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Abstract 
 
This paper considers a decomposition framework as a mechanism for information hiding for secure commu-
nication via open network channels. Two varieties of this framework are provided: one is based on Gaussian 
arithmetic with complex modulus and another on an elliptic curve modular equation. The proposed algorithm 
is illustrated in a numerical example. 
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1. Introduction and Problem Definition 
 
In this paper it is demonstrated how to use various Dif-
fie-Hellman key establishment (DHKE) protocols in or-
der to design a computationally efficient cryptographic 
schemes for secure communication between two parties 
{called Alice and Bob}. One of these key establishment 
protocols is based on modular elliptic curves (ECDHKE) 
[1]. Another DHKE protocol is based on arithmetic of 
complex integers with complex modulus [2]. 

DHKE protocol based on complex integers: In this 
scheme both parties agree to select a Gaussian integer L 
= (g, h) := g + ih called generator and a complex 
modulus (l, p) := l + ip with real integer components l 
and p. Alice and Bob independently select secret real 
integers alpha and beta respectively. Alice and Bob re-
spectively compute their public keys: 

: mod ,alphaE L l p 



;            (1) 

and 

: mod ,betaF L l p



.             (2) 

Then Alice and Bob compute respectively 

1 : mod ,alphaH F l p



            (3) 

and 

2 : mod ,betaH E l p .            (4) 

As a result, 

 1 2 0 0 0, :

Therefore a pair of real integers 0 0 and  x y  can be 
used by Alice and Bob to design a cryptographic proto-
col. 

DHKE based on elliptic curves: Consider a modular 
elliptic curve (EC) 

2 3 mody ey x ax b p             (6) 

where a, b, e and p are integer parameters of the EC, and 
modulus p is an odd real prime [3]. If (6) is used for 
ECDHKE between Alice and Bob, then both parties cre-
ate a mutual secret key  0 0,x y  that is a point on (6). 
The scheme is analogous to (1)-(5): Alice and Bob select 
a point Q with high order on (6) and real integers alpha 
(Alice’s secret key) and beta (Bob’s secret key). Then 
they respectively compute their public keys: 

: mE alpha Q pod  ;            (7) 

and 

: modF beta Q p  .             (8) 

Here both E and F are points on (6). 
Then Alice and Bob compute respectively 

1 : modJ alpha F p  ;            (9) 

and 

2 : modJ beta E p  .            (10) 

As a result, 

1 2 0 0: : , M J J x y   .          (11) 0 .M H H x y x iy          (5) 

mailto:verb@njit.edu


B. S. VERKHOVSKY 78
 

 

2. Decomposition 
 
Consider randomly selected non-zero integers 1;A   

 that are co-prime with p. Consider positive 
integers k, q and r that satisfy  

1; 1B C 

6;1 , , 4k q r k q r     .         (12) 

Compute ; 0: modkR y A p
q
0 0: mod ; : modrS x B p T y C p         (13) 

or  0: ;ikR x A  3
0 0: ; : modi i iq k qS y B T x C p   ;

{for details see Step5 below}; 
Select integers u, v and w that satisfy  

;u v w R    .   (14) ;u v w S u v w T     

Then (14) implies that 

  1 2mod ;u S T p p            (15) 

  ( 1) 2modv R T p p   ;

q





          (16) 

 mod .w R u v p                (17) 

Here k and q are secret keys that satisfy 

1 4; 1 5 ; 6k q k r k        ;       (18) 

where k and q are periodically updated. 
There are ten combinations of positive integers satis-

fying (12); these combinations are listed in lexico-
graphically increasing order in Table 1. 
 
3. Numeric Illustration 
 
Let p=99991; consider an elliptic curve 

2 31001 217 mod99991y y x   .      (19) 

Suppose Alice and Bob have established a secret key 
for communication as point  0 0,  M x y = (86275, 
81549); it is easy to verify that P indeed satisfies (19). 
Juxtapose  0 0, x y  and let G := 8627581549. 
 
4. Information Hiding Protocol—{k, q} 
 
Step1: Communicating parties (Alice and Bob) establish 
a key M =  0 0, x y  using one of schemes listed in sec-
tion 1; 
 

Table 1. All combinations of exponents. 

