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ABSTRACT

In this study we describe an FEM-based methodology to solve the coupled fluid-structure problem due to squeeze film
effects present in vibratory MEMS devices, such as resonators, gyroscopes, and acoustic transducers. The aforemen-
tioned devices often consist of a plate-like structure that vibrates normal to a fixed substrate, and is generally not per-
fectly vacuum packed. This results in a thin film of air being sandwiched between the moving plate and the fixed sub-
strate, which behaves like a squeeze film offering both stiffness and damping. Typically, such structures are actuated
electro-statically, necessitating the thin air gap for improving the efficiency of actuation and the sensitivity of detection.
To accurately model these devices the squeeze film effect must be incorporated. Extensive literature is present on mod-
eling squeeze film effects for rigid motion for both perforated as well as non-perforated plates. Studies which model the
plate elasticity often use approximate mode shapes as input to the 2D Reynolds Equation. Recent works which try to
solve the coupled fluid elasticity problem, report iterative FEM-based solution strategies for the 2D Reynolds Equation
coupled with the 3D elasticity Equation. In this work we present a FEM-based single step solution for the coupled
problem at hand, using only one type of element (27 node 3D brick). The structure is modeled with 27 node brick ele-
ments of which the lowest layer of nodes is also treated as the fluid domain (2D) and the integrals over fluid domain are
evaluated for these nodes only. We also apply an electrostatic loading to our model by considering an equivalent elec-
trostatic pressure load on the top surface of the structure. Thus we solve the coupled 2D-fluid-3D-structure problem in a
single step, using only one element type. The FEM results show good agreement with both existing analytical solutions
and published experimental data.
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squeeze film offered damping and stiffness changes the
dynamic characteristics of the vibratory MEMS device
[2]. In order to correctly model such devices, it is neces-
sary to accurately determine the stiffness and damping

1. Introduction

The wide scale application of electro-statically driven
MEMS sensors, using parallel plate capacitors have led

to increasing interest in the study of energy dissipation
due to the thin film of air trapped in such devices. Typi-
cally such devices consist of a plate like structure, vi-
brating normally to a fixed substrate, with a thin air film
trapped in-between (see Figure 1). If the lateral dimen-
sions of the plate happen to be much larger than the
height of the air gap, the trapped air behaves both like a
spring and a viscous damper, a phenomenon known as
squeeze film effect. Squeeze film damping is the domi-
nant dissipation mechanism in Si based MEMS devices
operating in the aforementioned conditions [1]. The
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due to the squeeze film. Accurate modeling of such sys-
tems involves coupling of three domains, electrostatics,
structural and fluid. Traditionally the squeeze film do-
main effect is modeled using the lubrication theory, via
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Figure 1. Schematic of an air film trapped between a vi-
brating elastic plate and a fixed substrate.
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the Reynolds Equation [3]. With rigid plate assumption
the Reynolds Equation can be decoupled from the elas-
ticity Equation and, further, on linearization can be
solved to obtain analytical expressions for stiffness and
damping. Blech [3] studied the effect of squeeze film
induced stiffness and damping for rigid plates with trivial
pressure boundary conditions. Darling et al. [4] presented
analytical solutions to the linearized Reynolds Equation
for various venting conditions, using a Greens function
approach. For flexible structures one has to account for
the variable air gap, and the elasticity Equation has to be
coupled with the Reynolds Equation for accurate model-
ing. Hung et al. [5] presented a reduced order macro
model based on basis functions generated from finite
difference simulations. They applied this technique to
model a pressure sensor as a clamped-clamped micro-
beam to study the pull-in dynamics of the system using a
ID Euler beam Equation and the non-linear Reynolds
Equation. McCarthy et al. [6] studied cantilever micro-
switches using a transient finite difference method ap-
proximating a parabolic pressure distribution along the
length and non variance along the width and obtained
good agreement with experimental measurements. You-
nis et al. [7] studied the effect of squeeze film damping
for an electrically actuated micro-plate, using the com-
pressible Reynolds Equation. They used perturbation me-
thods to derive analytical expressions for pressure distri-
butions in terms of the structural mode shape. Pandey et
al. [8] studied the effect of flexural mode shapes on the
squeeze film offered stiffness and damping for a canti-
lever resonator, they used Green’s function to solve the
linearized compressible Reynold’s Equation and used the
modal projection method available in ANSYS to solve
the coupled fluid structure problem for several flexural
modes of vibration. The analytical and numerical values
of damping obtained were in good agreement with expe-
rimental results. Li ef al. [8] accounted for the static bias
deflection for a fixed- fixed micro-beam and a cantilever
under electrostatic actuation. They assumed a parabolic
function for the pressure along the beam width and a
cosine series along the beam length, and solved the
coupled Reynolds Equation and the Euler Bernoulli beam
Equation. Hannot et al. [9] presented an approach to
solve the coupled elasticity Equation and Reynolds’s
Equation for modeling a capacitive micro-switch. They
employed a non-linear Newmark time integration scheme
for the mechanical Equations and a trapezoidal rule for
the fluid Equations. The above mentioned models at-
tempt to solve the coupled problem, though not in a sin-
gle step. The geometry modeled is also limited to 1D
beam type structures.

