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ABSTRACT

In this paper, we study the global and pullback attractors for a strongly damped wave equation with delays when the
force term belongs to different space. The results following from the solution generate a compact set.
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1. Introduction

Let QcR" be a bounded domain with smooth boun-

dary 0Q, we study the following initial boundary value

problem

o°u  au ou

—+a——-PA——-Au+g(u)=f(x)+h(t,u,),
t>r,

u

Q =0,

t>r-r,

u(xt)=g(xt-7), gt—u(x,t):%(x,t—r),

(1.1

XEQ,tE[T—r,T].

where f+h(t,u[) is the source intensity which may
depend on the history of the solution, «,f are the
positive constants, ¢ is the initial value on the interval
[r-r,z] where r>0, and u, is defined for
Oe[-r,0] as u(f)=u(t+6). The assumption on
g(u) and f(x) will be specified later.

It is well known that the long time behavior of many
dynamical system generated by evolution equations can
be described naturally in term of attractors of cor-
responding semigroups. Attractor is a basic concept in
the study of the asymptotic behavior of solutions for the
nonlinear evolution equations with various dissipation.
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There have been many researches on the long-time be-
havior of solutions to the nonlinear damped wave equa-
tions with delays. The existence of random attractors has
been investigated by many authors, see, e.g., [1-4]. A new
type of attractor, called a pullback attractor, was proposed
and investigated for non-autonomous or these random
dynamical systems. The pullback attractor describing this
attractors to a component subset for a fixed parameter
value is achieved by starting progressively earlier in time
that is, at parameter values that are carried forward to the
fixed value. see [5-20]. However, to our knowledge, in
the case of functional differential equations of second
order in time, there is only partial results.

Recently, In [5], some results on pullback and forward
attractor for the following strongly damped wave equa-
tion with delays

U ou

¥+0{E—AU = f(x)+h(t,u,),
t>r,
Ulsq =0,
t>r-r,
au o
u(x,t)=g(x,t—7), E(x,t):a(x,t—r),
XeQt e[r—r,z'].

have been analyzed.

In this work, first, we apply the means in [3] to
provide the existence of global attractor, for the
dynamical system generated by the initial value problem
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210 G.G.LIN

(1.1). The key is to deal with the nonlinear terms and the
delay term is difficult to be handled, so we aimed at
showing that it is dissipative and the solution is bounded
and continuous with respect to initial value. Hence we
can discover the global attractor. Then, we aim to obtain
the pullback attractor. The technology we use is intro-
duced in [1], that is, we divide the semigroup into two:
the one is asymptotically close to 0, while the other is
uniformly compact, so we can get the pullback attractor.

Now, we state the general assumptions for problem
(1.1)on g:R—>R and h:RxC, - H.

Let G j g ds then there exist positive con-
stants C; (i _1,2,---,5) such that the followings hold
true

(G1). 9(0)eH;

(Gy). |g'(0)|£Cl;

(Gy). g”(z)|sC2(1+|z|“),VZe]R;

(Gy). ‘I‘lmlnfg (z)/220;

(Gs). (9(z)-9(0))z2C,2°,VzeR;

(Ge). Iiminfwzo;

Z|—>w0 Z
(G7). -Cy<9'(z)<0,VzeR.

Forany ueV,set J(u)=| ,G(u)dx, by G,-G,,
there are C,>0,C, >0 and p, >0, for any y>0,
we have

(9(u)uu)-Ced (u)=—r|uf" -C,
Izl -c,;
(9(u)u.u)=p, [u =7 vul’ -c,

Hi. VéeC,,teR—h(t,&)eH iscontinuous;
H.. VteR,h(t,0)=0;
Hs. 3L, >0 suchthat VteR,V&,neC,

(&) =h(tn)| <Ly -7,

Hs. 3m, 20,C, >0 such that
vme[0,m,],z<t,uveC’([z-rt];H)

_[:ems h(s,u,)—h(s,v, )|2 ds SCﬁJiremJu(s)— s)|2 ds;

Hs. heC'(RxCy;H), and there exists C >0 such
that, for any (t,&)eRxC, , the Frechet derivative
Sh(t,&)e L(RxC,;H) satisfies