States 0 1 2 3 4 5 6 7 8 9 

k 1 1 1 1 2 2 2 3 3 4 

q 1 2 3 4 1 2 3 1 2 1 

r 4 3 2 1 3 2 1 2 1 1 

Step2: Juxtapose coordinates  0 0,x y ; 
let 

1 2 1t tG d d d d  ,            (20) 

where  are its decimal digits. id
Here 

102 logt p     ; 

Step3: Suppose Alice wants to transmit a plaintext ar-
ray 

            1 1
1 5 1 5 1 5, , ; ; , , ; ; , ,i i sm m m m m m m      s  

where 

5s t    .               (21) 

Encryption of         1 2 5, , ,i i i im m m m  : 

Step4: Using  select corresponding   from 
Table 1; 

id , ,i i ik q r

Step5: if  is even, then compute  id 0: ;ikR x A

 : ; modi i iqS y B T C p   6
0 0:q kx ;

;

 

else 

0: ;ikR y A  

6
0 0: ; : modi i iq k qS x B T y C p        (22) 

Step6: Compute the information hiding keys (15)-(17): 
{u, v, w}; 

Step7 {enhancement of crypto-immunity}: 
for  0 0, , , ,z u v w x y do 

if z  p , then : 2z p z   else z := 2z; 

Step8: compute 

            1 1 2 2 3 3: ; : ; : modi i i i i ic m u c m v c m w p   ;



d p

   (23) 

        4 4 0 5 5 0: ; : modi i i ic m x c m y p  .       (24) 

Decryption is performed in reverse. 
Remark2: After t cycles Alice and Bob must use a 

DHKE to establish a new mutual secret key G. 
Choice of A, B and C: one way to choose A and B is 

to assign even digits of G to A and odd digits of it to B. 
Then select C that is a multiplicative inverse of AB 
modulo p: 

  1
: moC AB

  [4].          (25) 

Remark3: The ideas of decomposition can be applied 
to any secret key; where splitting is completely inde-
pendent of how this key is established. 
 
5. Plaintext Pre-conditioning  
 
If there is a pair  ,i i

j lc c , where both components are 
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smaller than p, then with high probability holds that 

. Therefore either  gcd , 1i i
j lc c 

gcd

rm

  0,i i
j lc c x  or .     (26)   0gcd ,i i

j lc c y

To preclude this possibility consider the following 
protocol of plaintext pre-conditioning: subdivide plain-
text m into arrays of blocks in such a way that for every 
block  holds  2 2rm p  ; if rm  p

r

, then 
assign 

: 2rm p m                (27) 

Remark4: Notice that the right-most binary digit of 
 equals 1. rm

1 8d 

:

:

R x

S y

T x

2 6d 

:

:

:

R x

S y

T x

   1m m



 
6. Numeric Illustration Continued 
 
Assign all even digits of G := 8627581549 to A and all 
odd digits of G to B. 

Then A = 67859, {in Table 2 they are shown in bold 
font}, B = 82514, and  = 87964 [3]. 1( ) modC AB p

Indeed: (21508*87964) mod99991 = 1. 
Since G does not have digits 0 and 3, then only eight 

of ten combinations of {k, q, r} that are listed in Table 1 
are used to compute the information hiders u, v, w: 

Computation of encryptors u, v, w 
For  {see the 1st column in Table 2} compute 

3
0

2
0

3 1
0 0

86275 67859mod ;

81549 82514mod ;

: mod ;

i

i

i i

k

q

k q

A p

B p

C x C p 

  

  

 

 

and then compute encryptors u, v and w (15)-(17). 
For  {see the 2nd column in Table 2} compute 

2
0

3
0

3 1
0 0

86275 67859mod ;

81549 82514 mod ;

87964 mod ;

i

i

i i

k

q

k q

A p

B p

C x p 

  

  

  

 

and then compute encryptors u, v and w. 
See Table 3 of all encryptors for i = 1,2, t. 
Plaintext pre-conditioning 

Let  

= {266, 45769, 37585, 36488, 46572}. 

        1 1 1 1 1
1 2 3 4 5,  ,  ,  ,  m m m m

Remark5: Notice that each component in m is smaller 
 
Table 2. Sequence of exponents k, q and r based on secret 
key 0 0,x y . 

States 8 6 2 7 5 8 1 5 4 9 

k 3 2 1 3 2 3 1 2 2 4 

q 2 3 3 1 2 2 2 2 1 1 

r 1 1 2 2 2 1 3 2 3 1 

Table 3. Encryption stage: information hiders u, v, w and 
ciphertexts. 

id  1d = 8 2d = 6   td = 9 

R 02480 30939   21751 

S 86137 18463   36105 

T 77173 77173   21896 

u 81655 47818   78996 

v 12649 15594   49923 

w 08167 67518   92814 

 
than  1 2p  . 

Because 1m  p 1, reassign ; {odd in-
teger}. 

1 : 2m p m 

Since all other blocks in plaintext m are greater than 
p , therefore reassign 

2 2 3

4 4 5

: 2 ;  : 2 ;

: 2 ;  : 2

m m m m

m m m m

 

 
3

5

;

 

{all four are even integers}. 
Encryption {see Step7}: 

1 1 2 2: mod ; : modc m u p c m v p   

3 3: modc m w p;  

4 4 0 5 5 0: mod ; : modc m x p c m y p.   

