so they will 
perceive the same generalized efficient frontier as de-
scribed in the previous section. Further to the two-fund 
separation property (Proposition 4-(b)), to prove the va-
lidity of the CAPM we shall first show that, in equilib-
rium, (a) the generalized tangent portfolio exists and be-
longs to  , and (b) the generalized tangent portfolio 
coincides with the market portfolio. 

Lemma 1 Existence of equilibrium implies fR  .  
Proof. Suppose to the contrary that the equilibrium 

exists with fR  . By Proposition 4-(c), the optimal 
portfolio would be either given by the risk free bond, or 
not exist. Since all investors investing in the risk free 
bond will necessarily violate the market clearing condi-
tions for the risky assets, we thus conclude that, the opti-
mal portfolios do not exist for at least one investor. The 
latter contradicts the assumption on the existence of equili- 
brium. Therefore, in equilibrium, we must have fR  . ■ 

Since fR  , in equilibrium the generalized tangent 
portfolio m  is well defined. We can further identify the 
generalized tangent portfolio to coincide with the market 
portfolio (in equilibrium) following the standard separat-
ing portfolio arguments. So, we may state without proof 
the following claim. 

Lemma 2 Suppose economy  has an equilibrium 
that is supported by non-zero equilibrium security prices 
(



0jp   for all j J ). The equilibrium generalized 
tangent portfolio must be finite ; and, in par-
ticular, it must be given by the market portfolio; that is, 

 m

m
m  12.  
The following risk decomposition theorem is an infi-

nite-dimensional generalization to that of Huang and 
Litzenberger [26], Chapter 3.18 & 3.19. 

Lemma 3 Suppose fR  , the generalized tangent 
portfolio m  is well defined; in particular, for all 

 2    it holds true that13 

 2

,
mm

f f

m

R R R R  







          (9) 

where   has a zero mean and is uncorrelated with 
; in particular,  mR

   2

,
.m

f m

m

R R
 

   






   f      (10) 

Lemmas 1, 2 and 3 together lead to the equilibrium 
CAPM that is valid for all generalized portfolios, par-
ticularly for those admissible finite portfolios in   as a 
subset of  2  . This concludes the validity to Theo-
rem 1-(2). 

Since, in equilibrium, the generalized tangent portfolio 
is given by the market portfolio which, by assumption 
A3, is finite, the equilibrium efficient frontier for   
with # J    (and with a risk less asset) is well-defined 
and is given by the tangent ray and its reflection ray. This, 
in turn, implies (by Proposition 4-(b)) the validity of two- 
fund separation; that is, in equilibrium, each investors 
optimally holds a portfolio that involves a combination 
of the risk free bond and the market portfolio. This con-
firms the validity of Theorem 1-(1). 

Notice further that the CAPM remains valid as an 
equilibrium model if w-MPS risk averse investors are 
allowed to hold an infinite number of securities, say port- 
folios belonging to  2  . This is because, under con-
ditions C1 and C2, the efficient frontier w.r.t.  2   is 
well-defined, and because w-MPS risk averse investors 
would all invest in the risk-free asset and the efficient 
tangent portfolio. Following the same argument as in 
Lemma 3, the tangent portfolio must coincide with the 

12We can further show that, if equilibrium exists with for all 0 0iW 
i , then we must have m fR    and the market portfolio m
must be on the efficient ray. 
13Notice that, when 0jp   for all , the risky returns have a non-

singular variance-covariance matrix as long as the covariance matrix 
for the risky payoffs 

j

  is non-singular. This last assumption is to 
ensure that none of the tradable securities are redundant and that 

0m 
 . 
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market portfolio14. This would let us conclude the valid-
ity of the CAPM along with the two-fund separation for 

.  2 

# J  

0π 0

5. Existence of Equilibrium 

We now proceed with the proof of the existence of equi-
librium (Theorem 2). We assume finite economies with a 
finite number of states and a finite number of assets 

.  
To find the equilibrium, we shall restrict security 

prices to satisfy the CAPM. 
Lemma 4 If equilibrium exists, then there exists 

 and  such that, for all   1π 0 x
    0 1 ˆπ with π π π ,x x c          (11) 

where ĉ
m m

m

 

 

   
  


,  0π 1 0    and 

   
1π

1
0

m m

m

 

 

    
  


.  