These methods, though accurate, are cumbersome and
involve iterative or staggered approaches. We propose a
single step methodology to solve the coupled fluid-
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structure squeeze film problem. We use the 3D elastic-
city Equation, thus not restricting ourselves to any par-
ticular geometry, and couple it with the 2D Reynolds
Equation for squeeze film. A single step “monolith” ap-
proach [10] is presented to solve the coupled problem.
The numerical results show good agreement with pub-
lished experimental data and existing analytical solutions.

2. Numerical Modeling

The problem at hand involves solving for pressure on the
vibrating plate due to the squeezed film, taking into ac-
count the elasticity of the plate. Thus the problem in-
volves solution of the Reynolds Equation for the fluid
domain coupled with the 3D elasticity Equation for the
structural domain. In our finite element model, the air
gap is treated as a 2D layer and the structural domain is
modeled in three dimensions. The element used for mod-
eling the structural domain is 3D, 27 node brick element.
The “wet” face of the 3D element is treated as the fluid
domain. Thus the relevant integrals for the fluid domain
are evaluated over the corresponding 9 noded “wet” sur-
face of the 3D, 27 node brick element.

2.1. Variational Formulation for the Fluid
Domain

The linearized Reynolds Equation is given as follows [2],

hy, (&°P O’P\ h, oP  OH
S | T A (1)
12p \ ox" 0y P c'% o’

where . is the effective viscosity, A4, is the initial air
gap, P is the ambient air pressure, P is the fluid pres-
sure (perturbed about P ) and H is the air gap (perturbed
about #,). The last term on the right hand side of the
above Equation couples the structure and the fluid do-
main. Substituting for harmonic solution P = pe/” and
H =i_¢/ in Equation (1) and considering p, as varia-

tion of p ina weighted integral sense we have
hjo
J-( > p- ]a)usz dQ=0. (2)
Q 12/ueﬁ ])d

For the fluid domain we have p=0 on the open

=0 on the closed borders. After doing
7

integration by parts and implementing the above boun-
dary conditions, we get the governing Equation for fluid
domain as,

B hjo
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2.2. FEM Formulation for the Fluid Domain

For the FEM formulation we use 9 noded quadrilateral
elements for 2D fluid domain. Pressure, its variation and
4 at any point are obtained from interpolation of the
corresponding nodal values using the following relation-
ships.

b
- N P,
pszp=[N1 N, Ng] AP “4)
Py
Ps= Npﬁﬁa (%)
- . -
vl
Wl
i =N, i=[0 0 N 00 N] il
u‘)
v9
LM |
Pressure gradient can be expressed as
Vb =B,p, (7
where
N, ON, 0N,
ox  Ox Ox
B = . 8
PTlan av, o, @
o oy oy
Similarly we have,
Vp =B,p_. (€))

where N is (1 x9), p is (9 x 1), j;sis (9 x1) B,
is(2x9), N, is(1x27)and u is (27 x 1).

