

On Dislocated Metric Topology

Mohamed A. Ahmed, F. M. Zeyada, G. F. Hassan^{*}

Department of Mathematics, Faculty of Science, Assiut University, Qesm Than Asyut, Egypt Email: mahmed68@yahoo.com, zeyada1@hotmail.com

Received April 4, 2013; revised May 18, 2013; accepted June 10, 2013

Copyright © 2013 Mohamed A. Ahmed *et al.* This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

In this paper, we give a comment on the dislocated-neighbourhood systems due to Hitzler and Seda [1]. Also, we recover the open sets of the dislocated topology.

Keywords: Generalized Topology; Dislocated Neighbourhood Systems; Dislocated Metric

1. Introduction

In recent years, the role of topology is of fundamental importance in quantum particle physics and in logic programming semantics (see, e.g. [2-6]). Dislocated metrics were studied under the name of metric domains in the context of domain theory (see, [7]). Dislocated topologies were introduced and studied by Hitzler and Seda [1].

Now, we recall some definitions and a proposition due to Hitzler and Seda [1] as follows.

Definition 1.1. Let X be a set. $d: X \times X \rightarrow [0, \infty)$ is called a **distance function**. Consider the following conditions, for all $x, y, z \in X$,

 $(d_1) d(x,x) = 0;$

 (d_2) if d(x, y) = 0, then x = y;

$$(d_3) \quad d(x, y) = d(y, x);$$

 $(d_4) \quad d(x,y) \leq d(x,z) + d(z,y).$

If d satisfies conditions $(d_1) - (d_4)$, then it is called a **metric** on X. If it satisfies conditions $(d_2) - (d_4)$, then it is called a **dislocated metric** (or simply *d*-metric) on X.

Definition 1.2. Let X be a set. A distance function d is called a **partial metric** on X if it satisfies (d_3) and the conditions:

Definition 1.3. An (open ϵ -) ball in a *d*-metric

space (X,d) with centre $x \in X$ is a set of the form $B_{\epsilon}(x) = \{y \in X : d(x,y) < \epsilon\}$, where $\epsilon > 0$.

It is clear that $B_{\epsilon}(x)$ may be empty in a *d*-metric space (X,d) because the centre x of the ball $B_{\epsilon}(x)$ doesn't belong to $B_{\epsilon}(x)$.

Definition 1.4. Let X be set. A relation

 $R \subseteq X \times P(X)$ is called a *d*-membership relation (on *X*) if it satisfies the following property for all $x \in X$ and $A, B \subseteq X$: *xRA* and $A \subseteq B$ implies *xRB*.

It is noted that the "*d*-membership"-relation is a generalization of the membership relation from the set theory.

In the sequel, any concept due to Hitzler and Seda will be denoted by "HS".

Definition 1.5. Let X be a nonempty set. Suppose that R is a d-membership relation on X and $u_x \neq \emptyset$ is a collection of subsets of X for each $x \in X$. We call (u_x, R) a d-neighbourhood system (d-nbhood system) for x if it satisfies the following conditions:

(Ni) if $U \in u_x$, then x < U;

(Nii) if $U, V \in u_x$, then $U \cap V \in u_x$;

(Niii) if $U \in u_x$, then there is a $V \subseteq U$ with $V \in u_x$ such that for all yRV we have $U \in u_y$;

(Niv) if $U \in u_x$ and $U \subseteq V$, then $V \in u_x$.

Each $U \in u_x$ is called an **HS-d-neighborhood** (HS *d*-nbhood) of x. The ordered triple (X, u, R) is called an **HS-d-topological space** where $u = \{u_x : x \in X\}$.

Proposition 1.1. Let (X,d) be a *d*-metric space. Define the *d*-membership relation *R* as the relation $\{(x, A): \text{there } \epsilon > 0 \text{ for which } B_{\epsilon}(x) \subseteq A\}$. For each $x \in X$, let u_x be the collection of all subsets *A* of *X* such that xRA. Then (u_x, R) is an HS *d*-nbhood system for *x* for each $x \in X$, *i.e.*, (X, u, R) is an HS

^{*}Current address: Department of Mathematics, Faculty of Science, Northern Boarders University, Arar, KSA.

d-topological neighbourhood space.

