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ABSTRACT 

A permutation test (based on a finite random sample of permutations) for unit root in an autoregressive process is con- 
sidered. The test can easily be carried out in practice and the proposed permutation test is neither limited to large sample 
sizes nor normal white noises. Simulations show that the power of the permutation test is reasonable when sample sizes 
are small or when the white noises have a heavy tailed distribution. The test is shown to be consistent. 
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1. Introduction 

Let 1 2 1  be  observations of the real 
valued autoregressive model 

, , , nY Y Y  1n 

1 ,t tY aY e  t  

for  and t  is a sequence of independent 
identically distributed random variables with mean zero 
and variance 

0 < 1a  e

2  and . Tests of 1 0Y 

0 : 1 versus : 0 < < 1,AH a H a  

are often referred to as tests for unit root. The hypothesis 
that  is of interest in applications because it 
corresponds to the hypothesis that it is appropriate to 
transform the times series by difference. In [1] and [2], 
the authors derived the limit distribution of the statistic 

 with 
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under the unit root assumption . However, [1] and 
[2] are limited to large sample sizes or normal white 
noises. When sample sizes are small and white noises are 
from distributions with heavy tails, to test for the pres- 
ence of unit root, we can use the permutation test pro- 
posed in the paper. 

1a 

Under 0H , t  is not stationary and the variance of 
 is t

Y

tY 2 . When 0H  is true,  is sometimes called a tY

random walk and 1t t tX Y Y  ,  are 
independent identically distributed r.v.’s. In Economics, 
it is important to characterize the velocity, or stock price 
as a random walk. Another way of phrasing 0

1, 2, ,t n 

H  is that 
whatever determinants of velocity and their individual 
stochastic structure may be, their combined effect is such 
that successive changes in velocity are essentially inde- 
pendent. This would imply that of the past history avail- 
able at any given date only the current observation is 
relevant for prediction. Testing for unit root is equivalent 
to testing for serial independence in sequence 1 n, ,X X . 
For some literature on tests for serial dependence, see [3] 
and [4] and the references therein. We define 
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and for each random permutation of the vector 
 1, , nX X , say,  1 , , nX X   , denote 
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1
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If 0H  holds then    1 2, , , ,n nX X e e   1 . The 
distribution of a random vector of i.i.d. random variables 
is invariant under any permutation of its coordinates. 
Thus n  and nT   have the same distribution if 0T H  is 
true. Based on the invariance of the distribution of the 
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statistic n  under permutations when 0T H  holds, we 
propose a permutation test for unit root using n  as our 
pivot test statistic. This test is easy to perform with a 
computer and the test makes little assumptions on the 
probability distribution of the white noise and also it 
works for small samples. Construction of this test will be 
presented in Section 2. The consistency of our test is 
shown in Section 3. A simulation study of our test is 
provided in Section 4. Time series of velocity of money 
observed between 1869 and 1960 is investigated in Sec- 
tion 5. 

T

2. Steps Used in Our Permutation Test 

We assume that the white noise te  is a sequence of 
independent identically distributed random variables with 
mean zero and variance 2 . In addition,  4 <tE e  . 

We will often write nT  simply as  for brevity. 
Note that T  is more likely to be negative under A

T
H  

(see Lemma 3.2 below). To summarize, the permutation 
test is carried out as follows. 

1) Set a predetermined level  . Permute the  
observations 1 2

n
 , , , nX X X . There are a total of  

permutations. For each permutation, compute the T  
statistic. Under 0

!n

H , the T  statistics have the same 
probability distribution for all of the  permutations. 
The  statistic computed from the observations (not 
permuted) is referred to as . 

!n
T

obs

2) Compute the -value as the proportion of T 's 
less than or equal to , that is, 

T
p

obsT

number of
-value .obsT

!

T s
p

n

 
  

Conclude that the test is statistically significant if the 
computed -value is less than or equal to p  . 

This test is limited by prohibitive calculation and hard 
to carry out if  is a large number. Instead of using all 

 permutations to compute the , we obtain a 
random sample  of permutations and then carry out 
the test as follows: 

n
!n -valp ue

R

1) Set a predetermined level  . Compute the T  
statistic for each of the  sampled permutation. R

2) Compute the -value as the proportion of T 's 
less than or equal to , that is, 

p

obsT

number of
-value .obsTT s

p
R

 
  

Conclude that the test is statistically significant if the 
computed -value is less than or equal to p  . 

The approximate -value is now equal to the fraction 
of 's that are less than or equal to obs . The theory of 
the binomial distribution tells us that the approximate 
value has about a 95% chance of being within 

p
T T

 2 1p p  R  

of the true -value. We will denote the permutation test 
based on a random sample of  permutations by 

p
R R . 

Remark. Consider the lag one autocorrelation 
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Using  is “almost” equivalent to using 1  to 
perform our test. We leave it to the reader to verify this. 

