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ABSTRACT 

We study the evolution of a gynodioecious species under mixed-mating through a nucleocytoplasmic male sterility 
model. We consider two cytoplasmic types and a nuclear locus with two alleles. Here, the interaction between one cy- 
toplasmic type and a recessive nuclear male-sterility factor gives rise to only one female genotype, while the remaining 
types correspond to hermaphroditic plants. We include two fitness paramaters: the advantageous female fitness t of fe- 
males relative to that of hermaphrodites; and a silent and dominant cost of restoration, that is, a diminished fitness for 
plants carrying a dominant restorer gene relative to that of hermaphrodites. The parameter related to the cost of restora- 
tion is assumed to be present on outcrossing male fertility only. We find that every population converges to a stable 
population. We also determine the nature of the attracting stable population, which could be a nucleocytoplasmic poly- 
morphism, a nuclear polymorphism or another population with some genotypes absent. This depends on the position of 
t with respect to critical values expressed in terms of the other parameters and also on the initial population. 
 
Keywords: Population Genetics; Gynodioecy; Dynamical System; Nucleocytoplasmic Interaction; Matrix of Linear 

Forms 

1. Introduction 

Gynodioecy is a reproductive system which occurs mainly 
in plants, e.g. ribwort plantain, Plantago lanceolata. It 
consists of the simultaneous presence of both hermaphro- 
ditic and female types. Such a reproductive system ori- 
ginates when a male-sterility mutation appears and spreads 
in a hermaphroditic population. 

Early authors studied different kinds of interactions 
between cytoplasmic and nuclear male-sterility factors 
[1-3]. They formulated models which implied the elimi- 
nation of one cytoplasm at equilibrium. More recent 
works [4-6] include the viability of equilibria with all 
types present even for pure outcrossing models. 

In Section 2, we construct a model which considers 
two cytoplasmic types:  and ; and a nuclear locus 
with two alleles: 

N S
M  and m . Here, the interaction be- 

tween the cytoplasmic type  and the recessive nuclear 
male-sterility factor  gives rise to only one female 
genotype Smm, while the remaining types (NMM, NMm, 
Nmm, SMM and SMm) correspond to hermaphroditic 
plants. Our methods are algebraic, involving elementary 
commutative and computational algebra, as well as ele- 
mentary algebraic geometry. We interpret our model as a 

rational map of the projective space  (see [7]). All 
symbolic computations were performed using Macaulay2 
[8]. 

S
m

5

Our model incorporates mixed-mating, implying the 
use of a parameter for the selfing rate s , defined as the 
fraction of the progeny derived from selfing. Following 
Gouyon et al. [6], we include two fitness parameters: the 
advantageous female fitness t of females relative to that 
of hermaphrodites; and a silent and dominant cost of 
restoration, expressed by the diminished fitness w of 
plants carrying a dominant restorer gene relative to that 
of hermaphrodites. The works [5] and [9] consider si- 
milar models, but they include several additional fitness 
parameters. [5] and [6] are restricted to pure outcrossing 
reproduction. In [6], we find a biological discussion 
justifying the appearence of the parameter w. 

The parameter w is assumed to be present on male 
fertility for the genotypes NMM and NMm; and only for 
outcrossing. In this way, we adapt a biological hypo- 
thesis to our model, to the effect that there is no pollen 
discounting, that is, the amount of pollen used for selfing 
is negligible in comparison with the total amount pro- 
duced by the hermaphrodites. This hypothesis appears in 
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Ross and Weir [10], cf. Holsinger et al. [11] and in 
Vargas and del Castillo [12] in a different form. It is 
partially supported by the observed positive association 
between outcrossing rates and pollen-ovule ratio found in 
a sample of different species of plants (see Cruden [13] 
and Damgaard and Abbott [14]). 

Although our use of algebraic methods is relatively 
elementary, it allows us to construct models with total 
rigor, following logical, easy to verify steps, as in the 
present case. 

An important part of any dynamical system is its 
geometry; in particular, the biological relevant geometry. 
In Section 3, we define these concepts precisely and 
determine this geometry rigorously, using the compu- 
tational software mentioned above. 

We obtain that a stable polymorphism exists, with all 
genotypes present, for suitable values of the three 
parameters. We call this population the “nucleocyto- 
plasmic polymorphism”, because it is unique for fixed 
parameter values; and we find an explicit expression for 
each genotype frequency. 

There is another stable population, where the cyto- 
plasm N is absent, with the remaining three genotypes 
present. We say that this population is the “nuclear 
polymorphism”. It also occurs for suitable values of the 
parameters and is unique for those values. We also find 
an expression for each genotype frequency. 

In Section 4, we use the rich geometric information 
from the previous section to determine the critical values 
for the parameter t in terms of the other parameters, 
corresponding to all dynamical bifurcations, including 
the appearance of the previous polymorphisms. 

We find that every population converges to a stable 
population. The nature of the attracting stable population 
depends on the position of t with respect to the critical 
values found before; and sometimes also on the initial 
population. We do not find limit cycles. The simulations 
that support some of our results are focused on the geo- 
metric data. 