The present paper is organized as follows. In Section 2, we redefine the dislocated neighbourhood systems given due to Hitzler and Seda [1]. Section 3 is devoted to define the concept of dislocated topological space by open sets. In Section 4, we study topological properties of dislocated closure and dislocated interior operation of a set using the concept of open sets. Finally, in Section 5, we study some further properties of the well-known notions of dislocated continuous functions and dislocated convergence sequence via *d*-topologies.

2. Redefinition of Definition 1.5.

In Proposition 1.1, it is proved that (X, u, R) is an HS *d*-topological neighbourhood space. We remark that Property (Niii) can be replaced by the following condition:

(Niii) * If $U \in u_x$, then for each $yRU, U \in u_y$.

One can easily verifies that (X, u, R) satisfies (Niii) *.

According to the above comment, we introduce a redefinition of the concept of the dislocated-neighbourhood systems due to Hitzler and Seda [1] as follows.

Definition 2.1. Let X be a nonempty set. Suppose that R is a d-membership relation on X and $u_x \neq \emptyset$ be a collection of subsets of X for each $x \in X$. We call (u_x, R) a d*-neighbourhood system (d*-nbhood system) for x if it satisfies the following conditions:

(Ni) if $U \in u_x$, then xRU;

(Nii) if $U, V \in u_x$, then $U \cap V \in u_x$;

(Niii)* if $U \in u_x$ and yRU, then $U \in u_y$;

(Niv) if $U \in u_x$ and $U \subseteq V$, then $V \in u_x$.

Each $U \in u_x$ is called a *d**-neighborhood of *x*. If $u = \{u_x : x \in X\}$, then (X, u, R) is called a *d**-topological neighborhood space.

Now, we state the following theorem without proof.

Theorem 2.1. Let (X,d) be a *d*-metric space. Define the *d*-membership relation *R* as the relation *xRA* iff there exists $\epsilon > 0$ for which $B_{\epsilon}(x) \subseteq A$. Assume that $u_x = \{A : A \subseteq X \text{ and } xRA\}$ and

 $u = \{u_x : x \in X\}$. Then (X, u, R) is a *d**-topological neighborhood space.

3. Dislocated-Topological Space

In what follows we define the concept of dislocatedtopological space (for short, *d*-topological space) by the open sets and prove that this concept and the concept of d^* -topological neighborhood space are the same.

Definition 3.1. Let X be a nonempty set. Suppose that R is a *d*-membership relation and

 $\tau_x = \{A \subseteq X : xRA\}$ for each $x \in X$. We call τ_x an *xd* -topology on *X* iff it satisfies the following conditions:

 $(d\tau_x 1) \quad X \in \tau_x;$

 $(d\tau_x 2)$ $A, B \in \tau_x \Longrightarrow A \cap B \in \tau_x;$

 $(d\tau_x 3)$ $A \subseteq B$ and $A \in \tau_x \Longrightarrow B \in \tau_x$.

Each $A \in \tau_x$ is called a $d\tau_x$ -open set. If τ_x is an xd-topology on X for each $x \in X$, then $\tau = \bigcup_{x \in X} \tau_x$ is called a *d*-topology on X. The triple (X, τ_x, R) is called an xd-topological space and the triple (X, τ, R) is called a *d*-topological space.

Definition 3.2. Let (X, τ, R) be an *xd*-topological space. *A* is called a $d\tau_x$ -closed iff A^c is a $d\tau_x$ -open..

Theorem 3.1. The concepts of d^* -topological neighborhood space and d-topological space are the same.

Proof. Let $d^*TNS(X)$ be the family of all d^* -topological neighbourhood systems on X and let dT(X) be the family of all d-topologies on X. The proof is complete if we point out a bijection between $d^*TNS(X)$ and dT(X). Let $H: d^*TNS(X) \rightarrow dT(X)$ and

 $K: dT(X) \rightarrow d^*TNS(X)$ be functions defined as follows: $H((X, u, R)) = (X, \tau, R)$, where $\tau_x = u_x$ for each $x \in X$ and $K((X, \tau, R)) = (X, u, R)$, where $u_x = \tau_x$ for each $x \in X$. One can easily verifies that these functions are well defined, $HoK = id_{dT(X)}$ and $KoH = id_x$.

 $KoH = id_{d^*TNS(X)}$. The following counterexample illustrates that the statement: xRA iff xRA^c may not be true.

