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ABSTRACT 

In this paper, I shall sketch a new way to consider a Lindenbaum-Tarski algebra as a 3D logical space in which any one 
(of the 256 statements) occupies a well-defined position and it is identified by a numerical ID. This allows pure me- 
chanical computation both for generating rules and inferences. It is shown that this abstract formalism can be geometri- 
cally represented with logical spaces and subspaces allowing a vectorial representation. Finally, it shows the applica- 
tion to quantum computing through the example of three coupled harmonic oscillators. 
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1. Introduction 

I shall present an expansion of the Lindenbaum-Tarski 
algebra into a three-dimensional logical space [1-3]. The 
Venn diagrams are shown in Figure 1 while the relative 
truth-value assignation is in Table 1. Let us compute the 
combinatory of this logical space, considering that we 
have 8 truth-value assignation and therefore statements 
defined through a string of 8 numbers. 

A combinatorial calculus gives 9 logical levels de- 
termined by the number of 1s or 0s (where the first figure 
denotes the number of 1s while the second open the 
numbers of 0s):  

     
     
     

8,0 1, 8,1 8, 8,2 28,

8,3 56, 8,4 70, 8,5 56,

8,6 28, 8,7 8, 8,8 1.

C C C

C C C

C C C

  

 

  

  

In this way, any (of the 256) statements occupy a well 
definite position and it is identified by a numerical ID. 
This allows pure mechanical computation both for gen- 
erating rules and inferences. Let us therefore represent all 
the propositions at the different levels through Tables 
2-10 (the expression  means the product of the 

complement sets of f and h). 

f h 

2. Subspaces 

A three-dimensional logical space embeds three two- 
dimensional logical subspaces and three one-dimensional 
ones. A one-dimensional (1D) subspace is constituted by  

the  fo l lowing  nodes:  X X ,  X ,  X ,  and 
X X . In the following, I shall use a number for each 

of the nodes X  and X  and do not consider 
tautology and contradiction as long as we deal with 
subspaces (in fact, there is every time only one tautology 
and one contradiction for the whole space). This has the 
purpose to fully replace the calculus on variables with a 
 

 

Figure 1. The Venn diagrams when the relations among 
three statements are considered. Note that we have: X = d + 
f + g + h, Y = c + e + g + h, Z = b + e + f + h. 
 

Table 1. Inputs and outputs of 3-dimensional logic. 

X 0 0 0 1 0 1 1 1 

Y 0 0 1 0 1 0 1 1 

Z 0 1 0 0 1 1 0 1 

output a b c d e f g h 
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Table 2. C(8,8) = C(8,0). 

11111111 a + b + c + d + e + f + g + h 

 
Table 3. C(8,7) = 8 disjunctive eptaplets, C(8, 1) = 8 conjunctive singlets. 

1. 11111110 a + b + c + d + e + f + g h  2. 11111101 a + b + c + d + e + f + h g  

3. 11111011 a + b + c + d + e + g + h f   4. 11110111 a + b + c + d + f + g + h e  

5. 11101111 a + b + c + e + f + g + h d  6. 11011111 a + b + d + e + f + g + h c  

7. 10111111 a + c + d + e + f + g + h b  8. 01111111 b + c + d + e + f + g + h a  

 
Table 4. C(8,6) = 28 disjunctive esaplets, C(8,2) = 28 conjunctive duplets. 

