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ABSTRACT 

A hyperparasitic system with prolonged diapause for host is investigated. It is assumed that host prolonged diapause 
occur at larval stage, and parasitoid attack is limited to egg stage before the initiation of host diapause. Such behavior 
has been reported for many ichneumons. Hyperparasite only attacks the parasitoids that parasitize the hosts. Hyperpara-
sitic system is often used in biological control. The existence and stability of nonnegative fixed points are explored. 
Numerical simulations are carried out to explore the global dynamics of the system, which demonstrate appropriate 
prolonged diapause rate and appropriate intrinsic growth rate can stabilize the system. The reasons are explained ac-
cording to the ecological perspective. Furthermore, many other complexities which include quasi-periodicity, pe-
riod-doubling bifurcations leading to chaos, chaotic attractor, intermittent and supertransients are observed. 
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1. Introduction 

Hosts and parasitoids are mostly univoltine and have no 
overlap between successive generations. Therefore, their 
interactions can be modeled by discrete differences. An 
early work by Beddington et al. [1] showed that discrete 
host-parasitoid models can produce a richer set of dy-
namic patterns than those observed in continuous-time 
models. More recently, many researchers [2-12] have 
reported that discrete host-parasitoid models can have 
very complex dynamics.  

However, few studies have explored hyperparasitic 
systems using mathematical approaches and difference 
equations. Actually, hyperparasite can play a crucial role 
in the control of a host-parasitoid interaction if they are 
successfully established in the community. Furthermore, 
few works on complex dynamics in parasitic system have 
considered diapause. In the natural world, many insects 
which inhabit unpredictable environments display dia-
pause for one year or more, which can be described as 
prolonged or extra-long diapause [13]. As observed in 

numerous laboratory and field experiments, diapause is 
induced by changing responses to temperature, photope-
riod, humidity, hormonal treatment and other factors [14- 
16]. Thus, incorporating hyperparasite and diapause in 
parasitic system is more realistic and more practical sig-
nificance.  

In the paper, a hyperparasitic system with prolonged 
diapause for host is investigated. In the system, we as-
sume that host prolonged diapause occur at larval stage, 
and parasitoid attack is limited to egg stage before the 
initiation of host diapause. The parasitoids are physio-
logical “regulators” [17]. In this case, the parasitoid can 
potentially attack all hosts, but do not undergo prolonged 
diapause itself. Such behavior has been reported for 
many ichneumons [18]. Hyperparasite only attacks the 
parasitoids that parasitize the hosts [19]. Based on the 
above considerations, the model can be represented by 
the following difference equation:  
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where  denote the densities of the host, parasi-
toid, hyperparasite respectively at generation . In the 
absence of parasitism, the host adapts to Moran-Ricker 
model [20,21], that is to say 

, ,t t th p q
t

 1 exp 1t t th h r 



h k   , 
where  is the intrinsic growth rate and is the car-
rying capacity. The function 1exp t  given by 
Poisson distribution proposed by Nicholson and Bailey 
[22] stands for the probability that a host escapes parasit-
ism，where 1  is the parasitoid searching efficiency. By 
analogy with the above, the probability that a parasitoid 
escapes hyperparasites is 

r

a

k  
 a p

 2 ta qexp  . Accordingly, 2  
is the hyperparasite searching efficiency. The parameters 

 and 

a

d   represent diapause rate and survival rate of 
the host, respectively. According to their biological 
meaning,  and d   are non-negative and less than 1.  

2. Stability Analysis 

In this section, the existence and asymptotic stability 
analysis of the non-negative equilibrium points of system 
(1) are investigated. The system has four non-negative 
equilibrium points which are given by the following 
statements: 
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by 
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which exists if and only if 

  1ln 1 .r d d a               (6) 

Analysis of the stability of the system (1) close to the 
above equilibrium points requires that the system is fully 
specified in terms of densities at time  and . For 
this, we introduce two variables, t  and t , corre-
sponding to the densities of hosts and parasitoids at time 

 respectively. Then the system (1) corresponds to 
the following form: 
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Accordingly, the four equilibrium points of the system 
(1) corresponds to the following forms respectively: 
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The stabilities of equilibrium points , , 3  and 

4  are as the same as these points 1  2  3  and 4  
respectively. Now we study the linear stability of fixed 
points in the system (7). The Jacobian matrix at an arbi-
trary 

1E
E

2E
E

E
E E E

 , , , ,h p q h p  is given by  

11 12 11 12

21 22 23

31 32 23

0
1 1

0 0

0 0

1 0 0 0 0

0 1 0 0 0

d d
f f f

d d
f f f

J
f f f

  
   
 

   
 
 
 

f

, 

where
  

    
   

   
 

   
   
   