Substituting Equations (4), (5), (6), (7) and (9) in Equ-
ation (3) and using arbitrariness of b, we get,
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2.3. FEM Formulation for the Structure

We have the variational statement for dynamic structural
problem without anybody force as:

Open Access

[7(u): £(u)dQ+ [ pitugdQ = [ ug.1dr, (1)
Q Q T,

where p is density, u is displacement, u; is its
variation, ‘r(u) is stress,  1is prescribed traction over
the boundary TI', and s(us) is given by

1 r
£(u5)=5[(Vu8)+(Vu8) }
Here,
7(u): e(uy) =7, (u): £, (ug),

with the summation convention over repeated indices.

For coupled squeeze film damping problem with
structural interaction, the wet surface (the surface which
constitutes the 2D fluid domain) is subjected to prescrib-
ed traction 7 =—pn, then Equation (11) can be written
as

[(u):&(us)dQ+ | piiugdQ+ | pus.idl
Q

Q Fwet

(12)
= .[ ug.tdT,
Ty
where the last term on the left hand side signifies coupl-
ing effect of the fluid over the structural domain. The
standard FEM discretization for displacement and other
quantities are

u=N,a,

u, = N i,
7(u)=CB,u,
&(u)=B,u,
&(uy) = B ury.

Substituting above relations in Equation (12) and using
arbitrariness of u#; we have the discretized Equation for
the structural domain as

{ [E:4 CBudQ} i+ [j pN! NudQ:I i
Q Q

(13)
+[ [ pN] ﬁdiF] p=[ N[t

et It

2.4. Coupled FEM Formulation

For the coupled problem at hand the 2D fluid domain
corresponds to the “wet” surface of the structural domain.
Thus coupling the fluid and structure domains we have
(combining Equations (10) and (13))

K, K,][a] [f,
Pl v
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We have used 27 noded brick element for the struc-
tural domain, whose wet surface (consisting of 9 noded
square face) is modelled as the 2D fluid domain.

3. Results and Discussion

For validation of our FEM results we have compared our
numerical results with analytical solutions reported by
Siddartha et al. [11,12], as well as experimental results
from work by Pandey ef al. [8].

3.1. Modeling a Varying Flow Boundary Elastic
Microplate

Siddartha et al. [11,12] studied the effect of varying flow
boundary conditions on the squeeze film stiffness and
damping for an all sides clamped micro-plate. The plate
is considered to vibrate in its fundamental mode which
imparts the flexibility effect. Analytical expressions have
been derived for stiffness and damping forces on the
plate (clamped at all sides) due to the trapped air film
(subjected to different flow boundaries). We use 4 x 4
mesh for FEM modeling of the plate. We design two re-
presentative flow boundary conditions with our numeri-
cal scheme, namely the all four sides open (“O000”)
and the two opposite sides closed (“OCOC”) cases. The
plate is subjected to harmonic displacement boundary
condition corresponding to its first mode shape. The re-
sulting pressure distribution is integrated over the wet
surface to get the force on the moving plate. The squeeze
film spring (F,) and damping (F,) forces are obtained
from the real and imaginary component of the resultant
force respectively. The forces are non dimensionalised
(see [11]) and plotted against a non dimensional parame-
ter o, directly related to the frequency of harmonic exci-
tation as follows, o = l2yma)L2 / poh(]z, where p.gr is the
effective viscosity [13], w is the harmonic excitation fre-
quency, L is the plate side dimension, p, is the ambient
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pressure and /4 is the initial air gap. Figure 2 shows the
plots for F; and F; for the “O0O00” case and Figure 3
shows the same for the “OCOC” case. We see from these
plots that the numerical stiffness and damping forces are
in close agreement with the analytical results for both the
flow boundary cases studied. We also note that the two
methods show good agreement at both high and low &
values (thus high and low frequencies). The deviation
between the numerical and analytical results have been
found to be less than 2% for both the flow boundary
conditions studied here.