"5h (tlf)"ﬁ(RxCH iH) =C (1+"§”CH )

The rest of this paper is organized as follows. In
Section 2, we introduce basic concepts concerning global
and pullback attractor. In Section 3, we obtain the
existence of the global attractor. In Section 4, we obtain
the existence of the pullback attractor.
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2. Preliminaries

In this section,firstly, we recall some basic concepts
about the global attractor.
Definition 2.1 ([3]) Let X be a Banach space and

{S(t)}tZO be a family of operators on X . We say that

{S(t)}

is norm-to-weak continuous semlgroup on X,

>0
if {S(t)},_, satisfies:
[1)1S(0) = Id (identify) ;
[2)] S(t)S(s)=S(t+s);
[3)] S(t,)x, —S(t)x if t, -t and x,—>x in
X.
Remark : The strong continuous semigroup and the

weak semigroup are both the norm-to-weak continuous

Definition 2.2 ([3]) The semigroup S(t )>0 is called
satisfying Condition (C) in X if and only if for any
bounded set B of X and for any e >0, there exist a
positive constant t, and a finite dimensional subspace
X, of X, such that {PS(t)x|xeB,t>t} is bounded
and

l(r-P)s

where P:X — X, is the canonical projector.
Lemma 2.1 ([3]) Let X be a Banach space and

{S(t)}_, be a norm-to-weak continuous semigroup on
t>0

X . Then {s(t)}tzo

provided that the following conditions hold:
1) {S(t)},_, hasabounded absorbing set B, in X;

2) {S(t)},, satisfies Condition (C)in X .

Then, we state the concepts and some result about the
process and the pullback attractor.

Instead of a family of the one-parameter map S(t),
we need to use a two-parameter semigroup or process
U(t,z) on the complete metric space X, u(t,z)y
denotes the value of the solution at time t which was
equal to the initial value  attime .

The semigroup property is replaced by the process
composition property

U(t,z)U(z,r)=U(t,r) forallt>z>r,

t)x|, <e foranyt>t,andxeB,

has a global attractor in X

and, obviously, the initial condition implies
U (z’,z’) =1d.

Definition 2.3 Let U be the two-parameter
semigroup or process on the complete metric space X.
A family of compact set {.4(t)} . is said to be a
pullback attractor for U if, for all R, it satisfies

[D] U(t,7)A(r)=A(r) forall t>7,and

[2] limdist, (U(t,t-s)D,A(t))=0 , for all
bounded "D'c X ,andall teR.
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Definition 2.4 The family {B(t)} _ issaid to be

1) pullback absorbing with respect to the process U ,
if for all teR and all bounded D < X, there exists
To(t)>0 such that U(tt-s)Dc B(t) for all
s>Ty(t);

2) pullback attracting with respect to the process U ,
if for all teR, all bounded Dc X, and all ¢>0,
there exists T, (t)>0 suchthatforall s>T_, (t)

dist, (U (t,t—s)D,B(t)) <e

3) pullback uniformly absorbing (respectively
uniformly attracting) if T, (t) in pact (a) (respectively
T.p (t) inpart (b)) does not depend on the time t.

Theorem 2.1 Let U(t,r; be a two-parameter
process, and suppose U (t,z): X — X is continuous
for all t> 7. If there exists a family of compact pullback
attracting sets {B(t)] _, then there exists a pullback
attractor {A(t)}.x , sich that A(t)={B(t)} for all
t e R, and which is given by

A= {JAp(t), where A, (t) =

DcX

AW (t.t-s)D
neNs>n

We set E=V xH, where V =H;(Q),H=L1*(Q),
which are Hilbert spaces for the usual inner product and
associated norms. we denote by 4, the first eigenvalue
of —A in V.

Our problem can be written as a second-order
differential equationin H :

{u”+au’—ﬂAu'—Au+g(u): f(x)+h(tu),t>7,
u(t)=¢(t-z), u'(t)=¢'(t-7),

3. Existence of the Global Attractor

In this section, our objection is to show that the
well-posed of the solution and the existence of global
attractor for the initial boundary value problem (1.1), we
assume that f e L*(Q).

