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ABSTRACT 

An exact solution to the problem of an MHD transient flow with Hall current past a uniformly accelerated horizontal 
porous plate in a rotating system has been presented. The dimensionless governing equations of the flow problem are 
solved by Laplace transform technique in closed form. A uniform magnetic field is assumed to be applied transversely 
to the direction of the flow. The expressions for velocity fields and skin-frictions are obtained in non-dimensional form. 
The primary and secondary velocity distributions and skin-frictions at the plate due to primary and secondary velocity 
field are demonstrated graphically and the effects of the different parameters namely, rotational parameter, Hartmann 
number, Hall parameter and acceleration parameter are discussed and the results are physically interpreted. 
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1. Introduction 

Many engineering problems are susceptible to MHD 
analysis. The study of MHD flow problems has achieved 
remarkable interest due to its application in MHD gen- 
erators, MHD pumps and MHD flow meters etc. The 
study of effects of magnetic field on free convection flow 
is important in liquid metals, electrolytes and ionized 
gases. Geophysics encounters MHD phenomena in in- 
teractions of conducting fluids and magnetic fields. The 
rotating flow of an electrically conducting fluid in pres- 
ence of magnetic field has got its importance in Geo- 
physical problems. The study of rotating flow problems 
are also important in the solar physics dealing with the 
sunspot development, the solar cycle and the structure of 
rotating magnetic stars. It is well known that a number of 
astronomical bodies possess fluid interiors and magnetic 
fields. Changes that take place in the rate of rotation, 
suggest the possible importance of hydro magnetic spin- 
up. The general theory of rotating fluids has received 
growing interest during last decade because of its appli- 
cation in Cosmic and Geophysical science. In this regard, 
we may cite the works done by Raptis [1], Singh [2,3], 
Alam et al. [4] and Debnath [5]. 

MHD in the present form is due to the pioneer contri 
bution of several notable authors like Alfven [6], Cowl- 
ing [7], Ferraro and Pulmpton [8] etc. It was emphasized 
by Cowling (1975) that when the strength of the applied 
magnetic field is sufficiently large, Ohm’s law needs to 
be modified to include Hall current. The Hall effect is 
due merely to the sideways magnetic force on the drifting 
free charges. The electric field has to have a component 
transverse to the direction of the current density to bal- 
ance this force. In many works of Plasma physics, it is 
not paid much attention to the effect caused due to Hall 
current. However, the Hall effect can not be completely 
ignored if the strength of the magnetic field is high and 
the number density of electrons is small as it is responsi- 
ble for the change of the flow pattern of an ionized gas. 
Hall effect results in a development of an additional po- 
tential difference between opposite surfaces of a con- 
ductor for which a current is induced perpendicular to 
both the electric and magnetic field. This current is 
termed as Hall current. It was discovered in 1879 by 
Edwin Herbert Hall while working on his doctoral degree 
at the Johns Hopkins University in Baltimore, Maryland, 
USA. Pop [9], Kinyanjui et al. [10], Archrya et al. [11] 
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and Ahmed and Kalita [12] etc. have presented some 
model studies on the effect of Hall current on MHD 
convection flow because of its possible application in the 
problems of MHD generators and Hall accelerators. An 
unsteady MHD free convective flow past a vertical po- 
rous plate immersed in a porous medium with Hall cur- 
rent, thermal diffusion and heat transfer have been stud- 
ied by Ahmed et al. [13]. Recently, Ahmed and Sarmah 
[14] have carried out an investigation of MHD transient 
flow past an impulsively started infinite horizontal po- 
rous plate in a rotating system with Hall current. 

Due to the importance of studying MHD flow prob- 
lems in rotating fluid with Hall current, we have pro- 
posed in the present paper to investigate an unsteady 
MHD transient flow with Hall currents past a uniformly 
accelerated porous plate in a rotating system. 