1. 11111100 a + b + c + d + e + f g h   2. 11111010 a + b + c + d + e + g f h   

3. 11111001 a + b + c + d + e + h f g   4. 11110110 a + b + c + d + f + g e h   

5. 11110101 a + b + c + d + f + h e g   6. 11110011 a + b + c + d + g + h e f   

7. 11101110 a + b + c + e + f + g d h   8. 11101101 a + b + c + e + f + h d g   

9. 11101011 a + b + c + e + g + h d f   10. 11100111 a + b + c + f + g + h d e   

11. 11011110 a + b + d + e + f + g c h   12. 11011101 a + b + d + e + f + h c g   

13. 11011011 a + b + d + e + g + h c f   14. 11010111 a + b + d + f + g + h c e   

15. 11001111 a + b + e + f + g + h c d   16. 10111110 a + c + d + e + f + g b h   

17. 10111101 a + c + d + e + f + h b g   18. 10111011 a + c + d + e + g + h b f   

19. 10110111 a + c + d + f + g + h b e   20. 10101111 a + c + e + f + g + h b d   

21. 10011111 a + d + e + f + g + h b c   22. 01111110 b + c + d + e + f + g a h   

23. 01111101 b + c + d + e + f + h a g   24. 01111011 b + c + d + e + g + h a f   

25. 01110111 b + c + d + f + g + h a e   26. 01101111 b + c + e + f + g + h a d   

27. 01011111 b + d + e + f + g + h a c   28. 00111111 c + d + e + f + g + h a b   

 
calculus on the subspaces. Therefore, I shall assign the 
numbers 1 and 2 to nodes X  and X , respectively, 
and call each one the complement zero-dimensional (0D) 
space of the other. For the sake of simplicity, here and in 
the following I shall call also 1 or 2 simply subspaces 
although they are in fact nodes of a single one- 
dimensional (1D) subspace or 0D spaces. Keeping this in 
mind, that widening of the term makes no problem but 
helps the simplification of the language. Therefore, the 
one-dimensional subspace can be represented as a thread 
connecting the nodes 1 and 2 as shown in Figure 2. 
Therefore, let us assign a (0D) subspace to each of the 
values displayed in Table 1 for each variable: 

The six one-dimensional subspaces are therefore 1 - 2, 
7 - 8 for X , 3 - 4, 9 - 10 for  and 5 - 6, 11 - 12 for Y
Z . This generates three two-dimensional (2D) subspaces 

that are therefore embedded in the three-dimensional 
logical space: 

As we can see in Figure 3, a single 2D space is build 
by creating a surface connecting the two 1D subspaces 
and therefore all their nodes. In order to generate all the 
possible three-dimensional combinations we need first to 
understand what means to be in a 3D space. Let us first 
understand what is the correct relation between 
subspaces and variables. For one-dimensional sub- 
spaces they obviously coincide. In this case, in fact the 
variable X   X  is spanned by the subspace 2 (1). 
For the two-dimensional subspaces the same remains true, 
although here there is a multiplication of subspaces 
relative to the variables. However, as long as these 2D 
subspaces remain separated, the situation is not substan- 
tially different. However, in t e three-dimensional space  h 
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Table 5. C(8,5) = 56 disjunctive pentaplets, C(8,3) = 56 conjunctive triplets. 

1. 11111000 a + b + c + d + e f g h    2. 11110100 a + b + c + d + f e g h    

3. 11110010 a + b + c + d + g e f h    4. 11110001 a + b + c + d + h e f g    

5. 11101100 a + b + c + e + f d g h    6. 11101010 a + b + c + e + g d f h    

7. 11101001 a + b + c + e + h d f g    8. 11100110 a + b + c + f + g d e h    

9. 11100101 a + b + c + f + h d e g    10. 11100011 a + b + c + g + h d e f    

11. 11011100 a + b + d + e + f c g h    12. 11011010 a + b + d + e + g c f h    

13. 11011001 a + b + d + e + h c f g    14. 11010110 a + b + d + f + g c e h    

15. 11010101 a + b + d + f + h c e g    16. 11010011 a + b + d + g + h c e f    

17. 11001110 a + b + e + f + g c d h    18. 11001101 a + b + e + f + h c d g    

19. 11001011 a + b + e + g + h c d f    20. 11000111 a + b + f + g + h c d e    

21. 10111100 a + c + d + e + f b g h    22. 10111010 a + c + d + e + g b f h    

23. 10111001 a + c + d + e + h b f g    24. 10110110 a + c + d + f + g b e h    

25. 10110101 a + c + d + f + h b e g    26. 10110011 a + c + d + g + h b e f    

27. 10101110 a + c + e + f + g b d h    28. 10101101 a + c + e + f + h b d g    

29. 10101011 a + c + e + g + h b d f    30. 10100111 a + c + f + g + h b d e    

31. 10011110 a + d + e + f + g b c h    32. 10011101 a + d + e + f + h b c g    

33. 10011011 a + d + e + g + h b c f    34. 10010111 a + d + f + g + h b c e    

35. 10001111 a + e + f + g + h b c d    36. 01111100 b + c + d + e + f a g h    

37. 01111010 b + c + d + e + g a f h    38. 01111001 b + c + d + e + h a f g    

39. 01110110 b + c + d + f + g a e h    40. 01110101 b + c + d + f + h a e g    

41. 01110011 b + c + d + g + h a e f    42. 01101110 b + c + e + f + g a d h    

43. 01101101 b + c + e + f + h a d g    44. 01101011 b + c + e + g + h a d f    

45. 01100111 b + c + f + g + h a d e    46. 01011110 b + d + e + f + g a c h    

47. 01011101 b + d + e + f + h a c g    48. 01011011 b + d + e + g + h a c f    

49. 01010111 b + d + f + g + h a c e    50. 01001111 b + e + f + g + h a c d    

51. 00111110 c + d + e + f + g a b h    52. 00111101 c + d + e + f + h a b g    

53. 00111011 c + d + e + g + h a b f    54. 00110111 c + d + f + g + h a b e    

55. 00101111 c + e + f + g + h a b d    56. 00011111 d + e + f + g + h a b c    

 

