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the Reynolds Equation [3]. With rigid plate assumption 
the Reynolds Equation can be decoupled from the elas- 
ticity Equation and, further, on linearization can be 
solved to obtain analytical expressions for stiffness and 
damping. Blech [3] studied the effect of squeeze film 
induced stiffness and damping for rigid plates with trivial 
pressure boundary conditions. Darling et al. [4] presented 
analytical solutions to the linearized Reynolds Equation 
for various venting conditions, using a Greens function 
approach. For flexible structures one has to account for 
the variable air gap, and the elasticity Equation has to be 
coupled with the Reynolds Equation for accurate model- 
ing. Hung et al. [5] presented a reduced order macro 
model based on basis functions generated from finite 
difference simulations. They applied this technique to 
model a pressure sensor as a clamped-clamped micro- 
beam to study the pull-in dynamics of the system using a 
1D Euler beam Equation and the non-linear Reynolds 
Equation. McCarthy et al. [6] studied cantilever micro- 
switches using a transient finite difference method ap- 
proximating a parabolic pressure distribution along the 
length and non variance along the width and obtained 
good agreement with experimental measurements. You- 
nis et al. [7] studied the effect of squeeze film damping 
for an electrically actuated micro-plate, using the com- 
pressible Reynolds Equation. They used perturbation me- 
thods to derive analytical expressions for pressure distri- 
butions in terms of the structural mode shape. Pandey et 
al. [8] studied the effect of flexural mode shapes on the 
squeeze film offered stiffness and damping for a canti- 
lever resonator, they used Green’s function to solve the 
linearized compressible Reynold’s Equation and used the 
modal projection method available in ANSYS to solve 
the coupled fluid structure problem for several flexural 
modes of vibration. The analytical and numerical values 
of damping obtained were in good agreement with expe- 
rimental results. Li et al. [8] accounted for the static bias 
deflection for a fixed- fixed micro-beam and a cantilever 
under electrostatic actuation. They assumed a parabolic 
function for the pressure along the beam width and a 
cosine series along the beam length, and solved the 
coupled Reynolds Equation and the Euler Bernoulli beam 
Equation. Hannot et al. [9] presented an approach to 
solve the coupled elasticity Equation and Reynolds’s 
Equation for modeling a capacitive micro-switch. They 
employed a non-linear Newmark time integration scheme 
for the mechanical Equations and a trapezoidal rule for 
the fluid Equations. The above mentioned models at- 
tempt to solve the coupled problem, though not in a sin- 
gle step. The geometry modeled is also limited to 1D 
beam type structures. 

These methods, though accurate, are cumbersome and 
involve iterative or staggered approaches. We propose a 
single step methodology to solve the coupled fluid- 

structure squeeze film problem. We use the 3D elastic- 
city Equation, thus not restricting ourselves to any par- 
ticular geometry, and couple it with the 2D Reynolds 
Equation for squeeze film. A single step “monolith” ap- 
proach [10] is presented to solve the coupled problem. 
The numerical results show good agreement with pub- 
lished experimental data and existing analytical solutions. 

2. Numerical Modeling 

The problem at hand involves solving for pressure on the 
vibrating plate due to the squeezed film, taking into ac- 
count the elasticity of the plate. Thus the problem in- 
volves solution of the Reynolds Equation for the fluid 
domain coupled with the 3D elasticity Equation for the 
structural domain. In our finite element model, the air 
gap is treated as a 2D layer and the structural domain is 
modeled in three dimensions. The element used for mod- 
eling the structural domain is 3D, 27 node brick element. 
The “wet” face of the 3D element is treated as the fluid 
domain. Thus the relevant integrals for the fluid domain 
are evaluated over the corresponding 9 noded “wet” sur- 
face of the 3D, 27 node brick element. 

2.1. Variational Formulation for the Fluid  
Domain 

The linearized Reynolds Equation is given as follows [2], 

3 2 2

0 0
2 2

aeff

,
12
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 
  

   
 

       (1) 

where μeff is the effective viscosity, 0h  is the initial air 
gap, aP  is the ambient air pressure, P is the fluid pres- 
sure (perturbed about aP ) and H is the air gap (perturbed 
about 0h ). The last term on the right hand side of the 
above Equation couples the structure and the fluid do- 
main. Substituting for harmonic solution j tP pe    and 

j t
zH u e    in Equation (1) and considering p


 as varia- 

tion of p  in a weighted integral sense we have, 
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For the fluid domain we have 0p   on the open  
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 on the closed borders. After doing  

integration by parts and implementing the above boun- 
dary conditions, we get the governing Equation for fluid 
domain as, 
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2.2. FEM Formulation for the Fluid Domain 