Section 5 is dedicated to the pure outcrossing case. 
Here, we can determine the complete geometry for the 
model. We also prove that the nuclear equilibria points 
are asymptotically stable. This material provides partial 

support for the general results. 

2. Formulation of the Model 

Consider one nuclear locus with two alleles M  and ; 
and suppose that there are also two cytoplasmic types: 

 and . This gives a total of six nucleocytoplasmic 
types: . These are 
all assumed to be hermaphrodites, with the only one 
exception of , which is female, i.e. male sterile. 

m

N S
NM , , , , ,M NMm Nmm SMM SMm Sm

Smm
5

m

We work in projective space , a space whose 
points are the one dimensional subspaces from a six 
dimensional vector space V . Here, any point 


5x


 

has as projective coordinates 0 1 5 , , ,x x x  the coor- 
dinates of any generator of its corresponding one di- 
mensional subspace in . V

Let 5
  be the subset of  consisting of all points 

which admit real homogeneous coordinates of the same 
sign, which we assume to be positive. We say that a point 

5

5x  has biological relevance whenever . We 
identify a given population  with the point 

5
x


  5

0 5x, ,x x     if each number ix  is the frequency 
in  of the corresponding genotype: 

0 1 2

3 4 5

, ,

, ,

,

.

x NMM x NMm x Nmm

x SMM x SMm x Smm

  

  
      (1) 

We will refer to the i -th genotype using this 
correspondence. 

Conversely, any point   5
0 5, ,x x x     may be 

interpreted as a population, where each ix  is the 
frequency of a genotype. This is achieved by choosing 
homogeneous coordinates such that . 0 5

It is necessary to consider separately the male and 
female contributions towards the next generation for each 
genotype. We construct the following matrices: i

1x x 

A , 
describing the male contribution of the -th genotype; 
and i , for its female contribution. Thus, the -th row 
of i

i
B j

A  gives the structure of a population obtained from 
outcrossing the male contribution of the -th genotype 
with the female contribution of the -th genotype. In 
this situation, the cytoplasmic alleles are transmitted 
through the females only. 

i
j

 

0 0

1 0 0 0 0 0 1 0 0 0 0 0

1 1 1 1
0 0 0 0 0 0 0 0

2 2 2 2
0 1 0 0 0 0 0 1 0 0 0 0

, ,
0 0 0 1 0 0 1 0 0 0 0 0

1 1 1 1
0 0 0 0 0 0 0 0

2 2 2 2
0 0 0 0 1 0 0 1 0 0 0 0

A B

  
  
  
  
  
   
  
  
  
  
  
  













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1 1

1 1 1 1
0 0 0 0 0 0 0 0

2 2 2 2
1 1 1 1 1 1

0 0 0 0 0 0
4 2 4 4 2 4

1 1 1 1
0 0 0 0 0 0 0 0

2 2 2 2, ,
1 1 1 1

0 0 0 0 0 0 0 0
2 2 2 2
1 1 1 1 1 1

0 0 0 0 0 0
4 2 4 4 2 4

1 1 1 1
0 0 0 0 0 0 0 0

2 2 2 2

A B

  
  
  
  
  
  
  
  

   
  
  
  
  
  
  
  
  



















 

2 2

0 1 0 0 0 0 0 1 0 0 0 0

1 1 1 1
0 0 0 0 0 0 0

2 2 2 2
0 0 1 0 0 0 0 0 1 0 0 0

, ,
0 0 0 0 1 0 0 1 0 0 0 0

1 1 1 1
0 0 0 0 0 0 0 0

2 2 2 2
0 0 0 0 0 1 0 0 1 0 0 0

A B

  
  
  
  
  
   
  
  
  
  
  
  

0














 

3 3

1 0 0 0 0 0 0 0 0 1 0 0

1 1 1 1
0 0 0 0 0 0 0 0

2 2 2 2
0 1 0 0 0 0 0 0 0 0 1 0

, ,
0 0 0 1 0 0 0 0 0 1 0 0

1 1 1 1
0 0 0 0 0 0 0 0

2 2 2 2
0 0 0 0 1 0 0 0 0 0 1 0

A B

  
  
  
  
  
   
  
  
  
  
  
  














 

4 4

1 1 1 1
0 0 0 0 0 0 0 0

2 2 2 2
1 1 1 1 1 1

0 0 0 0 0 0
4 2 4 4 2 4

1 1 1 1
0 0 0 0 0 0 0 0

2 2 2 2, ,
1 1 1 1

0 0 0 0 0 0 0 0
2 2 2 2
1 1 1 1 1 1

0 0 0 0 0 0
4 2 4 4 2 4

1 1 1 1
0 0 0 0 0 0 0 0

2 2 2 2

A B

  
  
  
  
  
  
  
  

   
  
  
  
  
  
  
  
  


















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5 5

0 1 0 0 0 0 0 0 0 0 1 0

1 1 1 1
0 0 0 0 0 0 0 0

2 2 2 2
0 0 1 0 0 0 0 0 0 0 0 1

, .
0 0 0 0 1 0 0 0 0 0 1 0

1 1 1 1
0 0 0 0 0 0 0 0

2 2 2 2
0 0 0 0 0 1 0 0 0 0 0 1

A B

  
  