Counterexample 3.1. Let $X = \{x, y, z\}$ and

 $R = \{(x, \{x\}), (x, \{x, y\}), (x, \{x, z\}), (x, \{y, z\}), (x, X)\}.$ Then *R* is a *d*-membership relation. Since $(x, \{y, z\}) \in R$, then $xR\{x\}^c$, *i.e.* $\exists A = \{x\} \subseteq X$ such that xRA and xRA^c .

We get the following theorem without proof.

Theorem 3.2. Let X be a nonempty set. Suppose that R is a *d*-membership relation and

 $F_x = \{A \subseteq X : xRA^c\}$ for each $x \in X$. Assume that F_x satisfies the following conditions:

 $(dF_x1) \ \emptyset \in F_x;$

 $(dF_x 2)$ $A, B \in F_x \Rightarrow A \bigcup B \in F_x;$

 (dF_x3) $A \subseteq B$ and $B \in F_x \Longrightarrow A \in F_x$.

Then (X, τ, R) is a *d*-topology on X, where $\tau_x = \{A^c : A \subseteq X \text{ and } A \in F_x\}$. If (X, τ, R) is a *d*-topological space, then for each $x \in X$ the family F_x of all $d\tau_x$ -closed sets satisfies the conditions $(dF_x 1)$ - $(dF_x 3)$.

4. Dislocated Closure and Dislocated Interior Operations

In the sequel we define the dislocated closure and dislocated interior operations of a set and study some topological properties of dislocated closure and dislocated interior operation.

Definition 4.1. Let (X, τ_x, R) be an *xd*-topological

space. The $d\tau_x$ -interior of a subset A of X is denoted and defined by:

 $d\tau_x - int(A) = \bigcup \{B : B \subseteq A \text{ and } B \in \tau_x\}.$

Remark 4.1. From Definition 4.1, if $\emptyset \notin \tau_x$, then $d\tau_x - int(\emptyset)$ is undefined. If $\emptyset \in \tau_x$, then $d\tau_x - int(\emptyset)$ is defined.

Theorem 4.1. Let (X, τ_x, R) be an *xd*-topological space.

(A) If $\emptyset \in \tau_x$, then $d\tau_x - int(A) = A$ for each $A \subseteq X$.

(B) If $\emptyset \notin \tau_x$, then

(i) $d\tau_x - int(X) = X$;

(ii) $d\tau_x - int(A) \subseteq A$ for each $A \subseteq X$; (iii)

 $d\tau_x - int(A \cap B) = (d\tau_x - int(A)) \cap (d\tau_x - int(B)) \quad \text{for}$ each $A, B \in P(X);$

(iv) $d\tau_x - int(A) = A$ or \emptyset for each $A \subseteq X$.

(v) $d\tau_x - int(d\tau_x - int(A)) = d\tau_x - int(A)$ if $\emptyset \in \tau_x$ or $d\tau_x - int(A) = A$.

Corollary 4.1. (1) If $d\tau_x - int(A) = A$, then $d\tau_x - int(A)$ is a $d\tau_x$ -open.

(2) If $A \in \tau_x$, then $d\tau_x - int(A) = A$.

Theorem 4.2. If $\theta: P(X) - \{\emptyset\} \to P(X)$ such that the conditions B(i), B(iii) and B(iv) are satisfied then

 $\tau_x = \{A : \theta(A) = A \text{ and } A \neq \emptyset\}$ is an *xd*-topology on *X*. The *d*-membership relation is defined as *xRA* iff $A \in \tau_x$.

Proof. The desired result is obtained from the following:

(I)
$$(d\tau_x 1)$$
 $X \in \tau_x$ since $\theta(X) = X$;
 $(d\tau_x 2)$ $A, B \in \tau_x \Rightarrow \theta(A) = A$ and
 $\theta(B) = B \Rightarrow \theta(A \cap B) = \theta(A) \cap \theta(B)$
 $= A \cap B \Rightarrow A \cap B \in \tau_x$

 $(d\tau_x 3) \quad A \subseteq B \text{ and } A \in \tau_x \Longrightarrow A \neq \emptyset,$

 $\theta(A) = A \Rightarrow \theta(B) = B$ (from B(iii)-(iv)). (II) *xRA* and $A \subseteq B \Rightarrow A \in \tau_x$ and

 $A \subseteq B \Rightarrow B \in \tau_x \quad (\text{from I} \ (d\tau_x 3)).$

Definition 4.2. Let (X, τ_x, R) be an *xd*-topological space. The $d\tau_x$ -closure of a subset *A* of *X* is denoted and defined by:

 $d\tau_x - cl(A) = \bigcap \{B : A \subseteq B \text{ and } \in F_x\}.$

If $\emptyset \notin \tau_x$, then $d\tau_x - cl(X)$ is undefined but if $\emptyset \in \tau_x$, then $d\tau_x - cl(X)$ is defined.