For the FEM formulation we use 9 noded quadrilateral 
elements for 2D fluid domain. Pressure, its variation and 

zu at any point are obtained from interpolation of the 
corresponding nodal values using the following relation- 
ships. 
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Pressure gradient can be expressed as 

ˆp  pB p,                  (7) 

where 
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Similarly we have, 
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where 
p

N  is (1 × 9), p̂  is (9 × 1), ˆ
δ

p is (9 × 1) 
p

B   

is (2 × 9), 
zu

N is (1 × 27) and û  is (27 × 1). 

Substituting Equations (4), (5), (6), (7) and (9) in Equ- 
ation (3) and using arbitrariness of ˆ

δ
p  we get, 
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2.3. FEM Formulation for the Structure 

We have the variational statement for dynamic structural 
problem without anybody force as: 

  : ( ) ,
t
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where   is density, u  is displacement, u  is its 
variation,  τ u  is stress, t  is prescribed traction over 
the boundary t  and  ε u  is given by  
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with the summation convention over repeated indices. 
For coupled squeeze film damping problem with 

structural interaction, the wet surface (the surface which 
constitutes the 2D fluid domain) is subjected to prescrib- 
ed traction ˆ,p  t n  then Equation (11) can be written 
as 
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  (12) 

where the last term on the left hand side signifies coupl- 
ing effect of the fluid over the structural domain. The 
standard FEM discretization for displacement and other 
quantities are 

ˆ, uu N u  

ˆ , uu N u  

ˆ( ) , uu CB u  
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Substituting above relations in Equation (12) and using 
arbitrariness of u  we have the discretized Equation for 
the structural domain as 
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2.4. Coupled FEM Formulation 

For the coupled problem at hand the 2D fluid domain 
corresponds to the “wet” surface of the structural domain. 
Thus coupling the fluid and structure domains we have 
(combining Equations (10) and (13)) 
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We have used 27 noded brick element for the struc- 
tural domain, whose wet surface (consisting of 9 noded 
square face) is modelled as the 2D fluid domain. 

3. Results and Discussion 

For validation of our FEM results we have compared our 
numerical results with analytical solutions reported by 
Siddartha et al. [11,12], as well as experimental results 
from work by Pandey et al. [8]. 

3.1. Modeling a Varying Flow Boundary Elastic 
Microplate 

Siddartha et al. [11,12] studied the effect of varying flow 
boundary conditions on the squeeze film stiffness and 
damping for an all sides clamped micro-plate. The plate 
is considered to vibrate in its fundamental mode which 
imparts the flexibility effect. Analytical expressions have 
been derived for stiffness and damping forces on the 
plate (clamped at all sides) due to the trapped air film 
(subjected to different flow boundaries). We use 4 × 4 
mesh for FEM modeling of the plate. We design two re- 
presentative flow boundary conditions with our numeri-
cal scheme, namely the all four sides open (“OOOO”) 
and the two opposite sides closed (“OCOC”) cases. The 
plate is subjected to harmonic displacement boundary 
condition corresponding to its first mode shape. The re- 
sulting pressure distribution is integrated over the wet 
surface to get the force on the moving plate. The squeeze 
film spring (Fs) and damping (Fd) forces are obtained 
from the real and imaginary component of the resultant 
force respectively. The forces are non dimensionalised 
(see [11]) and plotted against a non dimensional parame- 
ter , directly related to the frequency of harmonic exci- 
tation as follows,

2 2

eff 0 0
12 L p h   / , where μeff is the 

effective viscosity [13], ω is the harmonic excitation fre- 
quency, L is the plate side dimension, p0 is the ambient 

pressure and h0 is the initial air gap. Figure 2 shows the 
plots for Fs and Fd for the “OOOO” case and Figure 3 
shows the same for the “OCOC” case. We see from these 
plots that the numerical stiffness and damping forces are 
in close agreement with the analytical results for both the 
flow boundary cases studied. We also note that the two 
methods show good agreement at both high and low  
values (thus high and low frequencies). The deviation 
between the numerical and analytical results have been 
found to be less than 2% for both the flow boundary 
conditions studied here. 