The CAPM pricing rule in Lemma 4 is well known 
(see, for instance, [3]). Here,  is a discount factor. 
Therefore, given the random payoff for the market port-
folio, and given the expressions for 0  and 1 , the 
equilibrium pricing rule is fully determined by 

π

π π
 1  

and m    , which are the prices of the risk free bond 
and that of the market portfolio. 

Lemma 5 If  is an equilibrium discount factor, 
then for all positive constant ,  is also an 
equilibrium discount factor.  

π
0k  πk

By Lemmas 4 and 5, we can normalize the equilibrium 
discount factor in (11) to be such that 0 1  and 
write  for some 

π π 1 
 π π r  0,1r

 ,
, where 

  1r ˆr   rc . Denote by  the pricing rule 
resulting from . Let 

r x
 rπ  ,r   be the positive price 

vector for the J  risky assets. 
To prove the existence of equilibrium, we need to 

show that there exists an  such that, given prices de-
termined by (11) with 

r
 rπ π , the optimal portfolio 

exists for each investor and satisfies the market clearing 
conditions. 

To ensure existence of an optimal portfolio, we shall 
restrict r  so that the pricing rule (11) satisfies the no- 
arbitrage condition. By the fundamental theorem of fi-
nance (see [28]), the no-arbitrage condition is equivalent 
to the existence of    2 ,v r   

 v r
 such that  

  π 0r 


r v  and  is orthogonal to the market 
span 15. For the case when , we can choose  π 0r 

  0v r  . 
Let  be the subset of  for which no-arbitrage 

condition holds. We have 
O  0,1

Lemma 6 The set  0O  is an open convex subset 
of  0,1 ; in particular, we can write 0,O r   for 
some 0 1r O   .  

Proof. The proof proceeds in five steps. First, 0 O  
with  0 1π   and 0v  . Second, 1 . This is be-
cause, with 

O
  ˆ1 cπ π   , the price for the market 

portfolio is negative:  1, 0.m m   

0,1

 

r

 This 
violates the no-arbitrage condition since, by assumption 
A3, . Third, there exists  s.t. 0m  r O . 
Since  is a finite,  m  takes finite possible values, 
and has a finite  -norm, denoted m


. Since m  

is risky, we have m m    


. Let 

 0,1
m 

mr  



m m m

 

 


  
       

 0, mr r  . For all 

we have  

  1 1

1 1 0;

m m

m

m m

m

r r

r

 

 

 

 


       
    
        
    





π

 

that is,   0r π  with   0v r 
r O

. Fourth, we show that 
 is connected: Let O   with  and    π 0r v r 
 v r  . For any  0,1a  we have  av r    

and     πa a r      0v r π ar

ar O

1av r  . So, 

 . Finally,  0O  is open. For any 00 r O   
with     0r 0 0  and . For  
sufficiently small, set 

π r v  0v r  0
    0v rv r  for all 

 , r0 0r r    . We have  

   
         0 0 0 0 0

π r v r

ˆ ˆπ π .r v r r r c r v r c



 

       

Since    0π r v r


0  is strictly positive and takes fi-
nite values, when  is sufficiently small, the right hand 
side, namely    0 0 ˆπ r v r c  


, must be strictly posi-

tive. This yields    π 
0,O r

0r v r  . Consequently, we can 
write    for some  0 0  ,1r . ■ 

We understand that, the no-arbitrage condition is vio-
lated at r . For all r O , let  and  m r  m r  be 
respectively the generalized tangent portfolio and the 
market portfolio. For all # Jx , let  diag x  be the 
diagonal matrix with jth diagonal element given by jx . 

Lemma 7 For all 0 r O  , the generalized tangent 
portfolio  m r  is well-defined and is given by  

 
        

        
1 1

0

1 1
0

diag , ,1 ,
.

, ,1
m

r r
r

r r

 


  

 

 

     
   




14Here, of course, we must assume  2

m   . 

,

r

r


 

(12) 

15We see that  is orthogonal to 2 ,v    2 ,    if 

  0vd 


 for all . We write  whenever  is ortho-

gonal to . The set  is the orthogonal complement of .  

d 


v  v


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Proof. Since all risky securities are with non-negative 
payoffs, the no-arbitrage condition implies the price vec-
tor  ,r   to be strictly positive. By assumption A1, 

0  is positive definite, so the co-variance matrix    for 
asset returns is well defined, and is positive definite. We 
can further verify that, for all   0 ,r O 
   1 ,1 fr r R    . This in turn implies, by Proposi-

tion 4, the existence of the efficient rays with a well de-
fined generalized tangent portfolio given by  