 

Figure 2. One-dimensional space. 
 

 

Figure 3. Two-dimensional space. 

all variables and subspaces can be connected. In fact, we 
have e.g. that at the level 4 - 4 displayed in Table 6 we 
have the following combination of subspaces from below 

   
   

1 10 12 1 9 12

1 10 11 1 9 11 ,

          
           

 

where, when building subspaces, I shall consider the 
operation of sum    and product  of these 
subspaces; and from above 

 

   
  

1 10 12 1 9 12

1 10 11 1 9 11

    


      
           

 

These two expressions, somehow single out the 
subspace 1. However, since the subspace 1 is outside the 
2D subspace represented by the intersection 9 - 11, 10 -  
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Table 6. C(8,4) = 70 disjunctive quadruplets, C(8,4) = 70 conjunctive quadruplets. 

1. 11110000 a + b + c + d e f g h     2. 11101000 a + b + c + e d f g h     

3. 11100100 a + b + c + f d e g h     4. 11100010 a + b + c + g d e f h     

5. 11100001 a + b + c + h d e f g     6. 11011000 a + b + d + e c f g h     

7. 11010100 a + b + d + f c e g h     8. 11010010 a + b + d + g c e f h     

9. 11010001 a + b + d + h c e f g     10. 11001100 a + b + e + f c d g h     

11. 11001010 a + b + e + g c d f h     12. 11001001 a + b + e + h c d f g     

13. 11000110 a + b + f + g c d e h     14. 11000101 a + b + f + h c d e g     

15. 11000011 a + b + g + h c d e f     16. 10111000 a + c + d + e b f g h     

17. 10110100 a + c + d + f b e g h     18. 10110010 a + c + d + g b e f h     

19. 10110001 a + c + d + h b e f g     20. 10101100 a + c + e + f b d g h     

21. 10101010 a + c + e + g b d f h     22. 10101001 a + c + e + h b d f g     

23. 10100110 a + c + f + g b d e h     24. 10100101 a + c + f + h b d e g     

25. 10100011 a + c + g + h b d e f     26. 10011100 a + d + e + f b c g h     

27. 10011010 a + d + e + g b c f h     28. 10011001 a + d + e + h b c f g     

29. 10010110 a + d + f + g b c e h     30. 10010101 a + d + f + h b c e g     

31. 10010011 a + d + g + h b c e f     32. 10001110 a + e + f + g b c d h     

33. 10001101 a + e + f + h b c d g     34. 10001011 a + e + g + h b c d f     

35. 10000111 a + f + g + h b c d e     36. 01111000 b + c + d + e a f g h     

37. 01110100 b + c + d + f a e g h     38. 01110010 b + c + d + g a e f h     

39. 01110001 b + c + d + h a e f g     40. 01101100 b + c + e + f a d g h     

41. 01101010 b + c + e + g a d f h     42. 01101001 b + c + e + h a d f g     

43. 01100110 b + c + f + g a d e h     44. 01100101 b + c + f + h a d e g     

45. 01100011 b + c + g + h a d e f     46. 01011100 b + d + e + f a c g h     

47. 01011010 b + d + e + g a c f h     48. 01011001 b + d + e + h a c f g     

49. 01010110 b + d + f + g a c e h     50. 01010101 b + d + f + h a c e g     

51. 01010011 b + d + g + h a c e f     52. 01001110 b + e + f + g a c d h     

53. 01001101 b + e + f + h a c d g     54. 01001011 b + e + g + h a c d f     

55. 01000111 b + f + g + h a c d e     56. 00111100 c + d + e + f a b g h     

57. 00111010 c + d + e + g a b f h     58. 00111001 c + d + e + h a b f g     

59. 00110110 c + d + f + g a b e h     60. 00110101 c + d + f + h a b e g     

61. 00110011 c + d + g + h a b e f     62. 00101110 c + e + f + g a b d h     

63. 00101101 c + e + f + h a b d g     64. 00101011 c + e + g + h a b d f     

65. 00100111 c + f + g + h a b d e     66. 00011110 d + e + f + g a b c h     

67. 00011101 d + e + f + h a b c g     68. 00011011 d + e + g + h a b c f     

69. 00010111 d + f + g + h a b c e     70. 00001111 e + f + g + h a b c d     

Open Access                                                                                            JQIS 