Theorem 4.3. Let (X, τ_x, R) be an *xd*-topological space. Then for each $A \subseteq X$,

$$d\tau_{x}-cl(A^{c})=(d\tau_{x}-int(A))^{c}.$$

Proof.

$$\left(d\tau_x - cl\left(A^c\right) \right)^c = \left(\bigcap \left\{ B : A^c \subseteq B \text{ and } \in F_x \right\} \right)^c = \bigcup \left\{ B^c : B^c \subseteq A \text{ and } B^c \in \tau_x \right\}$$
$$= \bigcup \left\{ H : H \subseteq A \text{ and } H \in \tau_x \right\} = d\tau_x - int(A)$$

From Theorems 4.1 and 4.3, we obtain the following theorem without proof.

Theorem 4.4. Let (X, τ_x, R) be an *xd*-topological space.

(A) If $\emptyset \notin \tau_x$, then $d\tau_x - cl(A) = A$ for each $A \subseteq X$.

(B) If $\emptyset \notin \tau_x$, then

(i) $d\tau_x - cl(\emptyset) = \emptyset$;

(ii)
$$d\tau_x - cl(A) \supseteq A$$
 for each $A \subseteq X$;

(iii)
$$d\tau_x - cl(A \cup B) = (d\tau_x - cl(A)) \cup (d\tau_x - cl(B))$$

(iv)
$$d\tau_x - cl(A) = A$$
 or X for each $A \subseteq X$;

(v) $d\tau_x - cl(d\tau_x - cl(A)) = d\tau_x - cl(A)$ if $\emptyset \in \tau_x$ or $d\tau_x - cl(A) = A$.

Corollary 4.2. (1) If $d\tau_x - cl(A) = A$, then $d\tau_x - cl(A)$ is a $d\tau_x$ -closed.

(2) If $A \in F_x$, then $d\tau_x - cl(A) = A$.

5. Dislocated Continuous Functions and Dislocated Convergence Sequences via *d*-Topologies

Now, we define the dislocated continuous functions and dislocated convergence sequences. We also obtain a decomposition of dislocated continuous function and dislocated convergence sequences. **Definition 5.1.** Let (X, d_1) and (X, d_2) be dislocated-metric spaces. A function $f: X \to Y$ is called *d***-continuous** at $x_0 \in X$ iff $\forall \epsilon > 0, \exists \delta(\epsilon) > 0$ such that $d_1(x, x_0) < \delta(\epsilon) \Rightarrow d_2(f(x), f(x_0)) < \epsilon$. We say f is *d***-continuous** iff f is *d*-continuous at each $x_0 \in X$

Theorem 5.1. Let (X,d_1) and (Y,d_2) be dislocated-metric spaces and $f: X \to Y$ be any function. Assume that (X,τ,R) (resp. (Y,σ,R)) be the *d*-topological space obtained from (X,d_1) (resp. (Y,d_2)). Then the following statements are equivalent:

- (1) f is *d*-continuous at $x_0 \in X$.
- (2) $\forall u \in \sigma_{f(x_0)}, f^{-1}(u) \in \tau_{x_0}.$

(3) $\forall v \in V_{f(x_0)}, \exists u \in u_{x_0}$ such that $f(u) \subset v$, where $V_{f(x_0)}$ and u_{x_0} are the *d**-topological neighborhood systems obtained from (X, d_1) and (Y, d_2) respectively.

(4) $\forall \epsilon > 0 \exists \delta > 0$ such that

 $f(B_{\delta}(x_0)) \subseteq B_{\epsilon}(f(x_0)).$

Proof. ((1)=(2)): Let $u \in \sigma_{f(x_0)}$. Then $\exists \epsilon > 0$ such that $B_{\epsilon}(f(x_0)) \subseteq u$. Thus $\exists \delta(\epsilon) > 0$ such that $d_1(x, x_0) < \delta(\epsilon) \Rightarrow d_2(f(x), f(x_0)) < \epsilon$, *i.e.*, $\forall x \in B_{\delta(\epsilon)}(x_0), f(x) \in B_{\epsilon}(f(x_0)) \subseteq u$, then

 $B_{\delta(\epsilon)}(x_0) \subseteq f^{-1}(u)$. Hence $f^{-1}(u) \in \tau_{x_0}$.