2.1)

te[r—r,r].

Let 0<&<min iﬁi and ¢>0,6>0, then
B4 2a

by the transformation v=u’+¢u. The initial boundary
value problem (2.1) is equivalent to

V+(a—g)v+e(e—a)u
—PAV+(Be—1)Au+g(u)
=f(x)+h(tu), t>r,

3.1

with the initial value conditions
V(t)=¢'(t—7)+ep(t—7),
Theorem 3.1 Assume that the hypotheses on g and

h hold for all (uu) cE and fel?(Q), ap
are the positive constants. Then the initial boundary

value problem (3.1) has the unique solution (u v) ek
forall t>z.

te[r—r,r].
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Proof. Taking the inner product of the Equation (3.1)
with v in H , we find that

L9 (el 09) A
L s o (00)Y) 62

=(f(x),v) (h(t,ut), )
Since v=u’'(t)+eu and 0<g<m|n{2lﬂ j :;}

we deal with the terms in (3.2) one by one as follows

(a—-)(vv) = (a—e)f ST(ZMZ L (33
z(e-a)(uv) “ull = -2 o
2 */_ J_ (3.4)
i R N
d
(g(u)’v)=aJ(U)+5(9(U)vu) 5
z(;jtJ( u)+eCed (u)—ey|ul -Cé; |
1, 2
(h(t,ul),v)s;|h| +%|V| : (3.6)
(f.v) —|f| +—| i 3.7)

By (3.3)-(3.7), it follows from that

(|v| +(1- pe)|uff +23 (u )) [%_%”%JMZ

+z(g(1_ ﬁg)—%—gy)”u"z 4266, (u)
< Zinf+ 2|t 4 2¢C,
o (04 :

Since ¢ <min iﬁ,i and 0<y<1—£, this
p 4 2a 4 2

will imply 2(5(1—,85)—%—5}/j>g(1—,b’g), then we
have
(|v| +(1- pe)|uff +23( ))
+2ﬂﬂl|v| +g(1—ﬂg)||u|| +2eCgd(u) (3.8)
<2 |np 2t +2eC,.
a a

Set C, =min{2p4,¢,2¢C,}, then (3.8) can be writ-
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212 G.G.LIN ET AL.
ten as following
& <1 pe +23 ) AN
v 1 pe u +2J
(F + (- +23) — me" (|v| +(1- ) Julf +23 (u))
+C, ||V 1 pe)|u +2J
eI rem (|v| +(1= ) uf +23 (u)).
S— +— +2¢C .
@ a ’ Hence, we can get the following inequality
As our assumptions ensure that d
2C277 —e™ (V[ + (1 ) Julf +23 (u))
~Cy+——2 L <0 , then we can choose dt
a(l-pe-2y) (m C,) (|v| +(1-pe)|ulf +23 (u))
me(0,m,) small enough such that
- mt|h| mt|f| +2¢Ce™.
m-C, +“—/11< 0. For this choice, we have .
a(l-Be—2y) By integrating over the interval [z,t], we deduce
™ (V[ + (1 pe)Julf +23 (u))
<e™ (v + (1= o) Julf +23 (u))+(m=Cy ) [o™ (v + (1~ Be) Jul] +29 (u) ) ds
Jr—J'lemS|h|2 ds+—J'lemS|f|2ds+ZgC jemsds
<e”"(v| +(1-ps ||u|| +23(u))+(m=Cy) [€™ |v* + (1 p2) Julf +23 (u))ds (3.9)
ZC mr 28C7 mt _ amz
+ (e )+—m (e™—e™)
=e" (v +(1-pe ||u|| +23( u)) (m=Cy)[le™ (" +(2-pe)|ulf +23 (u))ds
2Chj’l ( tms | |2 Toms | |2 ) L f12(amt _ amr EC}/ mt_ .me
P [e™ u[*ds+[" e™]ul"ds +ma|f| (e™—e™)+ - (e™—e™).
Since

I(u)z—y|uf -
So we can have
+(1-Be)|ul* +23 (u)
1 pe—2y ||u|| +2J
> (1-Be—2p) vl + M’ —2cy.

