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ABSTRACT 

In this paper, we give a comment on the dislocated-neighbourhood systems due to Hitzler and Seda [1]. Also, we re-
cover the open sets of the dislocated topology. 
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1. Introduction 

In recent years, the role of topology is of fundamental 
importance in quantum particle physics and in logic 
programming semantics (see, e.g. [2-6]). Dislocated 
metrics were studied under the name of metric domains 
in the context of domain theory (see, [7]). Dislocated 
topologies were introduced and studied by Hitzler and 
Seda [1]. 

Now, we recall some definitions and a proposition due 
to Hitzler and Seda [1] as follows. 

Definition 1.1. Let X  be a set.  :d X X  0,  
is called a distance function. Consider the following 
conditions, for all , ,x y z X , 

(d1) ;  , 0d x x 
 ,d x y (d2) if , then 0 x y ; 

(d3) ;  , ,d x y d y  x
  , ,d x y d x z (d4) .   d z y,

If  satisfies conditions (d1) - (d4), then it is called a 
metric on 

d
X . If it satisfies conditions (d2) - (d4), then it 

is called a dislocated metric (or simply d-metric) on X . 
Definition 1.2. Let X  be a set. A distance function 
 is called a partial metric on d X  if it satisfies (d3) 

and the conditions: 
(d5) x y
  , ,x d x

 d x x

 if and only if 
;  d x y d y y 

 , ,d x y
,

,
(d6) ; 
(d7) ,    , ,d x z d x y    ,d y z d y y

, ,for each x y z X .  
It is obvious that any partial metric is a d-metric. 
Definition 1.3. An (open ) ball in a d-metric 

space 



 ,X d  with centre x X  is a set of the form 
    : ,B x X d x yy    , where . 0

It is clear that  B x  may be empty in a d-metric 
space  ,X d  because the centre x  of the ball  B x  
doesn’t belong to  B x . 

Definition 1.4. Let X  be set. A relation 
 P X R X  is called a d-membership relation (on 

X ) if it satisfies the following property for all x X  
and ,A B X : xRA  and A B  implies xRB .  

It is noted that the “d-membership”-relation is a 
generalization of the membership relation from the set 
theory. 

In the sequel, any concept due to Hitzler and Seda will 
be denoted by “HS”. 

Definition 1.5. Let X  be a nonempty set. Suppose 
that  is a d-membership relation on R X  and xu    
is a collection of subsets of X  for each x X . We 
call  ,xu R  a d-neighbourhood system (d-nbhood 
system) for x  if it satisfies the following conditions: 

(Ni) if xU u , then x U ; 
(Nii) if , xU V u , then xU V  u ; 
(Niii) if xU u , then there is a  with V U xV u  

such that for all yRV  we have yU ; u
(Niv) if xU u  and U  then ,V xV .  u
Each xU u  is called an HS-d-neighborhood (HS 

d-nbhood) of x . The ordered triple  , , X u R
:xu u

 is called 
an HS-d-topological space where .  Xx 

Proposition 1.1. Let  ,X d  be a d-metric space. 
Define the d-membership relation  as the relation R
    , 0 for whic: there hx A  B x A . For each 

x X , let xu  be the collection of all subsets A  of 
X  such that xRA R. Then   is an HS d-nbhood 

system for 
,xu

x  for each x X , i.e., 
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d-topological neighbourhood space. 
The present paper is organized as follows. In Section 2, 

we redefine the dislocated neighbourhood systems given 
due to Hitzler and Seda [1]. Section 3 is devoted to 
define the concept of dislocated topological space by 
open sets. In Section 4, we study topological properties 
of dislocated closure and dislocated interior operation of 
a set using the concept of open sets. Finally, in Section 5, 
we study some further properties of the well-known 
notions of dislocated continuous functions and dislocated 
convergence sequence via d-topologies. 

2. Redefinition of Definition 1.5. 

In Proposition 1.1, it is proved that  , , X u R  is an HS 
d-topological neighbourhood space. We remark that 
Property (Niii) can be replaced by the following 
condition:  

(Niii)  If xU u , then for each , yyRU U u
 , ,

.  
One can easily verifies that X u R  satisfies (Niii) 

. 
According to the above comment, we introduce a 

redefinition of the concept of the dislocated-neigh- 
bourhood systems due to Hitzler and Seda [1] as follows. 

Definition 2.1. Let X  be a nonempty set. Suppose 
that  is a d-membership relation on R X  and xu    
be a collection of subsets of X  for each x X . We 
call  a d*-neighbourhood system (d*-nbhood 
system) for 

 xu , R
x  if it satisfies the following conditions: 

(Ni) if xU u , then xRU ; 
(Nii) if , xU V u , then xU V u ; 
(Niii)* if xU u  and yRU , then yU u ; 
(Niv) if xU u  and U , then V xV u .  
Each xU u  is called a d*-neighborhood of x . If 

x , then  : x Xu u  , , X u R  is called a d*-topolo- 
gical neighborhood space. 

