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ABSTRACT 

This elucidation investigates the Hausdorff dimension of the output space of multi-layer neural networks. When the 
factor map from the covering space of the output space to the output space has a synchronizing word, the Hausdorff 
dimension of the output space relates to its topological entropy. This clarifies the geometrical structure of the output 
space in more details. 
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1. Introduction 

The multi-layer neural networks (MNN, [1,2]) have 
received considerable attention and were successfully 
applied to many areas such as signal processing, pattern 
recognition ([3,4]) and combinatorial optimization ([5,6]) 
in the past few decades. The investigation of mosaic 
solution is the most essential in MNN models due to the 
learning algorithm and training processing. In [7-9], the 
authors proved that the output solutions space  of a 
2-layer MNN forms a so-called sofic shift space, which 
is a factor of a classical subshift of finite type. Thus, 
MNN model indeed produces abundant output patterns 
and makes learning algorithm more efficient. A useful 
quantity to classify the output solution space is the 
topological entropy  ([10]). We call the output 
solution space pattern formation if , and call 
it spatial chaos if . The 
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dicates that the output patterns grow subexponentially 
and exponentially for . For positive entropy 
systems, the explicit value of h  presents how 
chaotic the system is. In [7], Ban and Chang provided a 
method to compute explicit values of  for a 

-layer MNN. The method is quite general and it makes 
the computation of  possible for arbitrary 
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From the dynamical system (DS) point of view, the 

topological entropy reveals the complexity of the global 
patterns. However, it provides less information of the 
inner structure of a given DS, e.g., self-similarity or 
recurrent properties. The possible quantity reveals that such 
properties are the Hausdorff dimension (HD, [11]) since 
the Hausdorff dimension is an indicator of the geometrical 
structure. For most DS, the computation of Hausdorff 
dimension is not an easy task, and the box dimension 
(BD) is usually computed first to give the upper bound 
for HD. Due to the relationship of topological entropy 
and BD ([12]) of a symbolic DS1, the previous work ([7]) 
for topological entropy gives the upper bound for HD of 

-layer MNN. Nature question arises: Given a MNN, 
how to compute the explicit value for HD? The aim of 
this paper is to establish the HD formula for -layer 
MNNs. Using the tool of symbolic DS, the HD formula 
will be established for -layer MNNs which possesses 
a synchronizing word (Theorem 2.4). The result leads us 
to exploit the inner structure for a -layer MNN. We 
believe that further interesting applications of the results 
presented (or of the generalizations) can be obtained. 
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This paper is organized as follows. Section 2 contains 
a brief disscussion for the computation of topological 
entropy in [7]. The main result is stated and proved 
therein. Section 3 presents an MNN model for which we 
can compute its HD. 

2. Preliminaries and Main Results 

A one-dimensional multi-layer neural network (MNN) is 
realized as  
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for some ,  and . The finite 
subset 
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piecewise linear map  
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of a mosaic solution is called a mosaic pattern, where  

    k k
i iy f x . 

The solution space  of (1) stores the patterns Y y , and 
the output space  NY  of (1) is the collection of the 

output patterns; more precisely,  
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A neighborhood   is called the nearest neigh- 
borhood if  1,1  . In [7], the authors showed that 

-layer MNNs with nearest neighborhood are essential 
for the investigation of MNNs. In the rest of this manu- 
script, we refer MNNs to -layer MNNs with nearest 
neighborhood unless otherwise stated. 

2

2

2.1. Topological Entropy and Hausdorff  
Dimension 

Since the neighborhood   is finite and is invariant for 
each , the output space is determined by the so-called 
basic set of admissible local patterns. Replace the pattern 
1 and 1 by  and +, respectively; the basic set of 
admissible local patterns of the first and second layer is a 
subset of  

i
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and  1, ,p p 8 8, respectively, where  deno- 
tes  
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To ease the notation, we denote  

1

2 3


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by 1 2 3   . Given a template  , the basic set of 
admissible local pattern  
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is determined, where  and  are the basic set of 
admissible local patterns of the first and second layer, 
respectively. Let  
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denote the parameter space of (1). Theorem 2.1 asserts 
that 8  can be partitioned into finitely many subregions 
so that two templates in the same partition exhibit the 
same basic set of admissible local patterns. 