2. Basic Equations 

The equations governing the motion of an incompressible 
viscous electrically conducting fluid in a rotating system 
in presence of a magnetic field are as under: 

Equation of continuity: 

0 q                    (1) 

Momentum equation: 

   
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Kirchhoff’s first law: 

0 J                    (3) 

General Ohm’s law: 
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         (4) 

Gauss’s law of magnetism: 

0 B                  (5) 

where q  is the velocity vector,   the angular velocity 
of the fluid, r  the position vector of the fluid particle P 
considered,   the fluid density, p the pressure, J  the 
current density, B  the magnetic induction vector,   
the co-efficient of viscosity,   the electrical conductiv- 
ity, t  the time, 0B  the strength of the applied mag- 
netic field, e  the electron frequency, e  the electron 
collision time, e  the electron charge, e  the number 
density of electron, ep  the electron pressure, E  the 
electric field, 2 q  is the Coriolis acceleration, 

   r   is the centripetal acceleration and the other  
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symbols have their usual meanings and the other symbols 
have their usual meanings. 

We now consider an unsteady flow of an incompressi- 
ble viscous electrically conducting fluid past a suddenly 
started infinite horizontal porous plate relative to a rotat- 
ing system with constant suction in presence of a uniform 
transverse magnetic field taking into account the effect of 
Hall current. Our investigation is restricted to the fol- 
lowing assumptions: 
 All the fluid properties are constants and the buoy- 

ancy force has no effect on the flow. 
 The plate is electrically non-conducting. 
 The entire system is rotating with angular velocity 

  about the normal to the plate and   is so small 
that    r   can be neglected. 

 The magnetic Reynolds number is so small that the 
induced magnetic field can be neglected. 

 ep  is constant. 
  0E . 

Initially the plate and the fluid were rotating in unison 
with a constant angular velocity   about the normal to 
the plate. At time 0t  , the plate is moved in its own 
plane relative to the rotating system with acceleration 
a .We introduce a coordinate system  , ,x y z    with 
X-axis horizontally in the direction of the plate velocity, 
Y-axis horizontally perpendicular to the direction of the 
plate velocity and Z-axis along the normal to the plate  

which is the axis of rotation. Let ˆˆ ˆiu jv kw    q  be  

the fluid velocity, ˆˆ ˆ
x y zJ i J j J k    J  be the current  

density at the point  , , ,P x y z t     and 0
ˆB kB  be  

the applied magnetic field, ˆˆ ˆ, ,i j k  being the unit vectors 
along X-axis, Y-axis and Z-axis respectively. As the 
plate is infinite in X-direction and Y-direction, therefore 
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all the quantities except possibly the pressure are inde- 
pendent of x  and y . 

The Equation (1) gives 

0
w

z





                  (6) 

which is trivially satisfied by 

0w w                    (7) 

Therefore the velocity vector q  is given by 

0
ˆˆ ˆu i v j w k    q              (8) 

The Equation (5) is satisfied by  

0
ˆB kB                    (9) 

The Equation (3) reduces to 

0zJ

z





 

which shows that 

0zJ                     (10) 

(as the plate is electrically non-conducting). 
Hence the current density is given by 

ˆˆ
x yJ i J k  J                (11) 

Under the above assumptions, the Equation (4) takes 
the form: 

   
0

m

B
   J J B q B        (12) 

where e em    is the Hall parameter. 
The Equations (8)-(12) yield, 
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With the foregoing assumptions and under the usual 
boundary layer approximation the Equation (2) reduces 
to 
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  (16) 

with 0
p

z





. 

where 0w  is the constant suction velocity and   is the 
kinematic viscosity 

The relevant initial and boundary conditions are 

0, 0  for  0,u v t z                (17) 
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0
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     (18) 

We introduce the following non-dimensional variables 
and parameters: 
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The non-dimensional form of the Equations (15) and 
(16) are 
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Subject to the initial and boundary conditions: 

0, 0  for  0,u v t z                (21) 

, 0  at  0
0

0, 0  at  

u at v z
t

u v z

   
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        (22) 

3. Method of Solution 

Let us introduce the complex variable q  defined by 
iq u v   where 2i 1  . 

The non-dimensional forms of the equation governing 
the flow can be rewritten as follows: 
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Subject to the boundary conditions: 
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On applying Laplace Transform to the Equation (23), 
the following ordinary differential equation is derived 

 
2

2

d d
0
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q q
A s q

zz
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with relevant boundary conditions : 

2
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a
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0  at   q z                 (28) 

The solution of the Equation (26) under the conditions 
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(27) and (28) is 

2
e za

q
s

                 (29) 

Taking inverse Laplace transforms of the Equation (29) 
we derive the following: 
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4. Skin Friction 

The non-dimensional skin-friction at the plate is given by 
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where x  and y  are the skin-frictions at the plate due 
to the primary and the secondary velocity fields. The 
expressions for x  and y  are obtained but not pre- 
sented here for the sake of brevity. 