  
  
  
   
  
  
  
  
  
  














 

 
Finally, we obtain the mixed-mating matrix  

 1T shS s Q   , where 0
To compensate for its male sterility, the genotype 

 has associated an enhanced female fertility, so 
that 

Smm

female fertility of
1.

female fertility of hermaphrodites

Smm
t  

1s   is the selfing rate; 
and 0 5h x x    is a homogenizing factor, first 
introduced by Holgate [15], it equals one in any 
biological context. The evolution map is , 
given by 

5 5:   

We assume that selection acts against plants that carry 
a dominant restorer gene M  together with the 
cytoplasm . Thus, the genotypes  and  
have associated a diminished male fertility, so that 

N NMM NMm
   0 5, , ,x xT y y               (3) 

for 5x . It provides the genotype frequencies for the 
next generation of any population . 5x 

outcrossing male fertility of ,
1.

outcrossing male fertility of hermaphrodites

NMM NMm
w    

3. Geometry of the Dynamical System 

The parameter t  is introduced through the female 
fitness matrix F , while the male sterility and  are 
introduced through the male fitness matrix . 

w
G

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 0
,

0 0 0 1 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0

w

w

F G

t

  
  
  
  

   
  
  
    
  

.








We call trajectory any sequence   50,1,2,iz i     
such that  1iz  



i , for all i . We start with the 
elementary observation that in case there is a trajectory 

0 1 2  such that li , then the point  
must be a fixed point for the map, i.e. a point with 





z

, , ,z z z m i iz w  w

 w w , or else it must be a fundamental point, i.e. a 
point where  w  is not defined because all its 
homogeneous coordinates would vanish. 

 

We say that the fixed point  is stable whenever 
given a neighborhood 

v
  of , in the classical 

topology, we can find a neighborhood  of  
such that all points in  are sent to 

v
  v

   by n , for 
 sufficiently large. We say that the fixed point  is 

asymptotically stable, when, in addition to the above 
condition, there exists an open set , such that 

n v


 n

nlim x v   for all . These definitions are 
adapted from those usually given for dynamical systems, 
see Hirsch and Smale [16]. 

x

The evolution of this reproductive system has to be 
formulated using all possible crosses between genotypes. 

We first construct the outcrossing matrix  as fol- 
lows: 

Q

   
   
   

0 0 0 1 1

2 2 2 3 3 3

4 4 4 5 5 5

12

0 .

Q x wFA GB x wFA GB

x FA GB x FA GB

x FA GB x FA tGB

   
   

     

1

   (2) 

We will determine the geometry of the fixed and 
fundamental points of biological interest. If 1, , nf f  
are homogeneous polynomials, we write their locus 
      

We next construct the selfing matrix , writing as its 
-th row half the sum of the -th row of the matrix i

S
i i A  
with the -th row of i , for , except that the 
last row must be zero. Thus, 

i B 0 i  5
5, ,Z f f p f p f p1 1n n 0

1 0 0 0 0 0

14 12 14 0 0 0

0 0 1 0 0 0
.

0 0 0 1 0 0

0 0 0 14 12 14

0 0 0 0 0 0

S






 















 

     ; and 
similarly for infinite collections of homogeneous 
polynomials. If a  is a homogeneous ideal of the 
polynomial ring  0 5, ,x x  ,  is the locus of all 
of the homogeneous elements of . 

 Z a
a

Proposition 1. All fixed and fundamental points of 
biological interest for the map   are among the 
following:  

1) Those on the line , which 
consists of fixed points, except for the fundamental point 

 1 2 4 5, , ,L Z x x x x



R. DOROTEO, J. A. VARGAS 1662 

  51,0,0, ,0,0f sw s w    
a 

0,0,1,b 





.  
2) The fundamental point .   0,0,0,0,0,1

 0,0,03) The fixed point .  

4) The fixed point   ,0, 1 1t s0,0, ,0c s   , 

provided 
1

>
1

t
s

. 

5) The pair of fixed points associated to the ideal 
  0, , , ,W R s t w x x    5  generated by the 

following five forms: 

 
 
 

  
   

1 0 3

2 1 4

3 2 5

2
1 0 1 1 1 2 0 1 0 2 1 2

2 0 1

2

1 ,

1 ,

1 ,

4 ,

1

1 1 .

p w x x

p w x x

p w x tx

q tx x tx tx x x x x x x x

q t st sw s t x x

t st t s w x

  

  

  

     

     

      

   (4) 

6) The pair of fixed points associated to the ideal 
 generated by the following forms: N R

    
 

0 1 2

3 4 5 5 3 4

2
3 4 3 5 4 4 5 3 4

, , ,

1 2 2

4 2

x x x

 ,
.

s t x x x sx x x

t x x x x x x x x x

      

   

     (5) 

Proof 1. (1 - 4): The fixed and fundamental points of 
  are associated to the ideal I  generated by the 

 minors from the  matrix whose rows are 2 2 2 6 x  
and  x . It is easy to verify that the points  and 

 and the line  satisfy 
,a b

c L I . It is equally easy to verify 
that among all these points, exactly the points  and a
f  are fundamental. 