11 1

12 1 1

21 1 2

22 1 1 2

23 2 1 2

31 1 2

32 1 1 2

1 1 exp 1

1 exp 1 ,

1 exp exp ,

exp ,

1 exp exp ,

1 exp 1 exp ,

exp 1 exp .

f d rh k r h k a p

f a d h r h k a p

f a p a q

f a h a p a q

f a h a p a q

f a p a q

f a h a p a q

      
      
     
  

      
          
    

 

The characteristic equation of J  is  
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Moreover, an application of the local stability analysis 
of the system (7), gives the following results: 

(1) Substituting the fixed point  into the Equation 
(8), we get 
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The modulus of 1,2,3  is less than one. Then  is 
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Several roots of the Equation (11) are 1,2 0,   

3 22a  . Obviously, the modulus of 1,2  is less than 
one. The modulus of 3  is less than one if and only if 
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Under the conditions of (2) and (12), the stability of 
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From the inequalities (12) and (14), we obtain the fol-
lowing conditions for the stability of 2 : 

Proposition 1. The equilibrium point 2  is locally 
stable if and only if the following conditions hold:  
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Therefore, if the conditions (15) are satisfied, the equi-
librium point  is locally stable. 2

(3) Substituting the fixed point  into the Equation 
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are satisfied. Based on the above analysis, we obtain the 
following sufficient conditions for the stability of . 3
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stable if the following conditions hold:  
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1 1

1

1 1

1

1ˆ ˆ1 1
1

ˆ1 1
ˆ1 1

ˆ ˆ2 1ˆ ˆ ˆ1 .
1

d d
a h p b

d

d d d d p
b b

d d h

k rh d d k rh
a h p a p

k d d k

   

      
  



 




  

       
  

       
   

 
 

   
    

 

. 

According to the conditions 2H  and 3H , we obtain 

0 1 21 0      . That is to say 
2

0 1 2 01     0   
01 1

. At the same time, 

2 1 2 1 0 0             . The proof is com-
plete. 

(4) Substituting the fixed point  into the equation 
(8), we get 

4E

 4 3 2
3 2 1 0 0c c c c         ,  (20) 

where 

 

 

   

 

  

2
0 12 11 22

12
1 2

11 22 2 2 22

2 12 11 22 2 2 22

3 2 22

11

,
1

1

,
1

,
1

1
1

1

1 1

a d p q p
c c c c

d h

pc d
c a p q

dh

d
c c a p q a p c

d

p d
c c c c a p a c p q

dh

d r
c a p h c

d d k

c d rh k











      
     
      

         
             

  

  


  

  

  







  
   

    
   
     

1

12 1 1

1

22 1 1 2 1

exp 1

1 1 1 ,

1 exp 1

1 1 0,

exp 0 .

r h k a p

d d d rh k

c a d h r h k a p

a h d d d

c a h a p a q a p h p q p q





 

         

    

     

       

 



  



       

 

Under the condition of (6), the stability of  is 
identified by the following equation 

4E

4 3 2
3 2 1 0 0c c c c               (21) 

According to Schur-cohn criterion [23], the modulus 
of all roots of the Equation (21) is less than one if and 
only if 
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   

      

3 2 1 0 3 2 1 0

2
0 0 1 3 0

2 22
0 1 3 0

2
0 0 2 1 3 0 3 1 0

1 0,1

1 1,1 0,

1

1 1

c c c c c c c c

c c c c c

c c c c

c c c c c c c c c

         

      

  

      

0,

0.

 (22) 

are satisfied. Based on the above analysis, we obtain the 
following sufficient conditions for the stability of  4 .

Proposition 3. Under the condition of (6), the equilib-
rium point  is locally stable if the following condi-
tions hold:  

E

4E

 

1
1 2

2 2

3 2
1

2

1

2

4 1

1
: ,0 1

: 1 0,
1

1
0,

1

1 1
: 1
1 1

1
1 .

1

1
: 2
1

k r d d
W h B

r k d a a ph

r d
W A h a B D

k d

d
M N

d d

d r d
W h a B

d d k a p d

a hd r
A B D

d k a p

d
W M a p D

d d














 
   

         


 
 

              
        

   
 
 


  

















D

21 2 0.
1

r d
A h a B D N

k d

              


 

where 

 2

2

1

1
2 1

+ ;
1

; ;
+

; .
+ 1

d
A a p q

d

ah p q
B h p q D

p q a

a ph d
2M a p N a a pB

p q d





 


 
    

   


 

    
 

  
 

 

Proof. According to the condition 1W , we obtain 

11 . Substitute the signs of 11c , 12  and , we 
get , 3 . Substitute the values of ,  
and , we get 

0c 
0c

22c

c 22c

11c0 0c  12c

 

1 2
0

1
1 2

2

1 ,
1

1
1 ,

1 1

1
.