T r

3. Consistency of R  

Consistency of hypothesis tests is a desirable property. In 
this section, we will show that the permutation test based 
on random sampling  permutations is consistent, that 
is, the probability of correctly rejecting the null hypothe- 
sis 

R

0H  tends to 1 as the sample size goes to infinity 
when . In other words,  0 < < 1a

Theorem 3.1 Suppose aH  is an arbitrary simple 
hypothesis that the autoregressive parameter  is 
between 0 and 1, that is 

a

a AH H . Then 

 0Reject 1
aHP H   

as . n 
Lemma 3.1 Under AH , for any integer , 1m 
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Proof. We can write  as tY

0

.u
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u

Y a e



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  t u                (1) 

Using (1), it is easily seen that under AH , the AR(1) 
process  has mean zero with tY

 
2

2
Var ,

1tY
a


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
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Clearly, 

   1 1 2 2 2 1 1 2 1 1 .m m m mE X X E Y Y Y Y Y Y Y Y       m   

In particular, 
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 

2
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1
,
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which is negative under AH . Note 
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(2) 

Lemma 3.2 Under AH , nT n  converges in proba- 

bility to    2 1

1


1 2

a
E X X

a


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Proof. Under AH , time series  is stationary and so 
is time series 

tY

1t tX X  . Thus 
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(3) 

By (3), it is sufficient to show that 
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as . n 
For , consider . Following the 

proof of (2), we have 
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It is not hard to see that 
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as . This completes the proof.   n  
On the left of Figures 1 and 2, it shows the long run 

behavior of nT n  based on 10,000 simulations from 
AR(1) model with white noise from normal (0,1) and 
uniform (−1,1) respectively.  

Lemma 3.3 Under AH ,  as  
.  

 1 2 0E X X  
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Proof. For a random permutation, R , of 
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For , by stationarity and Lemma 3.1, <i j
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From (4) and (5), 
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The proof follows from (6).  
Lemma 3.4 Under AH ,  as 
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After lengthy calculation of , we 
know that to show (7) converges to zero when  goes 
to infinity, it is sufficient to show 
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which are easy to see.  
Lemma 3.5 Under AH , nT n  converges to 0 in 

probability for all 1 R  .  
The proof follows from (3), Lemma 3.3 and 3.4.  
On the right of Figures 1 and 2, it shows the long run 

behavior of nT n  based on 10,000 simulations from 
AR(1) model with white noise from normal (0,1) and 
uniform (−1,1) respectively. 

Proof of Theorem 3.1. Clearly, under AH ,  

 
 

, for all 1

, for all 1 ,

n n

n n

P T T R

P T n T n R

  
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






 

 

 

Figure 1. Illustrations of Lemma 3.2 and Lemma 3.5 with 
normal (0,1) noise and .a 8  . 
 



  

Figure 2. Illustrations of Lemma 3.2 and Lemma 3.5 with 
uniform (−1,1) noise and .a 8  . 
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which tends to 1 by Lemma 3.2 and Lemma 3.5. In 
particular, the probability of rejecting 0H  under AH  
tends to 1.  

4. Simulation Study 

Consider the model 1t t t , , 

1  where the t  has contaminated normal distri- 
bution. Note the contaminated normal observations were 
generated in the following way: 70% of the time an 
observation is generated from a standard normal distri- 
bution while 30% of the time it is generated from a 
normal distribution with mean 0 and standard deviation 
25. One thousand samples of size , 25, 50, 100, 
250, 500 were generated for , 0.4, 0.6, 0.8, 1. 
Permutation tests based on all permutations when sam- 
ples are small or randomly selected 1000 permutations 
for unit root were applied to each sample at the sig- 
nificance level 0.05. The power of the test is tabulated in 
Table 1 based on 1000 simulated tests for , 25, 50, 
100, 250, 500 and , 0.4, 0.6, 0.8. From the table, 
it is easy to see that the power gets closer to 1 when the 
sample size increases and this demonstrates the con- 
sistency of the proposed permutation test. 

Y aY e 

n
0.2a 

0.2

2, , 1t n 

5

5n 

0Y  e

a 



5. An Example 

Reference [5] studied the stochastic structure of velocity 
in order to determine whether there is a statistical basis 
for extrapolative prediction. Noting that the velocity of 
money is defined as the ratio of national income to the 
stock of money. In the paper they conclude that the logs 
of the velocity series constructed in [6] are well char- 
acterized as a simple random walk. As preliminary 
analysis, we look at the time series plot of t , the cen- 
tered logs of velocity. The pattern in the time series plot 
is typical of a nonstationary series of the sort which 
displays no affinity for a mean value. We also note that 
the autocorrelations of centered logs of velocity series 
are very large and decline slowly with increasing lag 
(Figure 3). Now let us look at the time series plot of t

Y

X , 
the first differences of centered logs of velocity, and 
autocorrelations of tX  (Figure 4). Judging from the 
time series plot and autocorrelations of time series tX ,  
 

Table 1. Power of our permutation test. 

n 5 25 50 100 250 500 

a = 0.2 0.081 0.639 0.905 0.997 1 1 

a = 0.4 0.051 0.398 0.71 00.933 1 1 

a = 0.6 0. 047 0.19 0.342 0.652 0.954 0.998

a = 0.8 0.045 0.09 0.147 0.196 0.449 0.706

a = 1 0.054 0.046 0.047 0.044 0.048 0.055

 

Figure 3. Time series  and its autocorrelations. tY
 

 

Figure 4. Time series tX  and its autocorrelations. 

 
there seems no significant dependence in the time series 

tX . Moving on to the formal analysis, we can see that it 
is reasonable to fit model 1t t t  to the centered 
logs. With an application of permutation test on the 
centered logs, we obtain the test statistic 

Y aY e 

0.04obsT  , 
and the p-value = 0.7674. The null hypothesis is not 
rejected at any reasonable level. 
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