.. 1 pe
Noticing O<y<——"—
9 9<r<3773

M+

=M + )+27|uf* (3.10)

, We obtain

||u|| |V| +(1-p¢ ||u|| +2J (u )+
1-pe—-2y

In the Bounded set DcC, ,,
exists a constant d such that

JoF + P < 0%

+(1-Be ||u|| +2J(

. (3.11)

1,852

for any ueD, there

(3.12)

v + (u)<d? (3.13)

(3.10)-(3.13) means that

Open Access

< “=h
a(l—,Bg—Zy)

2,9-1
2Ch_ﬂ¢ [le™|uf ds

L

it
S a(l-pe-2y)
4Chzji_1c7 mt mzr
+ma(1—ﬁg—27/)( ")

(1= ge)|ulf +23 (u))ds

(3.14)
Zchﬂl J'T ms|u| ds

o + (1 ) ulf +23 (u))ds

e (v +
acii'c, . i,
gz & )

27712 4C2i'C
2C A rd o 4 nA C, (emr_e (c r)).
a(l-pe-2y) ma (1- Be —2y)
(3.15)
Hence, by (3.12)-(3.14) and the choice of
IIMNTA



G.G.LIN ET AL

?_Cﬁﬂl—l
a(l-pBe-2y)

e (V" + (1= o)l +23 (u)
2C247 ]

m-C, + <0, (3.9) can be rewritten
<e™d? J{m—CO +

J (v <

+i|f|2(emt —e™ )+

(1—[1’5—27)
+(1- pe)|ulf +23( ))ds
40511107 mr _ m(z-r)
ma(l—ﬂe—Zy)(e ¢ )
ey, 2C2Ard?
¢ )+a(1—ﬂg—2}/)

2,1
Se""dz[l+—2CM1 r J —|f| (e —e" )
a(l-pe-2y)) ma

219-1
+ 4Ch/11 C7 ( mt_emr)
ma (1- Be - 2y)
219-1
+—4CM1 Sy (em’—e (r ')).
ma (1- Be —2y)

N 4Cﬁﬂ{lC7 (em‘
ma (1- Be - 2y)

mz

(3.16)
So we can get by (3.16)

(|v| +(1- Be)|ulf +23 ( ))

<e™e™d? 1+—2C“217 r
a(l-pe-2y)

i 2 _ amrq—mt
+ma|f| (1 e™e )
217-1
+M(l_e e )
ma (1- e —-2y)
+ 4Chzﬂ1_1c}/ ( e mt —e (1 I')e—mt).
ma(l—ﬂg—Z;/)

which implies,for t>r

(v + (2= Bl +23 (u)

]
<e™e™d? 1+—2CM1 '
a(l-Be-2y)

4CiA'C,
ma(1- e —2y)

(3.17)
+i| f |2 +
m
If we denote

4Chﬂ,llC
mal Pe— 2)/)
,002:1+ 2027
a(l-pe-2y)
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then (3.17) yields that
M +(1- e ulf
<p +Po d2en Y,

+2J(u) (3.18)
Vt>r.

which means that the initial boundary value problem (3.1)
has the solution (u,u')T cE.

Now, we prove the uniqueness of the solution. Assume
that u(-)=u(-7,¢) and v(:)=v(;z,p) are the two
solutions of the initial boundary value problem (3.1),
¢, are the corresponding initial value,we denote
w(-)=u(-)—v(-). Therefore we have
W +aW — BAW—Aw+g(u)-g(v)=h(t,u)—h(t,v,).

we take the inner product of the above equation with w’
and we obtain

St W+l ) o+ gl + (9 ()= g (). w)
= (n(tu)=h(ty).w).

(3.19)
Since
|(9(U)—9(V),W’)|SCsIWIIW’I:

2(h(t,u)-h(tv,),w)<|h(ty) h(t,vt)|2+|w’|2.
So (3.20) can yields that

d /12 2

—(|W| +|w

{1 520

< 2G| w|w|+|h(t.u,) = h(ty, )| +[wf

<[n(tu)=h(tv ) +C, (Wl + W) @22)

[In(t.u)-h
< ‘1Cﬁr||¢—1//||iv‘H +A;1c,fj;||w||2 ds.