Now, we state the following theorem without proof. 
Theorem 2.1. Let  ,X d  be a d-metric space. 

Define the d-membership relation  as the relation R
xRA  iff there exists  for which 0  B x A . 
Assume that  and 

. Then 
 d xRA


: aA X 

, ,
nxu A

X :x xu u X u R  is a d*-topological 
neighborhood space.  

3. Dislocated-Topological Space 

In what follows we define the concept of dislocated- 
topological space (for short, d-topological space) by the 
open sets and prove that this concept and the concept of 
d*-topological neighborhood space are the same. 

Definition 3.1. Let X  be a nonempty set. Suppose 
that  is a d-membership relation and R

 :x A X xRA    for each x X . We call x  an 
xd -topology on X  iff it satisfies the following 
conditions: 

(dτx1) ;xX   
(dτx2) , ;x xA BA B      
(dτx3) A B  and x xA B    .  
Each xA   is called a xd -open set. If x  is an 

xd -topology on X  for each x X , then xx X
 


  

is called a d-topology on X . The triple  , ,xX R  is 
called an xd ological space and the triple -top  , ,X R  

 d-topological space. is called a
Definition 3.2. Let  , ,X R  be an xd -topological 

space. A  is called a xd -closed iff cA  is a xd - 
open.. 

Theorem 3.1. The concepts of d*-topological 
neighborhood space and d-topological space are the 
same. 

Proof. Let  *d TNS X  be the family of all d*- 
topological neighbourhood systems on X  and let 

 dT X  be the family of all d-topologies on X . The 
proof is complete if we point out a bijection between 

 X*d TNS  and  dT X . Let 
   *:H d TNS X dT X  and 

   *:K dT X d TNS X  be functions defined as 
follows:     , ,, ,H X u R  X R , where x xu   for 
each x X  and   , ,  , ,K X R X u R , where 

x xu   for each x X . One can easily verifies that 
these functions are well defined,  and  dT XHoK id

 *d TNS X
KoH id . 

The following counterexample illustrates that the 
statement: xRA  iff cxRA  may not be true. 

Counterexample 3.1. Let  , , X x y z  and 
              , , , , , , ,R x x x x y z x X

R
, , , , ,x x z x y . 

Then  is a d-membership relation. Since 
  , ,x y z R , then  c

xR x { }, i.e. A x X   such 
that xRA c and xRA . 

We get the following theorem without proof. 
Theorem 3.2. Let X  be a nonempty set. Suppose 

that  is a d-membership relation and R
 : c

xF A X xRA   for each x X . Assume that xF  
satisfies the following conditions: 

(dFx1) xF
,

; 
(dFx2) x xA B F A B F   ; 
(dFx3) A B  and x xB F A F   .  
Then  , ,X R  is a d-topology on X , where 
 ndc : ax xA A X  A F  . If  , ,X R  is a d- 

topological space, then for each x X  the family xF  
of all xd -closed sets satisfies the conditions (dFx1)- 
(dFx3). 

4. Dislocated Closure and Dislocated Interior 
Operations 

In the sequel we define the dislocated closure and 
dislocated interior operations of a set and study some 
topological properties of dislocated closure and dis- 
located interior operation.  

Definition 4.1. Let  , ,xX R  be an -topological xd
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M. A. AHMED  ET  AL. 

Open Access                                                                                         IJMNTA 

230 

  : andx A A A A   space. The xd -interior of a subset A  of X  is 
denoted and defined by: 

   : andx xd int B B A BA    . 

  is an xd -topology on 
X . The -membership relation is defined as d xRA  iff 

xA  . 
Proof. The desired result is obtained from the 

following: 
Remark 4.1. From Definition 4.1, if x , then 

 is undefined. If xd int   x
d int 

 , ,x

, then 
 is defined. (I) (dτx1) xX   since  X X  ; x

Theorem 4.1. Let (dτx2)  , xA B A A     and 

  
X R  be an -topological 

space. 
xd

   
x

B A B

A B A B




 

  

 
 

=B B A 
; (A) If , then  for each  xd int  A Ax 

A X . 
(dτx3) A B  and xA A    , 
   A A B B     (from B(iii)-(iv)). 

(B) If x
 xd i X X  
 x A A 

, then 
(i) ; nt

d int xRA(ii)  for each A X ; 
(iii) 

    d int d int A d  
,

 x nt  i x x  for 
each 

A B 


B
A B P X

d int


 x A A 
; 

(iv)  or   for each A X . 
(v)  if   x x xd int A d i      nt Ad int  x  

or .  nt A x

Corollary 4.1. (1) If 
d i A

 xd in 
d int 

t A A , then 
 is a Ax xd -open. 