 $((2) \Rightarrow (1))$: Let $\epsilon > 0$. Suppose that for each $\delta > 0$, $\exists x \in X$ such that

 $d_1(x, x_0) < \delta(\epsilon) \Rightarrow d_2(f(x), f(x_0)) \ge \varepsilon$. Now,

 $\begin{aligned} B_{\epsilon}(f(x_0)) &\in \sigma_{f(x_0)} \text{. From the assumption} \\ f^{-1}(B_{\epsilon}(f(x_0))) &\in \tau_{x_0}, i.e., \exists \delta(\epsilon) > 0 \text{ such that} \\ x &\in B_{\delta}(x_0) \subseteq f^{-1}(B_{\epsilon}(f(x_0))) \text{. Then} \end{aligned}$

 $f(x) \in B_{\epsilon}(f(x_0))$. The contradiction demands that f is *d*-continuous at $x_0 \in X$.

 $(1) \Leftrightarrow (4)$ and $(2) \Leftrightarrow (3)$ are immediate.

Definition 5.2. Let (X,d) be a *d*-metric space. A sequence (x_n) *d*-converges to $x \in X$ if

 $\forall \epsilon > 0 \ \exists n_0 \in N \text{ such that } \forall n \ge n_0, \ d(x_n, x) < \epsilon.$

Theorem 5.2. Let (X,d) be a *d*-metric space and (X,τ,R) be the *d*-topological space obtained from it. Then the sequence (x_n) d-converges to $x \in X$ iff $\forall u \in \tau_x, \exists n_0 \in N \text{ such that for each } n \ge n_0, x_n \in u$.

Proof. (\Rightarrow :) Let $u \in \tau_x$. Then there exists $\epsilon > 0$ such that $B_{\epsilon}(x) \subseteq u$. From the assumption $\exists n_0 \in N$ such that $\forall n \ge n_0, (x_n, x) < \epsilon$. Thus $x_n \in B_{\epsilon}(x)$ for each $n \ge n_0$. So $x_n \in u$ for each $n \ge n_0$.

(\Leftarrow :) Let $\epsilon > 0$. Since $B_{\epsilon}(x) \subseteq B_{\epsilon}(x)$, then

 $B_{\epsilon}(x) \in \tau_x$. Thus $\exists n_0 \in N$ such that for each

 $n \ge n_0, x_n \in B_{\epsilon}(x)$, *i.e.*, $d(x_n, x) < \epsilon$ for each $n \ge n_0$. Hence $\lim_{n\to\infty} d(x_n, x) = 0$.

REFERENCES

- [1] P. Hitzler and A. K. Seda, "Dislocated Topologies," Journal of Electrical Engineering, Vol. 51, No. 12, 2000, pp. 3-7.
- [2] A. Batarekh and V. S. Subrahmanian, "Topological Model Set Deformations in Logic Programming," Fundamenta Informaticae, Vol. 12, No. 3, 1998, pp. 357-400.
- M. S. El Naschie, "A Review of E-Infinity Theory and [3] the Mass Spectrum of High Energy Particle Physics," Chaos, Solitons and Fractals, Vol. 19, No. 1, 2004, pp. 209-236. http://dx.doi.org/10.1016/S0960-0779(03)00278-9
- [4] M. S. El Naschie, "The Idealized Quantum Two-Slit Gedanken Experiment Revisted-Criticism and Reinterpretation," Chaos, Solitons and Fractals, Vol. 27, No. 1, 2006, pp. 9-13. http://dx.doi.org/10.1016/j.chaos.2005.05.010
- P. Hitzler, "Generalized Metrics and Topology in Logic [5] Programming Semantics," Ph.D. Thesis, National University of Ireland, University College, Cork, 2001.
- A. K. Seda, 'Topology and the Semantics of Logic Pro-[6] grams," Fundamenta Informaticae, Vol. 24, No. 4, 1995, pp. 359-386.
- [7] S. G. Matthews, "Metric Domains for Completeness," Ph.D. Thesis, University of Warwick, Warwick, 1986.