Theorem 2.1. (See [7]) There is a positive integer  
and unique set of open subregions  

K

1

K

k k
P


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[(i)] 

1) 8 1

K

kk
P


 . 

2) i jP P    if i j . 

3) Templates , kP   for some  if and only if k
      .  
Since the template of MNNs is spatially invariant, the 

so-called transition matrix is used to investigate the com- 
plexity of MNNs. The transition matrix  is defined by T
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herein k  is presented as 1 1k k kp      for 1, ,8k   . 
Furthermore, the transition matrix of the second layer  

the transition matrix of the first layer  

  1 4 4 0,1T   
  2 8 8 0,1T   

is defined by  
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1 , 1 if and only if , ,T i j i j     (6) 

   2
2 , 1 if and only if ,i jT i j p p  ;    (5) 

where  
 

 
Write  

 22
1 , , 1i j i j

T T


  

as four smaller  matrices. Define 2 2 1T  by  

   1 ,, , , where 2 2, 2 2.i jT p q T k l p i j q k l                              (7) 

 
Ban and Chang [7] decomposed T  as the product of 

 and T . 1T 2

Theorem 2.2. (See [7]) Suppose  is the transition 
matrix of (1), and 1T  and 2  are the transition 
matrices of the first and second layer, respectively. Let 

T
T

1T  be defined as in (7). Then  
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where  is a  matrix with all entries being 1’s; 
 and  are the Hadamard and Kronecker product, 

respectively.  

kE

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As being demonstrated in [7-9,13], the solution space 
 is a so-called shift of finite type (SFT, also known as 

a topological Markov shift) and the output space  is 
a sofic shift. More specifically, a SFT can be represented 
as a directed graph  and a sofic shift can be 
represented as a labeled graph  for some 
labeling  and finite alphabet  . A labeled 
graph  is called right-resolving if the 
restriction of   to 

Y
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 ,G
:   
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I  is one-to-one for all I  , 
where I  consists of those edges starting from I . If 

 is not right-solving, there exists a labeled graph , 
derived by applying subset construction method (SCM) 
to , such that the sofic shift represented by  is 
identical to the original space. A detailed instruction is 

referred to [14]. 

 

 

One of the most frequently used quantum for the 
measure of the spatial complexity is the topological 
entropy. Let X  be a symbolic space and let  n X  
denote the collection of the patterns of length  in n X . 
The topological entropy of X  is defined by  

   log
lim , provided the limit exists.n

n

X
h X
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Herein  

   n nX X    

indicates the cardinality of  n X . 

Theorem 2.3. (See [7,9,13]) Let  be the labeled 
graph obtained from the transition matrix  of (1). 
The topological entropies of  and  are 


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log T  and 

  2 log , if is right-resolving;

log , otherwise;
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respectively, where H  is the transition matrix of the 
labeled graph  which is obtained by applying SCM to 

.  



Aside from the topological entropy, the Hausdorff di- 
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mension characterizes its geometrical structure. The 
concept of the Hausdorff dimension generalizes the 
notion of the dimension of a real vector space and helps 
to distinguish the difference of measure zero sets. Let 

 be a finite set with cardinality  n , which we 
consider to be an alphabet of symbols. Without the loss 
of generality, we usually take  

 0,1, , 1n  . 

The full -shift  is the collection of all biinfinite 
sequences with entries from . More precisely,  
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It follows that X   and X   can be embedded in the 
close interval  0,1  separately. Moreover,   and 

 can be mapped onto the close interval   0,1 , and 
X  is identified with the direct product X X  . This 

makes the elucidation of the Hausdorff dimension of the 
output space  comprehensible. (Recall that the 
alphabet  of   is 

 2Y
2Y  , :     0,1 ). 

2.2. Main Result 

Suppose ,X Y  are shift spaces and : X Y   is a 
factor map. We say that   has a synchronizing word if 
there is a finite word n n  1 2y y y 

 
Y

y
 such that each 

element in 1 2 n  admits the same terminal 
entry. More precisely, for any  

1 y y

 1 2 1 2,m m mx x x x x x X      
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   1 2 1 2 1 2m m nx x x x x x y y y        , 

we have m mx x
G
. 