Alice sends ciphertext   to Bob via open 
communication channels. See Table 3 with encryptors R, 
S, T, u, v and w; Table 4 with plaintext arrays 

1 5,..,c c

 i
jm  and 

Table 5 of corresponding ciphertext arrays. 
 

Table 4. Plaintext arrays  i
jm ; i = 1,2, ,t. 

i 1 2   t 

 
1

im  00266 08764   38643 

 
2

im  45769 43654   00179 

 
3

im  37585 34631   07320 

 
4

im  36488 45731   34219 

 
5

im  46572 00301   04352 

 
Table 5. Ciphertext arrays  i

jc ; i = 1,2, ,t. 

i 1 2   t 

 
1

ic  70985 29342   34378 

 
2

ic  68373 03496   25955 

 
3

ic  68641 52628   19261 

 
4

ic  71085 94285   19900 

 
5

ic  83732 03083   66378 
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
Table 6. Key establishment (1)-(5). Decryption is performed in reverse: since Bob knows 

the mutual secret key M =  0 0,x y , he finds A, B, k, q 
and r; then computes C, R, S, T; and the multiplicative 
inverse values of u, v and w. 

Keys Alice’s action Bob’s action 

Secret Alpha = 1913 Beta = 1999 

Public E = (–846,1022) F = (439,2876) 

Private 
key  

1

0502,1853

alphaH F

 
 

 
2

0502,1823

betaH E

 
 

 
7. Key Establishment Based on Gaussian 

Modulus 
 
Consider (l, p) = (1000, 3001); and a generator L = (2269, 
–2204). All corresponding steps and actions by Alice and 
Bob are provided in Table 6. 

 
gits 1,2, ,9,1,2,  into G: 

2A := 1728384858657085; 
Therefore, M = (–0502, 1853) is the mutual secret key 

established between Alice and Bob. Notice that compo-
nents in M can be positive and negative. If a component 
is negative, post digit “2” in front of its left-most digit; if 
the component is positive, post digit “9” in front of its 
left-most digit. Therefore M := (20502, 91853). For large 
l and p in modulus (l, p), the probability is negligibly 
small that either 0 0= 0  or  0x y  . 

2B := 2112231425469748; 

2C := 2718283848556075. 

 
10. Conclusion 
 
In the proposed cryptocol it is shown that for every pair 
of integers in secret key  0 0,  x y  there are numerous 
ways to compute integers {u, v, w} that hide information 
on the encryption stage. 

 
8. Computational Complexity 

  
11. Acknowledgements For every digit in juxtaposed G it is possible to encrypt 

one plaintext array.  
With high probability each component in  0 0,x y

10log p

 
has the same number of digits t as modulus p. Therefore 
in G there are about 2t digits. For each digit we select an 
appropriate combination of keys {k, q, r} from Table 1 
and encrypt five blocks of the plaintext. Therefore for 
every G we can encrypt   5 2 10 10N p t t        
blocks. 
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Appendix 
 
A1. Generalization 
Step1A: Establish a secret key M between communicat-
ing parties and juxtapose it. 
Remark6: Either Gaussian arithmetic with complex 
modulus or other mechanisms for DHKE can be used to 
establish M. 
Step2A: Using M, the parties select 1, , sA A , where s 
is an integer parameter of encryption protocol; 
Step3A: for i=1, ,t 

        for j=1, ,s do 

if                    (A1) mod 2id j 

then ,                (A2) 0: modjk
j jR A x p

else  ;                (A3) 0: modjk
j jR A y p

Step4A: Compute for j=2, 3, ,s 

 1: 2 mj ju R R    od ;p

p

          (A4) 

and       ;       (A5)  1 1 2 .. modsu R u u     

Step5A {encryption}: for i from 1 to s 

: modi i ic m u p .               (A6) 

A2. Selection of Table for 1 2, , sk k k  

If s > 3, the number of possible combinations for se-
cret keys 1 2, , sk k k  grows exponentially if s is in-

creasing. 
This is an additional potential for randomization. If a 

protocol designer of encryption/decryption scheme re- 
presents G in a numeric form with base n, then it is pos-
sible to select n combinations of secret exponents 

1 2, , sk k k , where each combination corresponds to 

every digit of G. Therefore the parties must exchange 
between themselves a n n  square matrix: 

11 1

1

n

n n

k k

k k

 


 
 


  

 n




d

          (A7) 

For example, if s = 4 and n = 16, then we need to spec-
ify sixteen combinations of . 1 2 4, ,.. andsk k k k

If 1 41 5 and ik k k     , then the number of 

possible combinations of k’s is 35 for d = 8. 

 
 
 
 
 
 