(2) If xA   xd int A A  
   : P X   

, then . 
Theorem 4.2. If  such that 

the conditions B(i), B(iii) and B(iv) are satisfied then 
P X 

(II)  and xA B A     and 

xA B B     (from I 3)( xd ). 
 , ,Definition 4.2. Let xX R  be an xd -topological 

space. The xd -closure of a subset A  of X  is 
denoted and defined by: 

   : andx x

If 
d cl B F   A  A B .  

x , then  is undefined but if d cl X x

x , then  l Xx

Theorem 4.3. Let 
d c   is defined. 

 , ,xX R  be an xd -topological 
space. Then for each A X , 

    c
x xd cl A d int A   

c
. 

Proof. 
 

  
: a

    
   

: and : and
c c

c c c c c

nd

x x x

x x

B B F B B A B

d int A

d cl A

H H A

A

H

 

 

    

 

  

 

 , ,x


 

 
Definition 5.1. Let  , 1X d  and  2, X d

:f X Y
 be dis- 

located-metric spaces. A function  is called 
d-continuous at 0x X  iff  such 
that 

 0,  0 
        1 0 2 0, ,d x x  d f x f x    . We say 

 is d-continuous iff  is d-continuous at each f f

From Theorems 4.1 and 4.3, we obtain the following 
theorem without proof. 

Theorem 4.4. Let xdX R  be an -topological 
space. 

, then  for each  xd cl A (A) If x A
A X . 0x X  

Theorem 5.1. Let  (B) If x
xd c  
x A A 

, then 
(i) ;  l 

 d cl(ii)  for each A X
    

; 
(iii)  B  x cl x xd B d cl A    

 x A A 
cl A

d cl
d ; 

(iv)  or X  for each ; XA 
A(v)  if    x x xd cl A d cl     cl d x  

or .  l A x

Corollary 4.2. (1) If 
d c A

 xd cl 
d cl 

A A , then 
 is a Ax xd -closed. 

(2) If xA F , then  xd cl A A   . 

5. Dislocated Continuous Functions and  
Dislocated Convergence Sequences via 
d-Topologies 

Now, we define the dislocated continuous functions and 
dislocated convergence sequences. We also obtain a 
decomposition of dislocated continuous function and 
dislocated convergence sequences. 

1,X d  and 2  be 
dislocated-metric spaces and  be any 
function. Assume that 

 ,Y d 
:f X  Y

 , ,X R  (resp. ) be 
the d-topological space obtained from  1

 , ,Y R
,


X d  (resp. 
 ,Y d

f
2

(1)  is d-continuous at 
). Then the following statements are equivalent: 

0x X . 

(2)    
00

1, .xf xu f u     

(3)   00
, xf xv V u u     such that  f u v , where 

 0 f xV  and 
0xu  are the d*-topological neighborhood  

systems obtained from  1,X d  and  respec- 
tively. 

 2,Y d 

0(4) 0      such that 
     0 0

Proof. ((1)(2)): Let 

f B x x B f . 

0f xu  . Then  such 
that 

0 
  0B f x u . Thus  such that   0  

        1 0x x d 2d 0, ,f x f x    , i.e., 

   0x B x   ,     0B f xf x u  , then 
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  0
   1

0B x f u
 . Hence  1

xf u   . 
((2)(1)): Let . Suppose that for each 0 0  , 

x X 
   

 such that 
    1 0d x x 2 0, , f xd f x  

    00

. Now, 

f xB f x 

 
. From the assumption 

 1
0  0xf B f x  

 
, i.e., ch that   0   su
   1x B x f

 
   

0 0xB f . Then 
 0f x B f x  . The contradiction demands that  

is d-continuous at 
f

0x X . 
(1)  (4) and (2)  (3) are immediate. 
Definition 5.2. Let  , X d  be a d-metric space. A 

sequence  nx  d-converges to x X
n n  d x

 if 
 such that , 0 00 n N     ,n x   . 

Theorem 5.2. Let  , X d  be a d-metric space and 
 , ,X R  be the d-topological space obtained from it. 
Then the sequence  nx  d-converges to x X  iff 

0,xu n N     such that for each . 0

Proof. (:) Let 
, nx u n n

xu  . Then there exists 0  su  
that  B x m the assumption 0n   
that n n  s n

ch
 suc

. T
u . Fr
 0 , ,nx x

o
 

N h
hu  x B  each 

0n n n

x  for 
. So x u ach 0n n for e . 

   B x B x (:) Let . Since , then 0
  xB x 

 0 , nn n x B x 
limn nd x

. Thus 0  such that for each 
 ,i.e.,  for each . 

Hence . 

n 

, x 

N

 0
 ,nd x x   0n n
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