(5 - 6): The ideal I  is difficult to handle. However, 
the ideals W  and  are easier to manage and they 
contain substantial information about fixed points of 
biological interest. The ideal  0 5

N

, ,y y  of funda- 
mental points, is also easy to handle and it does not 
produce any further points of biological relevance. 

By Bézout’s theorem applied to the plane  with 
homogeneous coordinates 0 1 2

2
, ,x x x , we obtain that  

describes a pair of points, which are the intersection of a 
line and a conic. 

W

Similarly, we see that  describes a pair of points, 
by Bézout’s theorem applied to the plane with 
homogeneous coordinates 

N

3 4 5, ,x x x . 
We calculate the transporter 

 : ,W I z R zI W    

obtaining as a result an ideal containing the nonzero 
parameter . This means that the points corresponding 
to  are fixed or fundamental points for our map. 
Then we saturate W  with the ideal generated by 

, the coordinates of 

t

5y

W

0 , ,y   . The result is . Thus, 

the points described by  are fixed points of 

W

W  . 
An analogous process proves that the points described 

by  are also fixed points. N
Finally, we saturate the ideal I  with the ideal of 

fundamental points; then we saturate the result 
successively with  and the ideals for the line , 
the points  and . The result from the above 
process is an ideal whose primary decomposition shows 
no points of biological relevance. □ 

,W N
c

L
,a b

The fixed points in 

  5
0 5, , 0 5 0x x x x x      

correspond to polymorphisms with all genotypes present. 
Corollary 1. All fixed points in  for the map    

are among those associated to the ideal .  W
Our immediate problem is to determine the nature of 

the pairs of points associated to  and . First, we 
fix the notation. Let 

W N

 

   
 

 

 
 

1,2

2 2

1,2

1 2 1
,

1

1 1 4 1 1
,

2 1

1 1
,

1

2 1 2 1 2 2

4 5

s w

sw

s s w

s

s w

s

.
s w s s s w

s w









 




   




 




      


 
w s

   (6) 

Lemma 1. These quantities satisfy:  
 110 < < < <    , where the last inequality 

requires  5s w < 4 .  
    11 1 < < < 2 1s s   .  
 1 2<   if and only if 4 .   5 <s w
 , < 02 2  . 

Proof 2. We prove only the first assertion. The 
remaining assertions admit analogous proofs. 

The inequality 0 <  is clear. Since both numerators 
and denominators involved are positive, we verify that 

1<   as follows: Since 

    

      

 

       

        

     

1

2

1 1

2

22

2 1 1 1

1 4 1 1 1 1 2 1

1 2 1 ,

4 1 1 1 1

1 4 1 1 4 1 1 2 1

1 4 1 1 2 1 ,

sw s

s s w sw s

s w

s sw s

sw s s w s s w

sw s s w

 

   

     

       

    

       

         

       

 

we have 
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       
    

      
   

2

1 1

2

2

23

4 1 1 1 1

1 1 4 1 1

2 1 1 2 1 1

4 1 1 2 0.

s sw s

sw s s w

s s w sw

s s w w

          

      

       

    

 

Here, we observe that   1 11 1 < <s     . 
We verify that 1 <   as follows: Since 

       12 1 1 2 1 1 4 1 1 ,s s w s s w           

it suffices to see that 

    
  

2

2

1 2 1 1 4 1 1

4 2 1 0.

s w s s

s w w

         
   

w   

We verify that 1<   provided  as 
follows: Since both numerators and denominators 
involved are positive and 

 5 <s w 4

     

   
      

1

2 2

1 4 5

2 1 1 2 2 1 1

4 5 1 2 1 ,

s s w

s s s sw s w s w

s w s s w

      

          

            

 

it suffices to see that 

   
        
    

2 2 2

2

23

4 1 1 2 2

1 1 4 5 1 2 1

4 5 1 2 0.

s s s sw s w

s w s w s s w

s s w w w

    

                

       





 

One fixed point , described by W , has homo- 
geneous coordinates 

v

     
      

   
     

2
0

2
1

2

3 0 4 1 5 2

2 1 1 3 2 1

4 1 1 5 2 1 ,

2 1 1 1 ,

1 , 1 , 1 .

v t t s t w t w w

v t t s t w t w w B

v t s w t s

v w v v w v v w tv

          

         

      
     

,B



 

(7) 

where 

    
      

2

3 2

1 1 8 1

1 9 11 1 5 13 .

B s t w t t

s t w t w w t w

    

        
 

One fixed point , satisfying , has homogeneous 
coordinates 

u N

   
   

 

0 1 2

3

2
4

5

0,

1 1 ,

1 2

1 2.

u u u

u t s t s D

u s t s st t

u s t

  

      
        

  

where 

   

 22 2

2 1 2 1 2

2 .

D t t s s t s

t t s st st

          

    
 

The point  has biological relevance exactly when 
the inequality 

u
 1 >s t 2  holds. The other point 

satisfying  never has biological meaning. N
The ideal  corresponds to a pair of fixed points, 

one of which describes the associated nuclear poly- 
morphism, i.e. where exactly the genotypes  

 are present. 