Suppose  is a labeled graph representation 
of the output space  of (1). Denote by  the SFT 
represented by the graph  if  is right-resolving; 
otherwise, denote by W  the SFT represented by the 
graph 

 ,
2Y


 W
G 

H , where  , H    is obtained by applying 
SCM to . It follows that  is a covering space of 

 and there is a factor map  which is 
represented by the labeling  (or ). Theorem 2.4 
asserts that the Hausdorff dimension of the output space 

 relates to the topological entropy of its cover- 

ing space 


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W


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

Y

 h W  if   has a synchronizing word. 
Theorem 2.4. Along with the same assumption of 

Theorem 2.3. Let , which is represented by  if   
is right-resolving and is represented by 

W G
H  otherwise, 

be the covering space of . Suppose the factor map 
, which is represented by the labeling  

(or 
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 2Y:W  

 ), has a synchronizing word. Then 
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 (10) 

Restated,  

 
  2

2
2

di .
log 2

h


Y
m Y            (11) 

Proof. Suppose X  is a SFT and   is an invariant 
probability measure on X . The Variational Principle 
indicates that the topological entropy of X  is the 
supremum of the measure-theoretic entropy of X ; more 
precisely,  

   


su : is an invariant

lity measure on 

X

X

 p

probabi

hh X 
 

A measure   is called maximal if  attains the 
supremum. Let 

 h X
  be a Markov measure which is 

derived from the transition matrix of X . Then   is 
the unique measure that satisfies  

  h X h X  

if X  is topologically transitive (cf. [15]). Ban and Chang 
showed that, if  has a synchronizing word, 
then the Hausdorff dimension of the output space is  

 2:W Y 

     2 2
,

log 2 log 2

h W h W
  

 

 2dim Y   

where     is a maximal measure of W W   (see 
[16], Theorem 2.6). Since  is right-resolving, the 
factor map  is finite-to-one. It follows that  


2Y

h W

W :

    2h Y . 

Theorem 2.3 demonstrates that the topological entropy of 
the output space  

  2 logh  HY

 

  

(respectively  2 logh  T ) if  is not right- 
resolving (respectively  is right-resolving). A straight- 
forward examination infers that  

Y




    h W h W h W    .  
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Hence we have  

 
  

2

2

2

2

log
, if is right-resolving;2 log 2

dim
log 2 log

, otherwise.
log 2

h






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
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Y
Y

T

H



 

this completes the proof.                         

3. Example 

Suppose  , , A B z  with  

 1 2.2,1.7 ,A    2 4, 2 ,A      2.6, 1.4  B , 

and  1.2,0.3 z . The transition matrices for the first 
and second layer are  

1

2

0 1 0 0

0 0 1 1

1 1 0 0

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0
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0 0 0 0 0 0 0 0
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  
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






 

respectively. Therefore, the transition matrix and the 
symbolic transition matrix of the MNN are 

01

01 01

10 11

10 11
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a

a a

a a

a a

 
 
 
 
 
   
 
 
 
  
 

        
         
       
 
             
 
      
              

T

S



 

respectively, where 

00 01

10 11

, ,

, .

a a

a a

   

    
 

It is seen from the symbolic transition matrix S  that 
the labeled graph  is not right-resolving, and applying 
SMC to  derives a right-resolving labeled graph  
(cf. Figure 1). The transition matrix of , indexed by 


 


 6, , ,p p p p3 4 5 6,p 5 , p , is  

0 0 0 1 0

0 0 0 0 1

.1 0 0 1 0

1 0 0 1 0

0 0 1 1 0

 
 
 
 
 
 
 
 

H  

Theorem 2.3 indicates that  

  2 log logh g HY , 

where  

1 5

2
g


  

is the golden mean. 
The symbolic transition matrix of  is  

01

01

10 11

10 11

10 11

.

a

a

a a

a a

a a

    
     
     
 

   
    

S  

It is seen that both 10a     and 11a  are syn- 
chronizing words of 

  
 . Theorem 2.4 demonstrates that  

 
2

2 log
dim 1.3885.

log 2

g
 Y  

The fractal set of the output space  is seen in 
Figure 2. 

 2Y

 

 

Figure 1. The right-resolving labeled graph  obtained 

by applying SCM to  in example. Here 



  p p p9 5 6, . 
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Figure 2. The fractal set of the output space   2Y .
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