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ABSTRACT 

In this paper we present a proposal using Legendre polynomials approximation for the solution of the second order lin- 
ear partial differential equations .  Our approach consists of reducing the problem to a set of linear equations by expand- 
ing the approximate solution in terms of shifted Legendre polynomials with unknown coefficients .  The performance of 
presented method has been compared with other methods ,  namely Sinc-Galerkin ,  quadratic spline collocation and Liu- 
Lin method .  Numerical examples show better accuracy of the proposed method .  Moreover ,  the computation cost de- 
creases at least by a factor of 6 in this method . 
 
Keywords: Legendre Polynomials;  Partial Differential Equations ;  Collocation Method 

1. Introduction 

There are several applications of partial differential 
equations (PDEs) in science and engineering [1,2]. Many 
physical processes can be modeled using PDEs .  Ana- 
lytical solution of PDEs ,  however ,  either does not exist 
or is difficult to find .  Recent contribution in this regard 
includes meshless methods [3],  finite-difference methods 
[4],  Alternating-Direction Sinc-Galerkin method (ADSG) 
[5] ,  quadratic spline collocation method (QSCM) [6] ,  Liu 
and Lin method [7] and so on . 

Orthogonal functions and polynomials have been em- 
ployed by many authors for solving various PDEs. The 
main idea is using an orthogonal basis to reduce the 
problem under study to a system of linear algebraic 
equations. This can be done by truncated series of or- 
thogonal basis functions for the solution of problem and 
using the collocation method. 

In this paper, we have applied a method based on 
Legendre polynomials basis on the unit square. This 
method is simple to understand and easy to implement 
using computer packages and yields better results. Com- 
parative studies of CPU time of present method and other 
methods such as Sinc-Galerkin method, quadratic spline 
collocation method and Liu-Lin method are also pre- 
sented. Numerical tests exhibit better accuracy of our 

proposed method based on Legendre polynomials. 
Moreover, time for computation decreases at least more 
than 6 folds.  

This paper is organized as follows. In Section 2, we 
present some properties of Legendre polynomials. Sec- 
tion 3 describes the proposed technique for solution of 
PDEs. Section 4 is devoted to some experimental results 
and the paper is concluded with a summery in Section 5. 

2. Preliminaries and Notation 

The Legendre polynomials ; are 
the eigenfunctions of the singular Sturm-Liouville prob- 
lem 

 mL x 0,1, 2, ,m  

          21 1 0,m mx L x m m L x x     1,1 .  

The Legendre polynomials satisfy the recursion rela- 
tion 

     1 1

2 1
;  0,1, 2,

1 1m m m
m mL x xL x L x m

m m 


  
 

  

where  0 1L x   and  1L x x . In order to use Leg- 
endre polynomials on the interval  0,1  we use the 
so-called shifted Legendre polynomials by introducing 
the change of variable 2 1t x  . The shifted Legendre 
polynomials  12L xm   are denoted by  mP x  and 
can be obtained by the following triple recursion relation: *Corresponding author. 



A. DAVARI, A. AHMADI 1648 

       1 1

2 1
2 1 ;  0,1,2,

1 1m m m
m mP x x P x P x m

m m 


   
 

  

where     0 11,  2 1.P x P x x  
A square integrable function   ,f x  in  0,1 ,  may 

be expanded in terms of shifted Legendre polynomials as 

   
0

,m m
m

f x a P x




   

where the coefficients  are given by ma

     1

0
2 1 d ;  1, 2,m ma m f x P x x m     

In practice, only the first  1 -M  terms shifted Leg- 
endre polynomials are considered. Then we set 

   
0

.
M

m m
m

f x a P x


   

Similarly a function  , f x y
0 ,x y 

 of two independent 
variables defined for  may be expanded in 
terms of double shifted Legendre polynomials as 

1

     
0 0

, ;
M M

ij i j
i j

f x y a P x P y
 

   

where the coefficient  are given by ija

        1 1

0 0
2 1 2 1 , d d ;

, 0,1,2, , .

ij i ja i j f x y P x P y x

i j M

  


 



y
 

For further properties of Legendre polynomials re- 
ferred to [8,9]. 