N

,SMM

5
,SMm Smm

Proposition 2. We have  if and only if v v   
if and only if 1 < <t  .  

Proof We first observe that 

      
     

2
2

2 1

2 1 1 3 2 1

1 .

t t s t w t w w B

sw t t t  

           
    

 

Hence,  if and only if 0 > 0v <t   or 1>t  . 
We observe that   1 2 1v t t  B 


 and also 

      2

2 1 2 11B t t s t t t             
> 0v 1 < <t

.  
Hence,  if and only if 1  

  2 1v t s t  
. 

We finally observe that . Hence 
 for 

2

2 > 0v <t  . 
We have verified that 1 < <t   implies 

0 1 2> 0, > 0, > 0.v v v  

This clearly also implies 

3 4 5> 0, > 0, > 0.v v v  

Thus, v  if 1 < <t  . The reciprocal also 
follows from the above calculations, as well as the 
remaining equivalence involving . □ 5


Multiple simulations, both algebraic and graphic 

strongly suggest that the second point satisfying W  
never has biological meaning. Thus, we have nearly 
complete understanding of the biologically relevant 
geometry for our rational map  . We state this 
information in biological terms: 

Proposition 3. The populations in equilibrium for our 
gynodioecy model are the following: 

1) The nucleocytoplasmic polymorphism corre- 
sponding to the point v  with coordinates given by 
Equations (7). This is possible if and only if the 
parameters satisfy 

1 < < .t   

2) The nuclear polymorphism corresponding to the 
point  with coordinates given by Equations (8). This 
is possible if and only if the parameters satisfy 

u

2
> .

1
t

s
 ,D

      (8) 

3) The populations without the nuclear allele  m
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    5D p D p   . corresponding to the line  in Proposition 1 (1).  L
Result 1. The rational map   has the following 

approximate behavior:  
4) The population without the nuclear allele M , 

corresponding to the point  in Proposition 1 (4). This 
is possible if and only if the parameters satisfy 

c

1) If 5x  , 
2

<
1

t
s

 and , then   < 1x

 lim
n

n x L  .  

1
> .t  

s1
5) The population with unique genotype , 

corresponding to the point  in Proposition 1 (3). 
Nmm

2) If 5x  , 
1

1 < <
1

t
s

 and , then   > 1x

 lim
n

n x b  .  

b

4. The Dynamics 

3) If 5x  , 1

1
< <

1
t

s



 and , then   > 1x

 n
limn x c  .  

We observe that for a given population 5x  , the 
expression 20 1x x x 

N
 gives the frequency of 

cytoplasm , whereas 3 4 5x x x   gives the 
frequency of cytoplasm , once we choose coordinates 
with . Let 

S
54) If x  , 1 < <t   and , then   > 1x

 lim
n

n x v  , where  is given by Equations (7).  v0x  5 1x  

  frequency of cytoplasm
.

frequency of cytoplasm

N
x

S
   5) If , 5

x
s

t
1

2
<<  and 1>)(x , then 

, for all .  Lxn )(n lim  5
xOur analysis, including many simulations, provides 

enough understanding for the biologically relevant 
dynamics of  , which exhibits a complex behavior. We 
obtained that every biologically relevant point converges 
to a fixed point. Also, every fixed point is an attractor, i.e. 
every fixed point is asymptotically stable. If  is an 
attractor, we define its domain of attraction 

p
 D p  as 

the set 

6) If  and 5
x

2
>

1
t

s
, then  lim

n
n x u  , 

where  is given by Equations (8).  u
Table 1 supports the assertions in Result 1. The co- 

lumn x  indicates the initial population. The column  
indicates the expected attractor fixed point according to 
the Result. 

y

  5
lim

n
nx x p  . We also define the 

biologically relevant domain of attraction:  
 

Table 1. Simulations supporting Result 1. 

(s,t,w) x λ(x) y3000 y 

1: (.9,1.2,.5) (1,5,3,3,1,4) 1.12 (0,0,1,0,0,0) b = (0,0,1,0,0,0) 

1: (.9,1.2,.5) (1,2,3,6,8,5) 0.31 (.53,0,0,.46,0,0) y L  

1: (.8,3.0,.4) (5,2,3,1,2,3) 1.6 (0,0,1,0,0,0) b = (0,0,1,0,0,0) 

1: (.8,3.0,.4) (1,2,3,6,5,3) 0.42 (.49,0,0,.5,0,0) y L  

2: (.7,3.4,.5) (4,6,8,1,3,1) 3.6 (0,0,.97,0,0,.02) c = (0,0,.97,0,0,.02) 

2: (.7,3.4,.5) (1,2,1,4,3,2) 0.4 (.34,0,0,.65,0,0) y L  

2: (.6,2.7,.2) (6,4,1,4,3,2) 1.2 (0,0,.88,0,0,.12) c = (0,0,.88,0,0,.12) 

2: (.6,2.7,.2) (1,4,1,4,3,2) 0.6 (.51,0,0,.48,0,0) y L  

3: (.5,2.5,.24) (5,4,3,4,3,2) 1.3 v v = (.12,.16,.38,.09,.12,.12)