 
 1

21 1 1

1

1, 1

f

m

f

R
r

R








  

 

 


   
 in which 

21 1 11, 1 0fR  

 
      for 0 . The de-  r O 

sired expression for the generalized tangent portfolio is 
valid because 

   

   
     

   

1 1
0diag , diag ,

,
diag , 1

,1

, 1 diag , .

f

r r

r
r R

r

r r

 


 

 

           


     

    



 

  

We can further show that 
Lemma 8 For all , the generalized tangent 

portfolio is given by the market portfolio: 
0 r O 

   m
m r r  .  
Proof. The market portfolio is 

 
 

 
diag ,

,

m
m

m

r
r

r

 




  


. Since both the generalized  

tangent portfolio and the market portfolio have unit 
length, and since diag  ,r    is non-singular, it suf- 
fices to show that m  is proportional to  

   
 1

0

,

,1

r

r


 

    
 

. In fact, with 

   
    0

, 1
ˆ

,1 1 1
m

m

r r r
c

r r r


  

 


   
     

   we ob- 

tain    
 

1
0

,1

,1
m m rr

r r


              

  as desired. ■ 

In the light of this observation, by the two-fund sepa-
ration theorem, all w-MPS risk averse investors will 
choose to hold a combination of the market portfolio and 
the risk free bond. By assumption A3, the market portfo-
lio is finite, hence the efficient frontier exists. Let 

 be the efficient frontier that is 
composed of combinations of the risk free bond and the 
market portfolio. Therefore, for all , the portfolio pay-
offs generated by efficient portfolios must coincide with 
the market subspace 0,m  that is spanned by the risk 
free bond and the market portfolio. 

    :mr a r a  



r

By assumption A5, there exists a utility representation 

on 0,m  that is given by    , m
tx y U x y  . With 

initial wealth     ,r e t0W r, t    , the shares in-
vested in the bond and the market portfolio can be ex-  

pressed as 
  

 
0 , 1

,1

W r t a
x

r





 and 

 
 

0 ,

, m

W r t a
y

r 



,  

where  is the proportion (of the wealth) invested in 
the market portfolio. Since, by assumption, 

a
  0>te

 , 0t 
, 

the positivity of the pricing rule implies 0  for 
all 

W r
r O . By the homotheticity of the utility function 

(Re: assumption A4), the optimal choice problem re-
duces to  max ,a tV a r , where 

     
1

,
,1 ,

m

t t m

a a
V a r U

r r




    
   

. 

For any , assumptions A4 and A5 together imply 
that 

r
   tt a V a r,  ,  is  -measurable in  and con-

tinuous in 
t

a . By the strict-quasi-concavity of 
 r,ta V a

O



r

, the optimal solution (if it exists) must be 
unique. Since no arbitrage condition is satisfied for 
  (Re: Lemma 6), by the Fundamental Theorem of 

Finance, the optimal solution exists (for r O ). Let 
   , r0a t  be the optimal solution for 

, where 
, a maxr t V

O
rg
r

a
t  . Here, we restrict the number of shares 
invested in the market portfolio to be non-negative. 

By the measurable maximum theorem ([29], Theorem 
14.91), we have  ,t r t  to be -measurable. 
Lemma 9 below shows that  is continuous 
on . 


r t ,r 

O
Lemma 9 For all r O  and , we have: t T
1.  0, 0.t   

2. If  converges to , then    1n n
r


 O r O 

 lim , .n nr t    
3.  , :t O     is continuous.  
Proof. At 0r   the price of the market portfolio is 

given by m   . The expected return of the market 
portfolio is thus given by the risk free interest rate  

  1 0,1 1 

 

. This implies that, for all , the portfolio 

return 

a

   
1

1
0,1 0,

m

m
a a




 


 is a w-MPS of the 

risk free return 
 
1

0,1
. Therefore, all risk averse  

investors would optimally invest in the risk free bond 
with zero position in the market portfolio. That is, 
 0, 0t   for all  .t

To prove the second statement, let  con-

verge to 

  1n n
r O






r O  . Consider   
1

,n n
r t


. To show 

 lim ,n nr t   , suppose, to the contrary, that 

  
1

,n n
r t




 has a finite limit point given by . 0 

Let   1k k
n




 be a convergent subsequence that con-
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verges to 