3. Solution of Second-Order Linear PDEs 

Consider the following second-order linear PDEs on the 
unit square,   20,1 :

     

     

2 2

2 2
, , ,

, , ,

u ua x y b x y c x y u
xx y

ud x y g x y u f x y
y

 
 

 


  




       (1) 

where  and , , , ,a b c d g f  are known functions. With 
Dirichlet boundary conditions: 

      1 20, ,  1, ,u y g y u y g y    

      3,0 ,  ,1 ,u x g x u x g x  4

1

        (2) 

where  are known functions. We intro- 
duce the following notations: 

; 1, 2,3, 4ig i 

       

 

1 2

0 0

1 1

0

d , d ,

d .

x x
i i i i

i i

P x P t t P x P t t

C P t t

 



 


     (3) 

We assume that the second order partial derivatives 
can be expressed by Legendre polynomials series as 

given below: 

     
2

2
0 0

, ,
M M

ij i j
i j

u x y a P x P
x  




  y         (4) 

     
2

2
0 0

, ,
M M

ij i j
i j

u x y b P x P
y  




  y         (5) 

The following collocation points are considered: 

 
0.5

;  1,2, , 1
1c

cx c
M
 M  


  

 
0.5

;  1,2, , 1
1s

sy s
M
 M 


          (6) 

After integrating from “Equation (4)” we obtain 

       1

1 1

, 0,
M M

ij i j
j i

u u
,x y y a P x P

x x  

 
 

   y     (7) 

or 

       1

1 1

0, , ,
M M

ij i j
j i

u uy x y a P x P
x x  

 
 

   y      (8) 

Now by integrating from “Equation (8)” in the interval 
 0, ,x we get 

       
1 1

0, 1, 0, ,
M M

ij i j
j i

u y u y u y a C P y
x  


  

     (9) 

Substituting “Equation (9)” in “Equation (7)”, yields 

          1

1 1

, 1, 0,
M M

ij j i i
j i

u
.x y u y u y a P y P x C

x  


   

   

Now by integrating this equation from  to 0 x , we 
have 

       

    2

1 1

, 0, 1, 0,

,
M M

ij j i i
j i

u x y u y x u y u y

a P y P x xC
 

  

 




     (10) 

Thus by substituting “Equation (2)” in this equation, 
we obtain 

        

   
1 2 1

2

1 1

,

.
M M

ij j i i
j i

u x y g y x g y g y

a P y P x xC
 

  

  
      (11) 

Similarly for “Equation (5)”, we have 

          1

, 1

, ,1 ,0
M

ij i j j
i j

u x y u x u x b P x P y C
y 


   

  ;  

and 

        

   
3 4 3

2

, 1

,

.
M

ij i j i
i j

u x y g y y g x g x

b P x P y yC


  

          (12) 
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Equating “Equation (11)” and “Equation (12)”, and 
substituting the collocation points we obtain  2

1M   
equations. Another  equations are obtained by 
substituting the expressions of  and its partial 
derivatives into given differential “Equation (1)”. These 
two sets of equations are solved simultaneously for the 
unknown Legendre polynomials coefficients ij ’s and 

ij ’s. The solution can be obtained by substituting these 
coefficients either in (11) or (12). 

 2
1M  

 ,u x y

a
b

4. Numerical Examples 

We examine the accuracy and efficiency of the proposed 
method by presenting following examples. 

4.1. Example 1 

Consider the Helmholtz equation [6] 

   
2 2

2 2
, , ,  0 ,

u u ku x y f x y x y
x y
 

    
 

1.