1
and

a a phd r
c B

d d k

d a p r d
c A h a B

d d k d

d
c M N

d d









       
               

D


 

 



 

1



3 2 1 01 0c c c c

, 

By the conditions  and , we obtain , 

 and . Then, it is easy to verify 
1W 2W 00 c  

1 0c  2 0c 

     . And. 

2
0 1 3 0

2
0 3 0 1 0 3 1

0 3 1

1

1 2

1 2

1

1 1 .

1

1
1

1

1 1
1

1 .
1

c c c c

c c c c c c c

c c c

d
a pD

d d

r r d
h a p A h a B D

k k

a a phd r
B

d k






  

       

  


  

 


d

         

    

      



 



 

According to the condition 3 , we obtain W

0 3 11 c c c 0    . That is to say 
2

0 1 3 01 0c c c c   
0c 

. According to the conclusion 

2 , we obtain 3 2 1 01 0c c c c     . Now, we 
prove the fifth inequality of (22). 

      
 

 
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0 0 2 1 3 0 3 1 0

0 2 1 3 2 1 3
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1

2
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1 2 .
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2

1

2 1
1

1
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1

1
2

1

1
1
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d
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d d
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M a p A h a B D

k d

d r
a pD h N

d d k

d
M a p D

d d

r d
A h a B D

k d










    

    


 

 
               

            
    

       







 2 0N
        

.

 

By the condition , we obtain 4W

   

      

      
  

        
  

   

2 22
0 1 3 0

2
0 0 2 1 3 0 3 1 0

2 22 2
0 3 0 1 0 0 2

1 3 0 3 1 0

22
0 3 0 1 3 0 1 3 0 1 0 2

3 0 1 3 1 0

3 0 1 0 3 2 1 0

1

1 1

1 1 1

1 1

1 1 0.

c c c c

c c c c c c c c c

c c c c c c c

c c c c c c

c c c c c c c c c c c c

c c c c c c

c c c c c c c c

  

     

      

  

       

  

       

 

The proof is complete. 

3. Numerical Simulations 

In this section, we use the bifurcation diagrams, the 
Maximum Lyapunov exponents, phase portraits and so 
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on to explore the possibilities of dynamical behaviors for 
system (1). 

3.1. Bifurcation Analysis  

In the section, a one-dimensional bifurcation analysis is 
carried out to investigate the overall dynamic behavior of 
the system. One-dimensional bifurcation diagrams give 
information about the dependence of the dynamics on a 
certain parameter. The analysis is expected to reveal the 
type of attractor to which the dynamics will ultimately 
settle down after passing an initial transient phase and 
within which the trajectory will then remain forever [2]. 
The bifurcation parameters are considered in the follow-
ing two cases: 

1) Varying d  in the range , and keeping 
other parameters fixed as below: 

0 d 1

0.472  , , 1 0.2a  2 0.3a  , , . (23)  3r  20k 

2) Varying  in the range , and keeping 
other parameters fixed as below: 

r 2 4r  .3

0.472  , , 1 0.2a  2 0.3a  , , 0.235d  20k  . 

(24) 

Figure 1(a) shows the bifurcation diagram in the 
 space with the parameters given by case 1). 

As  increases from  to , the system is cha-
otic. Subsequently the chaotic attractor abruptly disap-
pears and a period-4 attractor appears which constitute a 
type of attractor crisis. In the range  , the 
system passes through a quasi-periodic band with fre-
quency-lockings and tangent bifurcations. As further 
increases, a period-2 attractor appears. When  in-
creases from  to , the system goes through 
a quasi-periodic band with frequency-locking and tan-
gent bifurcation. As  is slightly beyond , a sta-
ble coexistence of the system is observed. When in-
creases beyond , the system crosses a chaotic band. 
When  is slightly increased beyond , the hy-
perparasite population is extinct, while the parasitoid 
population enters another chaotic band with period win-
dows. Figure 1(b) is the local amplifications of Figure 
1(a) with . 

d p q 
d

d

0

.18

0.0389

2

 0.075,0.08

d
d

0.482

0.9482

0.167

0.86

0 0d 

0.48

d

7
d

The Maximum Lyapunov exponents have been proved 
to be the most useful dynamic diagnostic tool for chaotic 
systems. It is the average exponential rate of divergence 
or convergence of nearby orbits in phase space [24]. The 
Maximum Lyapunov exponents corresponding to Figure 
1(a) are given in Figure 1(c), which are in agreement 
with the bifurcation diagram. When , the 
Maximum Lyapunov exponents change from positive to 
negative, which corresponds with the system changing 
from chaos to period. In the range , the 
Lyapunov exponents fluctuate around 0 with very small  

0 0.07d 

0.075,0.08

 
(a) 

 
(b)                          (c) 

Figure 1. (a) Bifurcation diagram in d p q   space; (b) 