3: (.5,2.5,.24) (1,4,3,5,3,2) 0.8 (.42,0,0,.57,0,0) y L  

3: (.4,2.0,.2) (6,4,3,5,3,2) 1.3 v v = (.05,.12,.50,.04,.10,.20)

3: (.4,2.0,.2) (1,2,3,5,3,2) 0.6 (.35,0,0,.64,0,0) y L  

4: (.4,3.0,.2) (1,2,8,2,3,2) 1.57 (.02,0,0,.98,0,0) y L  

4: (.4,3.0,.2) (1,2,1,2,3,6) 0.36 (.02,0,0,.98,0,0) y L  

5: (.3,4.0,.4) (4,6,8,2,3,4) 2 (0,0,0,.3,.5,.19) μ = (0,0,0,.3,.5,.19) 

5: (.3,4.0,.4) (2,3,1,4,3,4) 0.54 (0,0,0,.3,.5,.19) μ = (0,0,0,.3,.5,.19) 

5: (.7,7.0,.4) (2,7,6,4,3,4) 1.36 (0,0,0,.84,.13,.03) μ = (0,0,0,.84,.13,.03) 

5: (.7,7.0,.4) (2,1,6,4,8,5) 0.52 (0,0,0,.84,.13,.03) μ = (0,0,0,.84,.13,.03) 
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Remarks. For easy reference, we restate Result 1 in 

more biological terms:  

1) If 
2

1 < <
1

t
s

, every population with   < 1x , 

converges to an equilibrium population without the 
nuclear allele .  m

2) If 
1

1 < <
1

t
s

, every population with   > 1x ,  

converges to an equilibrium population with unique 
genotype .  Nmm

3) If 1

1
< <

1
t

s



, every population with   > 1x ,  

converges to an equilibrium population without the 
nuclear allele M .  

4) If 1 < <t  , every population with   > 1x , 
converges to the nucleocytoplasmic polymorphism.  

5) If 
2

< <
1

t
s




, every population with   > 1x ,  

converges to an equilibrium population without the 
nuclear allele .  m

6) If 
2

>
1

t
s

, every population converges to the 

nuclear polymorphism. 
Remarks. The equation   1x   being linear, de- 

fines a hyperplane in . Regarding Result 1, it is con- 
venient to consider the half-spaces  

5

  5 > 1H x x 1  and its opposite  
  5H x x 2 . In terms of domains of  

attraction, this Result reads as follows:   
1

1) If 1 < <t  , then  nearly equals 
.  

 z L
D z

5
2H 
2) If 1

1
< <

1
t

s



, then  nearly equals 

.  

 D b

5
1H 

3) If 1

1
< <

1
t

s



, then  nearly equals 

.  

 D c

5
1H 
4) If 1 < <t  , then  nearly equals 

.  
 D v

5
1H 
5) If 

2
< <

1
t

s



, then  nearly equals 

.  

 z L
D z

5


6) If 
2

>
1

t
s

, then  nearly equals  D u
5
 .  

Result 2. We list several refinements to Result 1.   

1) For 
1

1 < <
1

t
s

, we have: 

a)  stretches towards a region around the line 
segment 

 D b

ab  consisting of points  such that 5x 

  < 1x .  
b)  D zz

L
L

 stretches towards a region around the 
line  consisting of points  such that 5x 
  > 1x .  

2) For 1

1
< <

1
t

s
, we have:   


a)  z

L
L

 stretches towards a region around the 
line  consisting of points  such that 

D z
5x 

  > 1x .  
b) Here,   > 1c  always holds. However, for values 

of the parameters such that  is close to one,  c
 D c  stretches to a small region around  consisting 

of points 
c

5x 
< <t

 such that .    < 1x
3) For 1  , we have:   
a)  z

L
L   stretches towards a region around the 

line  consisting of points  such that 
D z

5x 
  > 1x .  
b)  D z

z
b

L   stretches towards a region around the 
point  consisting of points  such that 5x 
  > 1x .  
c)  D z

z
c

L   stretches towards a region around the 
point  consisting of points  such that 5x 
  > 1x .  
d) Depending on the values of the parameters,  D v  

stretches towards a region around the line segment av  
consisting of points 5x   such that .    < 1x

Table 2 supports the assertions in Result 2. 

5. The Case of Pure Outcrossing 

We obtain a model for this case setting the parameter 
0s  . 

5.1. Geometry 

Here, the set of fundamental points of the map   is an 
algebraic set K . It is the union of two linear spaces of 
dimensions three and one, respectively: 
  1 2 4 0 2 32 ,Z wx x x wx x x     

 3 4 1 2 0 2 5 4

1 1
, 2 , ,

2 2
x x x x x x t x

    
 

Z x   

The point 

   1 2 4 0 2 30,0,0,0,1 2 ,Z wx x x wx x x    0,a   

is the unique element of K  with biological relevance. 
The set of fixed points of   has closure equal to an 

algebraic set J  which admits different descriptions 
according to the values of the parameter : t

1) 1t  . Here, J  has four irreducible components: 

1 , a conic; 2  a curve of degree 3; and two lines 1  
and 2 . The curve 2  contains no points of biological 
relevance because its points satisfy the equations 

C
L

C L
C

0 1 2 3 4 50, 0.x x x x x x       
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Table 2. Simulations supporting the refinements in Result 2. 