3.2. Modeling a Cantilever  

In order to compare our results with experimental data 
we have modeled a cantilever beam as per dimensions 
 

 

Figure 2. Spring and damping forces vs sigma for “OOOO” 
configuration. 
 

 

Figure 3. Spring and damping forces vs sigma for “OCOC” 
configuration. 
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mentioned in the work of Pandey et al. [8]. We compare 
the numerically obtained Quality factors (Q) for the first 
three modes of vibration as well as the effect of aspect 
ratio on the quality factor of the beam for the first mode 
of vibration. The beam modeled is of length 350 μm, 
width 22 μm, thickness 4 μm, with an initial air gap of 
1.4 μm. The beam material is polysilicon with density 
2330 Kg/m3, Young’s Modulus 160 GPa and Poisson’s 
ratio 0.22. Air is considered to be the fluid medium with 
the relevant property values (under standard temperature 
and pressure ) as follows: density ρair = 1.2 Kg/m3, dy- 
namic viscosity µair = 1.8 × 10−5 N.s/m2, and ambient 
pressure pa = 1.013 × 105 Pa. In our simulations we have 
subjected the cantilever to a sinusoidal voltage of 1.5 V, 
which is well below the pull-in voltage of 6 V for the 
given cantilever. The input voltage has been applied as 
an electrostatic pressure load of magnitude 5.08 N/m2 to 
our FEM model for the cantilever beam, considering a 
parallel plate capacitor with small displacement approx- 
imation [14]. The beam tip velocities have been obtained 
from the simulations and normalized with respect to the 
applied voltage and plotted against frequency. The fre- 
quency response so obtained is shown in Figure 4. The 
plot shows three distinct peaks corresponding to the first 
three modes, and is in close agreement with a similar plot 
reported by Pandey et al. [8]. Q factors for different 
modes are obtained using half power method from the 
frequency response plot. Convergence study of the Q 
factor (Table 1) has been done using three levels of mesh 
refinement considering a very fine mesh (100 × 6 × 4) 
result as our benchmark. Q factors for sufficiently fine 
mesh (40 × 5 ×4 ) are compared with published results 
from Pandey et al. [8] in Table 2. We see that the data 
from the numerical simulations are in good agreement 
with published experimental and numerical results. We 
 

 

Figure 4. Frequency response of a cantilever beam of length 
350 μm, width 22 μm and thickness 4 μm. 

further studied beams with varying aspect ratios. We 
considered beams with lengths varying from 150 µm to 
350 µm, having a constant width of 22 µm and thickness 
4 µm. Only the first mode of vibration is considered in 
this study. Comparative values of Q factors for the dif- 
ferent beams (40 × 5 × 4 mesh) are presented in Table 3. 
Our simulation results show a deviation of less than 10% 
from the reported experimental data. 

4. Conclusion 

We have discussed an FEM formulation to solve the 
coupled fluid-structure squeeze film problem without 
resorting to iterative solutions. Our results show good 
agreement with experimental data available from the 
literature. Our numerical scheme is seen to give good 
results for varying aspect ratio structures with dimen- 
sions below 100 μm. The proposed scheme can be further 
used as a design tool for modeling and simulation of the 
dynamic response of vibratory MEMS devices such as 
capacitive microphones, RF (Radio Frequency) MEMS 
switches, etc., for which accurate knowledge of the Q  
 
Table 1. Convergence study for the first two modes of a 
cantilever beam of length 350 μm, width 22 μm. 

Modes
Q factors for FEM Mesh (length×width×thickness) 

100 × 6 × 4 40 × 5 × 4 30 × 3 × 2 20 × 3 × 2

1 1.097 1.095 1.093 1.10 

2 5.842 5.849 5.891 5.908 

 
Table 2. Q factor comparison for the first three modes of a 
cantilever beam of length 350 μm, width 22 μm. 

Modes 
Q factors comparison 

QEXP QANSYS QFEM 

1 1.20 1.11 1.095 

2 7.58 6.94 5.849 

3 18.52 20.0 20.379 

 
Table 3. Q factor comparison for beam of width 22 μm with 
varying lengths. 

Length (μm) 
Q factors 

% Deviation 
QEXP QFEM 

150 7.04 6.83 2.98 

200 4.0 3.66 8.5 

250 2.49 2.26 9.24 

300 1.56 1.53 2.05 

350 1.2 1.09 9.17 
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factor is critical for design. With this methodology one 
can directly couple the elasticity effect of the structure 
with the fluid flow and need not limit oneself to 1D 
geometries. 
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