 

With , subject to Dirichlet boundary condi- 
tions. The function 

900k 
 ,f x y



 is taken su at the exact 
solution of the problem is   in 
Table 1 indicates the number collocation points. In this 
table we have also calculated the experimental conver- 
gence rate c  of the error at the collocation points 
which is defined as 

ch th
   2

, e
xy

u x y  . 2N M

R M

 

 
 

error 2
log

error

log 2c

M
M

R M

 
  
   

We have presented comparison of maximum error and 
 between present method and QSCM in Table 1. 

Maximum error and CPU time of present method and 
Liu-Lin method [7] are also given in Table 2. 

 cR M

4.2. Example 2 

Consider the Poisson equation in [5]: 
 
Table 1. Comparison of present method and QSCM in 
terms of maximum error for Example 1. 

Present Method QSCM 

M N error Rc(M) M error Rc(M)

2 4 1.28 × 10−4 - - - - 

3 9 5.92 × 10−5 - 8 1.39 × 10−4 - 

4 16 2.53 × 10−5 2.34 16 1.98 × 10−5 2.81 

5 25 6.80 × 10−6 - - - - 

6 36 1.76 × 10−6 5.07 32 2.06 × 10−6 3.26 

8 64 6.35 × 10−8 8.64 64 1.44 × 10−7 3.84 

 
2 2

2 2
, ,

u u f x y
x y
 

 
 

 

subject to Dirichlet boundary conditions. 

   , 3 e 1 1x yu x y xy x y    ,  

is exact solution of the problem. Comparison of maxi- 
mum error of present method and ADSG method are 
presented in Table 3. Maximum error and CPU time of 
present method and Liu-Lin method [7] are listed in Ta- 
ble 4. By comparing the data in Tables 3 and 4, it is clear 
that our method is more efficient. 

5. Conclusion 

In this study, solution of partial differential equations by 
Legendre polynomials approximation in two dimensions  
 
Table 2. Comparison of present method and Liu-Lin me- 
thod in [7], in terms of maximum error for Example 1. 

Present Method Liu-Lin Method [7] 
M

error CPU time(s) error CPU time(s) 

3 5.92 × 10−5 1.97 8.67 × 10−5 17.21 

4 2.53 × 10−5 4.82 3.98 × 10−5 50.07 

5 6.80 × 10−6 11.01 1.53 × 10−5 131.65 

6 1.76 × 10−6 25.04 4.17 × 10−6 334.43 

 
Table 3. Comparison of present method and ADSG in terms 
of maximum error for Example 2. 

Present Method ADSG 

M Maximum error M Maximum error 

3 1.12 × 10−2 5 2.467 × 10−2 

5 9.7583 × 10−5 9 4.180 × 10−3 

7 3.4910 × 10−7 17 3.775 × 10−4 

8 1.6502 × 10−8 33 1.163 × 10−5 

9 6.8737 × 10−10 65 1.821 × 10−7 

 
Table 4. Comparison of present method and Liu-Lin me- 
thod in [7], in terms of maximum error for Example 2. 

Present Method Liu-Lin Method [7] 
M

error CPU time(s) error CPU time(s) 

3 1.12 × 10−2 2.2544 4.02 × 10−2 12.5089 

4 1.2 × 10−3 3.2077 7.1 × 10−3 24.9837 

5 9.76 × 10−5 10.9164 2.00 × 10−4 97.7510 

6 6.36 × 10−6 16.7807 9.49 × 10−5 244.1086 

7 3.49 × 10−7 54.9082 5.50 × 10−6 410.3025 
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is investigated. Results show better accuracy of the pro- 
posed method based on Legendre polynomials. Experi- 
mental results on various problems show that in com- 
parison with the previous method (Sinc-Galerkin method, 
quadratic spline collocation method and Liu-Lin me- 
thod), the computation cost of the proposed methods has 
decreased noticeably, the CPU time for computation falls 
at least more than 6 folds. 
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