Integrating (3.21) over the interval [z,t], we can get

(tv, )|2 ds < C? f:_r -

w (O +w(o)f
<[w () + (o) ) (w +)
+aClrlp-wlR,  +ATCE [ ds
<(1rarcir)le-vlg,
(2 +c, )W +c; Jw ds.
Set 3 =max{/4'C} +C,,C, |, then we have
jw(t) -+ pw(t)]

<(1+ 247CEr)|g - y/||% +ylj(

+w)ds
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Combining the Gronwall Lemma, we get
2 2
w(t) +|w(t
w0 + (o) o)

-1~2 2 (t-7)
<(1+4 Chr)||¢—t//||cv‘H e forallt>r.
If ¢,y stand for the same initial value, there has

w (0 +[w(o)f <o.

that shows that
w'(t)" =0, w() =o0.
that is
w(t)=0.
therefore
u=v.

we get the uniqueness of the solution. So the proof of the
theorem 3.1. has been completed.

By the theorem 3.1,we obtain the global smooth
solution (u,u’) continuously depends on the initial
value (¢4,¢'), the initial boundary value problem (1.1)
generates a continuous semigroup

{S(t)}.. .S(t):E—>E;(uu’)=S(t)(¢.¢).

Then B, { u,u’)[[(uw), < } is a bounded
absorbing set for the semlgroup t . generated by
(1.1). .

Under the assumption on g and f , we can get the
nonlinear term g(u) is compact and continuous,
f (x) is continuous. Next, our object is to show that the
C° semigroup {S(t)}  satisfies cindition C.

Theorem 3.2 Assumeé that the hypotheses on g and
h hold for all (u, u) €E, a,B are positive con-
stants. Then the C° semigroup {S(t)}  associated
with initial value problem (3.1) satisfies cinditionC ,
that is, there exists me N and T =T(B,R) , for any
N >m,t>T such that

|V2|

Proof. Let 4; be the eigenvalues of —Au and w;
be the corresponding eigenvectors, j=1,2,---, without
loss of generality, we can assume that 4, <A, <---, and
limA, =w.

m-—oo

It is well known that {Wj}o_o

+(1-Be)|u,|* <C, Cis the positive constant.

form an orthogonal basis

of H;.We write
H, =span{w,w,,--,w,_}

Since feH; and f is compact, for any >0,
there exists some me N such that

&
||(I—Pm)f||sE,

(3.23)

Open Access
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(1 —Pm)g||s§,fora||u eB,(OR)  (3.24)

where P, :H; — H, is orthogonal projection and R
is the radius of the absorbing set. For any (u,u,)eE,
we write

(u,u,) = (Pyu, Pu ) +((1-P,)u,(1-P, ) u,)
= (U, Uy )+ (uy, Uy ).
We note that
h, :(I _Pm)h’ g2 :(I —Pm)g, f, :(I _Pm) f,

Taking the inner product of the second equation of
(3.1) with v, in L*(D), After a computation like in
the proof of Theorem 3.1, we can yield that

(|V2|
+5(5—a)(u2,v2)+ﬂ||\/2"2
+g(1—ﬂ’g)||u2||2 +(g2 (u),vz)
:(fz(x)’vz)+(h2 (t'ut)’vz)-

This is the same as in the proof of the Theorem 3.1,
except for a replacement of A4, with 4_,,. Combined
with (3.23) (3.24) and (3.4), then we have

o 5¢
2 dt (|V2| 1 ﬂg ||u2 " ) (T"P ﬂ/lmﬂ _?\J|V2 |2
2

#(1- ) ua|f < —“

+ (1= pe) o[ )+ (= )lvef

(3.25)

Choose k, = mln{%+ﬁ/tm+l 528 ,l} , We can get

2
? ) el

2dt(|V2| +(1-pe)u,f )+k (

By Gronwall lemma, we can obtain
_L+e
2¢ek,

vo[" + (1= )| <
for all t>7z,N>m and (u,u’)eE. This shows that
Condition C is satisfied, and the proof is completed.
Due to Lemma 2.1, Theorem 3.1 and Theorem 3.2, we
obtain the following Theorem

Theorem 3.3 Assume that the hypotheses on g and
h hold for all (u, u) €E , a,p are positive
constants. Then the C° semigroup {S(t)}  associ-
ated with initial value problem (3.1) has a global
attractor in E.