The magnified part with 0 0.18d  ; (c) The Maximum 
Lyapunov exponents corresponding to (a). The other pa-
rameters are fixed as Equations (23). 
 
amplitude standing for quasi-periodicity, which are the 
same as in the range  0.167,0.482

d

. As  increases 
from  to , the Maximum Lyapunov expo-
nents are negative, corresponding to a stable coexistence 
of the system. When  is slightly increased beyond 

, Most of the Maximum Lyapunov exponents are 
positive and few are negative. So there exist period win-
dows in the chaotic band.  

d
0.482 0.867

0.867

As can be seen from Figure 1, the behaviors of the 
system are very complicated, including stable coexis-
tence, chaotic bands with period windows, quasi-perio- 
dicity with frequency-locking. Furthermore, from an 
ecological point of view, it is apparent that appropriate 
prolonged diapause rate can moderate coexistence. The 
reason is that appropriate diapause rate helps the fraction 
hosts to escape parasitism, but high diapause goes against 
the parasitoid growth.  

4



Figure 2(a) shows the bifurcation diagram in the 
r q  plane with the parameters given by case (Ⅱ). As 
the parameter  increases from  to 2.603 , a stable 
coexistence of the system is observed. As  further 
increases, a Hopf bifurcation occurs at 

r 2
r

r 2.60348 . 
Then the system enters quasi-periodicity, including fre-
quency-lockings and tangent bifurcations. When 

3.r 492 , the quasi-periodicity attractor abruptly disap-
pears. In the range  3.492,3.838 , there is a cascade of 
period-doubling bifurcations leading to chaos, which is  
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(a) 

 
(b)                          (c) 

Figure 2. (a) Bifurcation diagram in  plane; (b) The 

chaotic attractor at ; (c) The magnified part with 

. The other parameters are fixed as Equa-

tions (24). 

r q

3.8r 

3.45 4.51r 

 
the same as in the range  . A typical chaotic 
attractor is presented in Figure 2(b) at . Subse-
quently the chaotic attractor abruptly disappears and a 
period-2 attractor appears. When  increases from 
4.145 to 4.5, the system enters a chaotic band again. 
Figure 2(c) is the local amplifications of Figure 2(a) 
with . 

3.838,3.935

r

3.8r 

3.45 4.51r 
From Figure 2, we can know that appropriate intrinsic 

growth rate  can stabilize the system, but the high 
intrinsic growth rate may destabilize the stable dynamics 
into more complex dynamic. The reason is that the 
population would increase over carrying capacity with 
high intrinsic growth rate and then lose its stability. 

r

3.2. Intermittent Chaos and Supertransients 

Intermittency as illustrated in Figure 3(a) is character-
ized by switches between apparently regular and chaotic 
behaviors even though all the control parameters are 
constant and no external noise is present [25]. The 
switching seems random although the dynamic model is 
deterministic, and the behavior is completely aperiodic 
and chaotic.  

Figure 3(b) shows an example of supertransients, 
which are used to denote an unusually long convergence 
to an attractor. These transient dynamics are considerably 
longer than the timescale of significant environmental 
perturbations [26], because the timescale of ecological  

 
(a)                          (b) 

Figure 3. (a) Intermittent chaos of the hyperparasite popu-
lation dynamics with 1 0.188a  , , 0.235d  3.68r  ; (b) 

Supertransients of the hyperparasite population dynamics 
with , 1 0.2a  0.d 03935 , . The other parameters 

given by 

3r 

0.472  , 2 0.3a  , . 20k

 
interest is tens or hundreds of generations while super-
transients can persist thousands of generations or even 
longer. In Figure 3(b), the hyperparasite population size 
suddenly stabilizes into a 4-periodic attractor after about 
720 generations of complicated fluctuations. 

4. Conclusion 

In this paper, we have proposed and investigated the 
host-parasitoid-hyperparasite system with prolonged 
diapause for host. The existence and stability of the non-
negative fixed points are explored. Subsequently, nu-
merical simulations are carried out to exhibit other com-
plex dynamics including stable coexistence, quasi-pe- 
riodicity, period-doubling bifurcations, and chaotic bands 
with periodic windows, quasiperiodic attractor and 
non-unique attractor, intermittent chaos and supertran-
sients and so on. Furthermore, these simulated results are 
explained according to ecological perspective. From 
Figure 1, we can know that the system coexists with 

 0.482,0.867d  . That is to say, appropriate diapause 
rate is better for the stability of the system. Low diapause 
rate makes the host population suffer from high parasit-
ism risk. High diapause rate goes against the parasitoids 
growth. These two cases destabilize the system. From 
Figure 2, we can know that the system is stable with 

 2, 2.603r , but the high intrinsic growth rate may 
destabilize the stable dynamics into more complex dy-
namic. The host population would increase over carrying 
capacity with high intrinsic growth rate and then make 
the whole system lose its stability. 
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