5. Results and Discussion 

In order to get the physical insight into the problem we 
have carried out numerical calculations for the represen- 
tative velocity field and skin-friction at the plate for dif- 
ferent values of the physical parameters involved and 
these values have been demonstrated in different graphs. 
Our investigation is restricted to t equal to 1 and the other 
parameters namely, rotational parameter  Ω , Hartmann 
number  M , Hall parameter  m  and accelerating para- 
meter  a  has been considered arbitrarily. 

Figure 1 depicts the variation in skin-friction x  due 
to the primary velocity field versus Hall parameter m  
for different values of rotational parameters Ω . It is 
noticed that x  decreases with increasing values of Hall 
parameter m  whereas a rise in the values rotational pa- 
rameter Ω  results a growth in x . 

The influence of Hartmann number M  on skin-fric- 
tion x  against Hall parameter m  is presented in Fig- 
ure 2. It is observed that a growth in the Hartmann num- 
ber M  leads to an increase of x . Moreover, it is seen 
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Figure 1. The behavior of x  versus m under the effect of 
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Figure 2. The behavior of x  versus m under the effect of 

M . 
 
that x  decreases very slowly and steadily as the Hall 
parameter m  rises. In other words, an increase in the 
Hall parameter or a decrease in Hartmann number results 
a decrease in drag force at the plate due to the primary 
velocity. 

Figure 3 demonstrates the nature of x  against Hall 
parameter m  under the effect of accelerating parameter 
a . Figure 3 exhibits a substantial growth in x  with 
increasing values of accelerating parameter a . It is also 
seen that x  is unalterable for small values accelerating 
parameter or in absence of plate acceleration. That is, x  
(drag force) due to the primary velocity is undisturbed 
whenever the plate is at rest as well for the slow move- 
ment of the plate. However, for higher values of the ac- 
celerating parameter  a  skin-friction x  decreases 
gradually with increasing values of Hall parameter m . 

The behaviour of y  (drag force per unit area) due to 
the secondary velocity field versus Hall parameter m 
under the effects of Hartmann number M , rotational 
parameter   and acceleration parameter a  respec- 
tively are depicted in Figures 4-6. It is noticed that a 
rise in M ,   and accelerating parameter  a  re- 
sults a growth in y . Moreover y  is undisturbed by  



N. AHMED  ET  AL. 

Open Access                                                                                           OJFD 

282 

0
2
4

6
8

10
12
14

16
18

0 0.25 0.5 0.75 1 3 5

x

8a
6a

2a

0a

0.4 1 1, ,M t  

m  

Figure 3. The behavior of x  versus m under the effect of 

a. 
 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.25 0.5 0.75 1 3 5

8M 

6M 

2M 

0M 

0.4 1 1, ,t a  

y

m  

Figure 4. The behavior of yτ  under the effect of M  ver-

sus m. 
 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.25 0.5 0.75 1 3 5

y

m

0.8

0.6

0.2 0

1 , 1 , 1t aM  
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Hall effect in absence of magnetic field and acceleration 
of the plate. The same figures also indicate the growth of 

y  for small and moderate values of Hall parameter 
 1m   and afterwards a reversal trend on y  is no- 
ticed. 

The effect of Hartmann number M  on primary ve- 
locity field is presented in Figure 7. This figure clearly 
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Figure 7. The variation of u  versus   under the effect of 
M. 
 
shows that the primary velocity sharply decreases in a 
thin layer of the fluid adjacent to the plate surface and 
then it decreases slowly and steadily to its minimum 
value 0u   as   . The same figure also indicates 
that an increase in the Hartmann number M  has an 
inhibiting effect on the primary velocity u . The primary 
fluid velocity u  gets continuously reduced with in- 
creasing M . That is the application of the transverse 
magnetic field retards the primary motion. This pheno- 
menon has an excellent agreement with the physical fact 
that the Lorentz force generated in present flow model 
due to interaction of the transverse magnetic field and the 
fluid velocity acts as a resistive force to the fluid flow 
which serves to decelerate the flow. As such the mag- 
netic field is an effective regulatory mechanism for the 
flow regime. 