4. Existence of the Pullback Attractor

In this subsection, we assume that f € H, we aim to
study the pullback attractor for the initial value problem

IIMNTA
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(1.2).

From Theorem 3.1, the initial value problem (1.1)
generates a family two-parameter semigroup U () in
C, u » which can be defined by

U(t,r)(¢)=u(:7.¢4), t=r,4eC,

Lemma 4.1 Let ¢,y be the two initial values for the
problem (1.1), <R is the initial time, Denote by
u(-)=u(sz,¢) and v(-)=v(;z,) the corresponding
solutions to (1.1). Then, there exists a constant y, >0
which is independent of initial value value and time, such
that the following estimates hold:

ju(t)=v (O +Ju(t)-v(O)[

4.1
(el v, o oraltas

"Ut _Vt”z

4.2
< (1+ 21‘1(3§r)||¢—1//||;H e forallt>z+r. 42

Proof. We denote w=u-v, by (3.22), we can get
(4.1) easily.

If we consider t>z+r , then t+8>7¢ for any
6 e[-r,0], and

|W’(t + 6’)|2 + ||W(t + 9)"2
<(1+aClr)lp-vl;, e

(e aCin)lp-vR,, e .

Cv H
Thus, |w|* < (1+47Clr)|l¢- l/’";H e vt r4r,

Theorem 4.1 The mapping U (t,7):C, , —>C,, is
continuous forany t>r.

Proof. Let ¢,y €C, , be the initial value for the
problem (1.1) and t>7. Denote by u(:)=u(;z,¢)
and v(-)=v(;z,p) the corresponding solutions to (1.1).
Then, writing again w=u-v we obtain the following.
If te[r—r,r],then W(t):¢(t—r)—z//(t—r) and

! 2 2 ’ !
w (O +w(O)f <4-w, +[¢ v,
(e c) v, e

Thus, we have
w (0)f +[w(o)f
< (1+ zﬁcﬁr)”q) - W”;,H =) >,

whence
< (1 27 - v, &, vz,

which implies the continuity of U (t,7).
Theorem 4.2 Assume that the hypotheses on g and
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h holdwith m, >0, «,f are the positive constants.
Suppose in addition that ~/2C, 4 <a,\1-2y .

Then exists a family {B(t)}

which is uniformly pullback absorbing fir the process
U (--). Moreover, B(t)=B° for all teR, where B’
is the bounded setin C, , .

Proof. By (3.18), we can have

Ju(t: z’,¢)||2 +u'(tiz, ¢)|2

—~2
<pi+p, d%e™ Y, vz,

of bounded sets in C,

and, in particular,
u(tir, ¢\ +|u'(tz, o) < pi+pp d?, V7. (4.3)
ut. @) +]u'(tz.g)

Moreover, as u(t;z,¢)=¢(t—7) and
u'(t;z,¢)=¢'(t—7) for te[r—r,z], then inequality
(4.3) holds true for t>z—r.

If we take now t>7+r, then forall §e[-r,0] we
have t+68>7 andso

||u (t;r,¢)"2 +|u’(t;r,¢)|2 <pt +;02d2em(”‘), (4.4)
or, in other words,
vt

—~2
<pt+p, d2%™ Y, vt>r+r, geD.
Therefore, there exists Ty >r such that

Ju (t,t—s)¢||;H <pl, VteR,s>T, geD.

which means that the ball B;  (0,p,)=B"cC, is

uniformly pullback absorbing for the process U () :