(s,t,w) x λ(x) y3000 y 

1f: (.9,1.2,5) (1,1,6,1,1,8) 0.8 (0,0,1,0,0,0) y L  

1f: (.8,3,4) (.1,2,2,.3,.4,6) 0.34 (0,0,1,0,0,0) y L  

1g: (.8,3,4) (5,.1,.1,4,.1,.1) 1.24  .58,0,0,.42,0,0 L  b 

1g: (.7,3,3) (6,.1,.1,5,.1,.1) 1.19  .57,0,0,.43,0,0 L  b 

2a: (.7,3.4,3) (5,.1,.1,4,.1,.1) 1.24  .59,0,0,.41,0,0 L  c 

2b: (.9,10.2,.3) (0,0,.98,.5,.5,.02) 0.96 c = (0,0,.98,0,0,.02) y L  

3a: (.9,12,.3) (6,.1,.1,5,.1,.1) 1.19  .56,0,0,.44,0,0 L  v 

3b: (.9,16,3) (.1,.1,2,.1,.1,.1) 7.3  .14,0,0,.86,0,0 L  v 

3c: (.9,16,3) (.1,.1,.9,.1,.1,.6) 1.375  .15,0,0,.85,0,0 L  v 

3d: (.9,13,.3) (.27,.05,043,.19,.036,.8) 0.73 v = (.27,.05,.43,.19,.036,.023) y L  

 
The remaining components are these: 

 
    

  

2
1 4 3 5 5 2

4 1 3 0

1 0 1 3 4 2 1 2 4 5

4 , 1 ,

1 , 1 ,

, , , ,   , , ,

C Z x x x x w x

x w x x w x

L Z x x x x L Z x x x x

   

   

  .
   (9) 

2) . In the general case, 1, 2t  J  has six irreducible 
components: Five points plus the line 2  from the 
previous case. Three of the five points never have 
biological meaning. The remaining points are: 

L

 
2 3 3

0,0,1,0,0,0 ,   

0,0,0, , ,1 .
2 2 2

b

t t t t
u

t t t



 
 
    

t





6

     (10) 

The point  has biological meaning exactly in case 
. 

u
2>t

3) . Here, the situation is as above, but instead of 
the point  we have the point . 

2t 
u 0,0,0,1,0,0u 

5.2. Dynamics 

It is convenient to study the map  induced  6:  

by   defined as 

   0 5 0 5

1
, , , , ,x x y y

h
    

where the i  are any set of homogeneous coordinates 
for the map 

y
 ; and 0 5h y y   . This map sends 

the complement of  a  in the convex set  of points 
with nonnegative coordinates in the hyperplane 

0 5



1xx     into itself. Since this map is defined over 
the real numbers and does not involve projective space, it 
is suitable to carry out simulations; and it qualifies as a 
traditional model for the biological phenomena. 

Theorem 1. The point 

2 3 3

0,0,0, , ,1
2 2 2

t t t t
u t

t t t

 
  
    

  

is asymptotically stable if . > 2t
Proof. We use the Lyapunov criterion, see [16], 

applied to the transformation  . Let  jacobian
u

 . 
Then       2

2 3 4det r r r r         1  , 
where 

 

   
 

3 3
22 2

1 2 1 3,4 22

2 1
, 2 , 8 1

2 1 2 24 1

t t
r r r r a b k t t c d

t t t tt t
.

t
                    

 

 
Here, 

2 3 4 5 2 3

2 3 4 5

2 3 4

3

6 11 6 , 8 20 18 7

8 20 18 7 ,

16 32 24 8 ,

.
2

a t t t t b t t t t

c t t t t t

d t t t t

t
k a b

t

        

     

    

 
   
  

Using elementary calculus we obtain that  
implies 

> 2t

1 2 3 4, , , <r r r r 1. □  4 ,

 

Since 0s  , we have 1 1     ; consequently 
the interval for the polymorphism reduces to the point 

1t  . Here, the map   may be restricted to the plane  

   
    

5
0 5 3

4 1 5

, , 1 ,

1 , 1

D x x x w x0

2x w x x w x

   

   

 
. 
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Proposition 4. The dynamical system defined by the 
iteration of 

D
 has the following properties:   

1) The determinantal algebraic set of fixed and 
fundamental points of the map, given by the 2 2  
minors from the  matrix with rows 2 6 x  and  x  
is , the smooth conic above.  1

2) The set of fundamental points for 
C

  is the single 
point 

      11, 2,1, 1 , 2 1 , 1 .B w w w       C  

3) The set of fixed points of   is .   1 \C B
4) The tangent line to  at  is 1C B  h DL Z , 

where .  0 1h x x x  
  \L B

2

 
\

5) Here, .  B
6) Every point x D L  is sent to the intersection of 

 with the line  1 \C B xB . The domain of attraction of 
 is  B1 \P C  B\PB .  

This result admits an easy proof; and it implies that the 
dynamical system reduces to a double Hardy-Weinberg 
system, with one step convergence to a stable population 
with polymorphism. It is only in case  that stable 
polymorphisms appear. 