3.2. Modeling a Cantilever

In order to compare our results with experimental data
we have modeled a cantilever beam as per dimensions
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Figure 2. Spring and damping forces vs sigma for “O000”
configuration.
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Figure 3. Spring and damping forces vs sigma for “OCOC”
configuration.
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mentioned in the work of Pandey et al. [8]. We compare
the numerically obtained Quality factors (Q) for the first
three modes of vibration as well as the effect of aspect
ratio on the quality factor of the beam for the first mode
of vibration. The beam modeled is of length 350 pm,
width 22 um, thickness 4 pm, with an initial air gap of
1.4 pm. The beam material is polysilicon with density
2330 Kg/m®, Young’s Modulus 160 GPa and Poisson’s
ratio 0.22. Air is considered to be the fluid medium with
the relevant property values (under standard temperature
and pressure ) as follows: density p,; = 1.2 Kg/m®, dy-
namic viscosity u,; = 1.8 x 10°° N.s/mz, and ambient
pressure p, = 1.013 x 10° Pa. In our simulations we have
subjected the cantilever to a sinusoidal voltage of 1.5 V,
which is well below the pull-in voltage of 6 V for the
given cantilever. The input voltage has been applied as
an electrostatic pressure load of magnitude 5.08 N/m” to
our FEM model for the cantilever beam, considering a
parallel plate capacitor with small displacement approx-
imation [14]. The beam tip velocities have been obtained
from the simulations and normalized with respect to the
applied voltage and plotted against frequency. The fre-
quency response so obtained is shown in Figure 4. The
plot shows three distinct peaks corresponding to the first
three modes, and is in close agreement with a similar plot
reported by Pandey et al. [8]. Q factors for different
modes are obtained using half power method from the
frequency response plot. Convergence study of the Q
factor (Table 1) has been done using three levels of mesh
refinement considering a very fine mesh (100 x 6 x 4)
result as our benchmark. Q factors for sufficiently fine
mesh (40 x 5 x4 ) are compared with published results
from Pandey ef al. [8] in Table 2. We see that the data
from the numerical simulations are in good agreement
with published experimental and numerical results. We

-3

2519 . . : :
4
ok |
v ¥
E 15
S A
S 3 \\%
= |k i
= | 1
o ! "
[5°] LS f T
= § Ry A
I3
0.55 ¥ I %
& "2”‘“ ,r-*‘j
0 * n * 1
0 1 2 3 4 5 6 7 8 9

Frequency — Hz

Figure 4. Frequency response of a cantilever beam of length
350 pm, width 22 pm and thickness 4 pm.
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further studied beams with varying aspect ratios. We
considered beams with lengths varying from 150 pm to
350 um, having a constant width of 22 pm and thickness
4 pm. Only the first mode of vibration is considered in
this study. Comparative values of Q factors for the dif-
ferent beams (40 x 5 x 4 mesh) are presented in Table 3.
Our simulation results show a deviation of less than 10%
from the reported experimental data.

4. Conclusion

We have discussed an FEM formulation to solve the
coupled fluid-structure squeeze film problem without
resorting to iterative solutions. Our results show good
agreement with experimental data available from the
literature. Our numerical scheme is seen to give good
results for varying aspect ratio structures with dimen-
sions below 100 pm. The proposed scheme can be further
used as a design tool for modeling and simulation of the
dynamic response of vibratory MEMS devices such as
capacitive microphones, RF (Radio Frequency) MEMS
switches, etc., for which accurate knowledge of the O

Table 1. Convergence study for the first two modes of a
cantilever beam of length 350 pm, width 22 pm.

Q factors for FEM Mesh (lengthxwidthxthickness)

Modes
100 x 6 x 4 40x5x4 30x3x2 20% 3 x2
1 1.097 1.095 1.093 1.10
2 5.842 5.849 5.891 5.908

Table 2. Q factor comparison for the first three modes of a
cantilever beam of length 350 pm, width 22 pm.

Q factors comparison

Modes
QEXI’ QANSYS QFEM
1 1.20 1.11 1.095
2 7.58 6.94 5.849
3 18.52 20.0 20.379

Table 3. Q factor comparison for beam of width 22 pm with
varying lengths.

Q factors
Length (pm) % Deviation
QEXP QFEM
150 7.04 6.83 2.98
200 4.0 3.66 8.5
250 2.49 2.26 9.24
300 1.56 1.53 2.05
350 1.2 1.09 9.17
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factor is critical for design. With this methodology one
can directly couple the elasticity effect of the structure
with the fluid flow and need not limit oneself to 1D
geometries.
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