Remark : On the one hand, observe that if t; e R
and t>t,, then
u(t+6;t,—s,¢)=u(t+6;t—(s+t—t,),¢) and
u'(t+6;t,—s,9)=u'(t+0;t—(s+t-t,),¢) with
S+t—t, >s. Asasequence of (4.4) we have

||U(t,t0—s)¢||; <Pl Vi eRt>t,s>T, eD.
H
or we have Vt,eR,t>t),0e[-r0],5>T,,4eD

||u(t+9;t0 —s,¢)||2 +|u'(t+0;t0 —S,¢)|2 < pZ.
On the other hand, (4.3) implies,
vVt eR t2t,seRt>2t,—-s-r,geD,
u(tit, —s,g)| +u'(t;ty—s,9) <p;+p, d°, Vt=r.
(b -s0)f o' (bt —s.0) <5+, 0"

Theorem 4.3 Under the assumption in Theorem 4.1.
Then there exists a compact set B* =C,,, which is
uniformly pullback attracting for the process U (--),
and consequently, there exits the pullback attractor.
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{A(t)}telR
teR.
Proof. For each ¢ e R, the norm

. Moreover, {A(t)}  <Cp,, forall

’ +||475'+.9¢5||iH , $C,,, isequivalent to

M, = ||||Cv - This allows us to obtain absorbing ball for

the original norm by proving the existence of absorbing
balls for this new norm for some suitable value of &

Indeed, let us denote Bg(O,p)z{géeCV' g p}.
Noticing that for ¢, = max{2,1+ 2522{1} it follows that
I, . =1le, +l¢+ o2,
<[lgle, +2[¢'+ e, +2¢ |,
<(1+26%27 o, + 2l + e,

we then have B, (0, p)c BO(O,Cll/Zp).

Let DcC,, be a bounded set, i.e. there exists
d >0 such that forany ¢ <D itholds

+||¢ +g¢||CH <cd®.

Denote by u(-)=u(-z,¢) the solution of the
problem (2.1), and consider the problems:

V'+aV' - AV - Av+g(u)= f(x)+h(tu), t>7, 45
v(t):O, v'(t):O, te[r—r,r]. (45)
W’ +aw' — SAW — Aw = 0, t>r, 16
w(t)=g(t=c), w(t)=g(t-r), te[r-re]. "0

From the uniqueness of the solution of problems (2.1),
(4.5) and (4.6) it follows that

u(-)=v(-)+w(:), VreR,and vt > 7.
Consequently,
U (t,7)(#)=U,(t,7)(4)+U,(t,

VgeC, y,t2z—r.
where U, (t,7)(¢)=Vv,(-)=V,(+7,¢) and
U, (t.7)(¢)=w,(-)=w,(s7,¢) are the solutions of (4.5)
and (4.6) respectively.
First, thanks to (4.4), but with g=f=h-0, it
follows that

U (t,7) can be written as

7)(¢),

|W ‘[¢)|
Vi>z+r,¢9eD.

||W r¢

<Cd2 m(r+z— t),

(4.7)

Furthermore, for t, e R,t >t

w(tit, —s,4) = w(t;t—(s—t, +t),9).

and s>T, >r,
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with s+t—t, >s>T, >r. Thus, Equation (4.7) implies
in particular

W(t,to _ S,¢) < Cld Zem(r+t0—s—t) < Cld 2em(r—s)l
Vt,eR,t>t,s>T,,¢eD.
Then we can obtain that
2
||U2 (tt- S)¢||cv

<cd%™™ vteR,s>r,4eD,

whence,

lim supsup"U (t,t—s) ¢||

SH® (R geD

Next, fix t, eR,s>T,,¢ <D anddenote
u(t)=u(tt, —s.4),
v(t)=v(tit,—s,¢), t=t,—s—r,
F(t)=f+h(tu)-g, t>t,-s.