, V
. We have: for all   ,a 

    ,t n t n nV a r r t r,  for all n , particularly holds 

true for the subsequence  kn
1k




k. Let , by con-

tinuity of , we have: 



tV   ,t r V 



r



, 



t rV a , which  

holds true for all . Therefore, a

arg ,a tV a r
 

 G r

max



. This, however, contradicts 

the emptiness of  at . Therefore, we must  

have .  lim ,n nr t  
 , :t O To show that  is continuous, it is suf- 

ficient to show that, for all 


  1n n
r






  ,n n
r t



O  converging to 

, the resulting sequence  converges to r O 
1

 ,r t . Firstly, we show  to constitute a    
1

,n n
r t





1n n
a





 ,





bounded sequence. Suppose, without loss of generality,  

that . Let    be an ar-   lim ,n nr t  

0

 
bitrary sequence that converges to . For any ar-  r t

bitrary  let a
 ,n

n

a
x

r t
  for all . For  suf-  n n

ficiently large, we have  0,1nx 


. The sequence 

    
1n n n

x a x r t


1 n n  ,  converges to  ,r t a  . By  

the quasi-concavity of , and by the optimality of 
 we have  

tV


 ,nr t 
    , t nV a

 
, n1 ,t n n n n na x r r rV x t  . Let , n 

it yields     , , ,tV r t a r r  


,tV r t
 ,r t

. This contra-
dicts the unique optimality of  for the given 

. r O
Now, let 0   be any finite limit point of 

  ,nr t 
1n




, and let  be the convergent subse-    1k k

n




quence. We have, for all a   and for all  ,k

    , ,
kt n t n nV a r V r t r

 
,

k
k 

k
 . Let , by continuity  

of , we have tV  r,VraV tt , 
r O sup

, which holds for all  
a . Also, for ,  achieves its maxi-    ,V a r

  ,nr t

ta 

mum uniquely at . Therefore, we conclude that   ,r t

 ,r t  

,r t

 

. This implies that  has a uni-  
1n





que limit point ; or, equivalently,   ,r t
 ,r t  limn n . This ends the proof of the third 

statement. ■ 
As a necessary condition for the existence of a market 

equilibrium, the market clearing condition for the risky 
assets implies  

    dt 

r O

, , , m

T
r e t r    ;r t     (13) 

that is, the aggregate investment in all risky assets equals 
to the value of the market portfolio. We have, 

Lemma 10 There exists 0    that solves Equa-

tion (13).  
Proof. Let 

 
      

 
, , d

,
,

m T

m

r t r e t t
r r

r

 




  
O 




. By  

assumption A2 (the Feller’s property) and by Lemma 9, 
we have :m O    to be continuous and to satisfy (i) 

 0m 0  and (ii)  for all  m
n nr  

r
lim

O r
 

1n n
 converging to . By the Intermediate Va-  

lue Theorem, there exists an  such that 0,r r 
  1m r  ; or, equivalently, 

      , , d
T

r e t t  , mrr t      . ■ 

The validity of the main existence theorem, namely 
Theorem 2, can be concluded with the proof of Lemma 
11: 

Lemma 11 There exists an  such that  0,1r  π r  
constitutes an equilibrium discount factor.  

Proof. Let 0 r O   be a solution to Equation (13). 
Lemma 8, together with Proposition 4, implies that ’s 
optimal portfolio 

t
 t , for the given , is proportional 

to the market portfolio. We write 
r

     , mt r t  r . 
With     0 ,W r t, t r e     we have  

      

        
01 , , d

, , , d

T

m

T

r t W r t t

r r t r e t t



  

 

0;      




 

that is, the net borrowing in the risk free bond is zero. 
Moreover, for each risky asset , we have  j

     
 

      
   

0 , d

,

, , d
;

,

jT

j

m mT
j jj

t W r t t

r

r t r e t t
r

r





 
 







  
 






 

or, the total number of shares invested in  equals to 
the number of shares outstanding for the security. There-
fore, the pricing rule resulting from the discount factor 

j

 π r  constitutes a market equilibrium. This concludes 
the proof. ■ 

6. Concluding Remarks 

In this paper, we prove that the CAPM holds for econo-
mies with w-MPS risk averse investors. The CAPM 
model is shown to be valid without imposing any distri-
butional restriction on asset returns and the number of 
tradable securities, and to be valid for economies with a 
continuum type of investors. This approach is compared 
to multi-factor models in the literature based on assump-
tions on the existence of some exogenous factors’ struc-
ture in modeling asset returns. Our results suggest that, 
so long as investors exhibit w-MPS risk aversion, the 
relevance of all those factors that affect asset returns 
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