1t 

Remarks. For the present pure outcrossing model, we 
have the following facts:  

1) The stable nuclear gynodioecy remains for . > 2t
2) For  the surviving genotypes are  

and , whereas only the genotype  survives, 
if . When  is close to , the genotype  
disappears very slowly. 

1 < < 2t
M

t

NMM

SMm
SM

2
SMM

t 2

3) If we delete the cost of restoration, which is 
achieved by the condition 1w  ; and 5H    is the 
plane 3 4 5 , we have that 0x x x  

H
  is the 

classical Hardy-Weinberg map. In this case, the points in 
the conic  are attractors. 1

4) Consider the induced map , obtained 
from 

C
2:  2

  and the projection  given by 

5 3 4 5

5 2:  
   , , 0 , ,x x x x x  , such that the following 

diagram commutes: 

 5 5

2 2

 

 

  

  

    

 
The rational map   provides a nuclear gynodioecy 

model analogous to the androdioecy model studied in 
[12], instead of the gynodioecy model studied there. This 
happens because we have not presently assumed any “no 
pollen discounting” hypothesis for the cytoplasm , 
which was present in [12]. 

S

6. Discussion 

We consider that our contribution to the understanding of 
gynodioecy has two aspects: First of all, the rigor in the 

model formulation and in the determination of the 
underlying geometry. Secondly, the pertinence and 
necessity of our methods should be manifest. Unfortun- 
ately, these methods are not yet sufficiently developed to 
provide for a proof of the dynamical results. Nevertheless, 
we have exhibited a hierarchy for the different stable 
populations in equilibrium, in terms of biologically sound 
parameters. 

In regard to the present gynodioecy model, our study 
is directed towards the general case with respect to 
mixed-mating, that is, for situations with selfing rate 
satisfying . We found a precise interval 0 < < 1s

 1,J  
t J

 such that the inclusion of the female fitness 
  is a necessary and sufficient condition for the 

existence of a nucleocytoplasmic polymorphism. Table 3 
shows values for the bounds of J . The table also shows 
that the interval size increases, as well as the allowed 
values of , for larger values of selfing; and for smaller 
values of , which reflect higher costs of restauration. 

t
w

Our results remain valid and present no discontinuity 
for the pure outcrossing case , where we find that 0s 

1t   is the only value for which there exists nucleo- 
cytoplasmic polymorphism. Thus, it is of a negligible 
nature, reinforcing the notion that this polymorphism 
requires self-fertilization. This result tends to contradict 
the assertion in [5] that this polymorphism “is attainable 
for a large set of parameter values”, although their model 
differs from ours by their inclusion of an extra cyto- 
plasmic fitness parameter. 

The model in [6] is similar to our pure outcrossing 
case. Their assumptions differ from ours by their in- 
clusion of two nuclear loci. 

Although our model includes the pure selfing case 
1s  , our results do not apply to that case. We consider 

this situation of lesser mathematical and biological 
interest. We can see directly that the map   becomes 
linear in this case; and also that 
 
Table 3. Bounds for female fitness associated to nucleocyto- 
plasmic polymorphism in terms of selfing rate and cost of 
retoration, 

s w β1 γ s w β1 γ 

0.2 0.8 1.288796 1.30 0.2 0.6 1.325446 1.35

0.2 0.4 1.360272 1.40 0.2 0.2 1.393521 1.45

0.4 0.8 1.743156 1.80 0.4 0.6 1.813696 1.93

0.4 0.4 1.879790 2.07 0.4 0.2 1.941385 2.20

0.6 0.8 2.614734 2.80 0.6 0.6 2.720544 3.10

0.6 0.4 2.819235 3.40 0.6 0.2 2.912077 3.70

0.8 0.8 5.155184 5.80 0.8 0.6 5.301785 6.60

0.8 0.4 5.441088 7.40 0.8 0.2 5.574085 8.20
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  1 1 4
0 2 3,0, , ,0,0 ,lim

2 2 2
n

n
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x x x x
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   




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[7] R. Hartshorne, “Algebraic Geometry,” In: Graduate Texts 

in Mathematics, Vol. 52, Springer, New York, 1977. 

[8] D. R. Grayson and M. E. Stillman, “Macaulay2, a Soft- 
ware System for Research in Algebraic Geometry.”  
http://www.math.uiuc.edu/Macaulay2 

for any . If we assume that the cost of restoration 
is present in selfing, we obtain 

5x

   
1 4

2 30,0, , ,0,0 ,lim
2 2 2

n

n

wx x
x x x

w





   



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[9] X. Delannay, P. H. Gouyon and G. Valdeyron, “Mathe- 
matical Study of the Evolution of Gynodioecy with Cyto- 
plasmic Inheritance under the Effect of a Nuclear Re- 
storer Gene,” Genetics, Vol. 99, 1981, pp. 169-181.  
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1214488/ for . 0 < < 1w

[10] M. D. Ross and B. S. Weir, “Maintenance of Male Steril- 
ity in Plant Populations III. Mixed Selfing and Random 
Mating,” Heredity, Vol. 35, 1975, pp. 21-29. 
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