Then, for t>t,,

[F (O] < f[+[gl+ L Jul

1 (4.8)
<|f|+]g]+ LA 20 =Ky,
and for t>t,—s, we have
[F (0] =< f[+lol+ L
L
<[f[+]g]+ LA 2 (f + A30?)” (49)

1
<K, + L4 2p,d.
Then, we deduce from the assumptionon h that
F'(t)=(sh(t,u,),(1+1))-(5g,u’) and
F/(t) <K (g, )(2+]ul, )+ Cslu]. Arguing as we
did in order to obtain (4.8) and (4.9), we have

1
[F'(1) < K(1+/1,12p0}(1+p0)+c5p0 =K,, Vtxt,

(4.10)
and

F()<K(1+(po+p0 ) )1+ﬂ1 (po+,00 )yzj

+C5(,002 +/3§d2)w =K,(d), vtxt,-s.
(4.11)
Let us denote

y(t)=

of the estimates in Theorem 4.2. On the one hand, for all
t>t,—s,

2
v’(t)+%v(t) F(t)|2 and make use

+|Av(t)-

IIMNTA



G.G.LIN

S+ Ly <alf @ + 2 «< o]

RS 3
Sa[Kl+Lhﬂlzﬁodj +gK3(d)z+“_||v(t)||2.
but, as (4.4) and (4.7) ensure

VO <2Ju@ +2Jw)] <208 +252d +2c,d2.

if we denote by

K,(d)= [Kl + Lh%;ﬁodj

4 2 o 2, 242 2
+;K3(d) +T(p0+p0d +c,d )

then, in particular,
y’(t)+%y(t)£ K,d, Vtelt,—s,t].
Noticing that y(t,~s)=|F (t,~s)", the Gronwall
lemma leads us to

2

y(t)<=K, (d)'{Kl"‘ Lhﬂq;ﬁodj =K, (d).
a

On the other hand, if t>t,, we deduce that
O <2Ju(Of +2fw(o)] =205 200%™,
and, from (4.8) and (4.10),

3
y()+Sy(t) s aky+ K, + (o)

3
<akK, +4K + & ,o0 4cld2m's)

=K, +K, ol2 V>t

Once again, the Gronwall lemma implies that

2(to-1)

y(t) < y(ty)e? +£K t— 2 K,d%e™™

o
<K, (d)e2 " + 2k, +3K d%™, vtxt,
o
Then, there exists TS >T, such that, if s>T],
Zot) 3

y(t)<Kg(d)e? "+—=K;, Vi, eR,t>t,.
a

Recalling that y(t)=y(t;t,—s,¢4), if we fix t>t;,

take s=T; and denote §=t-t,+T, we have,
provided t—t; is large enough, that
Y(6t=To.¢) = y(tt-(t=5+T5).4)

tos4) <t
=y(t;t s,qﬁ)saK
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In conclusion, there exists TJ >0 such that for all
teR,andall s>TJ+T,,

y(t;t—s,¢)siK6, VéeD.
[04

Denoting TADA=T[’)+T[;’+r , we have for all
¢peD,teR,s2T,

a 2
v’(t;t—s,¢)+3v(t;t—s,¢)
+|Av(t;t—s,¢)—F(t;t—s,¢)|2giKe,

a

where
F(tit—s,¢)=f+h(tu (tt—s¢))-g(u(tit—s.4)).

But as for all peD,teR and s>T,, we get
| ( -5, ¢)|2<po and

F(tt-s¢) <KZ=2|f[ +2C2p2+2L, 47 p¢ , and,
consequently, foraII gpeD,teR and s>T,,

||v’(t;t - s,¢)||2 +|Av(t;t - s,¢)|2

2
<A, < B+ L prrake,
a a 2
which shows that
8 a?
Vi (st s¢|| :;K6£;K6+7p§+2Kf,

forall geD,teR and s sz . This means that the all
B! — Beouy (0,p,) isthe bounded setin C, ),

which , in addition, is uniformly absorbing for the family
of operators U(--). As B is the bounded set in
C , then there exists T.>r such that

U,(t,t—s)B ' c B, VteR,s>T,

D(A)V

and, therefore, the bounded set B’ Coap

=J YU, (tt-s)B' =B,

teRs>T gl

given

is uniformly pullback absorbing for U, (-,-) in C, .
By Ascoli-Arzela theorem, we can prove that B2 is

compact, so {B(t)z Ez}t . is a family of compact

subsets in C, ,, , which is also uniformly pullback
attracting for U () and the proof has been completed.
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