Further, it is worthwhile to mention that the effect of 
Hartmann number M  on primary velocity u  is negli- 
gible for large  . In other words the fluid motion far 
away from the plate is undisturbed due to imposition of 
the magnetic field. 

Figure 8 indicates that an increase in the plate accel- 
eration causes the primary flow to retard comprehend- 
sively near the plate. That is the role of accelerating pa- 
rameter a  on primary velocity field is almost similar to 
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the role of Hartmann number M . However, in absence 
of acceleration a very small growth of primary velocity is 
noticed in a thin fluid region adjacent to the plate surface 
and afterwards it falls slowly and steadily to its free 
stream value as   . 

Figures 9-12 demonstrate the behaviour of the sec- 
ondary velocity field  v  under the effects of rota- 
tional parameter   , Hartmann number  M , Hall 
parameter  m  and accelerating parameter  a  re- 
spectively. From these figures, it is interesting to ob- 
serve that the magnitude of v  increases from its zero 
value at the plate surface into a fluid region adjacent to 
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Figure 8. The variation of u  versus   under the effect of 
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Figure 9. The behavior of ν under the effect of Ω , versus 
 . 
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Figure 10. The behavior of ν under the effect of M, versus  . 
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Figure 11. The behavior of ν under the effect of m , versus 
 . 
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Figure 12. The behavior of ν under the effect of a , versus 
 . 

 
the plate and then it decreases to zero value (attainable at 
possibly large distances from the plate surface). This 
clearly agrees with the boundary conditions of the pre- 
sent flow problem. Figures 9 and 12 indicate that a rise 
in the values of rotational parameter   and accelerat- 
ing parameter a  causes a growth in the magnitude of 
secondary velocity. However, this effect seems to be 
negligible in the fluid region far away from the plate. 
Further, it is worthwhile to mention that for small and 
moderate values of Hartmann number M  and Hall pa-
rameter m , the behaviour of secondary velocity field is 
identical to its behaviour under the effects of   and 
accelerating parameter a  whereas, for higher values of 
Hartmann number M and Hall parameter m  the be- 
haviour of secondary velocity v  takes a reverse trend. 

It is inferred from Tables 1 and 2 that a rise in rota- 
tional parameter   , and Hall parameter  m  results 
in a growth in the primary velocity u . 

6. Conclusions 

 The main flow velocity u  decreases with an imposi- 
tion of magnetic field. 
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Table 1. Behavior of u  under the effect of Ω , versus  . 

 , , ,1 1 0.5 1M t m a    . 

   0u     0.6u     0.8u    

0 1 1 1 

0.25 0.3611287 0.3550634 0.3519596 

0.5 0.1239504 0.1185953 0.1158712 

1 0.0121564 0.0108471 0.0101901 

5 0 0 0 

 
Table 2. Behavior of u  under the effect of m , versus  . 

 , , ,1 1 Ω 0.4 1M t a    . 

   0u m    4u m    8u m   

0 1 1 1 

0.25 0.3508695 0.4021751 0.4063124 

0.5 0.1174215 0.1507741 0.1539457 

1 0.0110595 0.0168414 0.0175416 

5 0 0 0 

 
 An increase in accelerating parameter a  results in a 

remarkable growth in the main flow velocity u  in a 
thin layer adjacent to the plate. 

 The drag force due to primary velocity  x  rises 
due to rotation or imposition of the transverse mag- 
netic field or the acceleration of the plate. 

 The skin friction y  (drag force due to secondary 
velocity) shows a growth for increasing each of Hart- 
mann number M , rotational parameter   as well 
as accelerating parameter a . 
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Units for Physical Properties 

Symbol Quantity SI unit 

a  Acceleration of the plate m/s2 

a  Dimensionless acceleration  

0
B  magnetic flux density, magnetic induction Tesla 

m Hall parameter  

M Hartmann number  

t  time s 

t Dimensionless time  

 , ,u v w  Velocity components m/s 

 , ,u v w  Dimensionless velocity components  

0w  Suction velocity m/s 

 , ,x y z  Cartesian coordinates m 

  Angular velocity s−1 

  Dimensionless angular velocity  

  Fluid density 3kg/m  

  Electrical conductivity   1
ohm meter


  

  Kinematic viscosity 2m /s  

 ,x y   Components of skin friction  

 