G. AULETTA 131

Table 7. C(8,3) = 56 disjunctive triplets, C(8,5) = 56 conjunctive pentaplets. 

1. 11100000 a + b + c d e f g h      2. 11010000 a + b + d c e f g h      

3. 11001000 a + b + e c d f g h      4. 11000100 a + b + f c d e g h      

5. 11000010 a + b + g c d e f h      6. 11000001 a + b + h c d e f g      

7. 10110000 a + c + d b e f g h      8. 10101000 a + c + e b d f g h      

9. 10100100 a + c + f b d e g h      10. 10100010 a + c + g b c e f h      

11. 10100001 a + c + h b d e f g      12. 10011000 a + d + e b c f g h      

13. 10010100 a + d + f b c e g h      14. 10010010 a + d + g b c e f h      

15. 10010001 a + d + h b c e f g      16. 10001100 a + e + f b c d g h      

17. 10001010 a + e + g b c d f h      18. 10001001 a + e + h b c d f g      

19. 10000110 a + f + g b c d e h      20. 10000101 a + f + h b c d e g      

21. 10000011 a + g + h b c d e f      22. 01110000 b + c + d a e f g h      

23. 01101000 b + c + e a d f g h      24. 01100100 b + c + f a d e g h      

25. 01100010 b + c + g a d e f h      26. 01100001 b + c + h a d e f g      

27. 01011000 b + d + e a c f g h      28. 01010100 b + d + f a c e g h      

29. 01010010 b + d + g a c e f h      30. 01010001 b + d + h a c e f g      

31. 01001100 b + e + f a c d g h      32. 01001010 b + e + g a c d f h      

33. 01001001 b + e + h a c d f g      34. 01000110 b + f + g a c d e h      

35. 01000101 b + f + h a c d e g      36. 01000011 b + g + h a c d e f      

37. 00111000 c + d + e a b f g h      38. 00110100 c + d + f a b e g h      

39. 00110010 c + d + g a b e f h      40. 00110001 c + d + h a b e f g      

41. 00101100 c + e + f a b d g h      42. 00101010 c + e + g a b d f h      

43. 00101001 c + e + h a b d f g      44. 00100110 c + f + g a b d e h      

45. 00100101 c + f + h a b d e g      46. 00100011 c + g + h a b d e f      

47. 00011100 d + e + f a b c g h      48. 00011010 d + e + g a b c f h      

49. 00011001 d + e + h a b c f g      50. 00010110 d + f + g a b c e h      

51. 00010101 d + f + h a b c e g      52. 00010011 d + g + h a b c e f      

53. 00001110 e + f + g a b c d h      54. 00001101 e + f + h a b c d g      

55. 00001011 e + g + h a b c d f      56. 00000111 f + g + h a b c d e      

 
Table 8. C(8,2) = 28 disjunctive duplets, C(8,6) = 28 conjunctive esaplets. 

1. 11000000 a + b c d e f g h       2. 10100000 a + c b d e f g h       

3. 10010000 a + d b c e f g h       4. 10001000 a + e b c d f g h       

5. 10000100 a + f b c d e g h       6. 10000010 a + g b c d e f h       

7. 10000001 a + h b c d e f g       8. 01100000 b + c a d e f g h       

9. 01010000 b + d a c e f g h       10. 01001000 b + e a c d f g h       

11. 01000100 b + f a c d e g h       12. 01000010 b + g a c d e f h       

13. 01000001 b + h a c d e f g       14. 00110000 c + d a b e f g h       

15. 00101000 c + e a b d f g h       16. 00100100 c + f a b d e g h       

17. 00100010 c + g a b d e f h       18. 00100001 c + h a b d e f g       

19. 00011000 d + e a b c f g h       20. 00010100 d + f a b c e g h       

21. 00010010 d + g a b c e f h       22. 00010001 d + h a b c e f g       

23. 00001100 e + f a b c d g h       24. 00001010 e + g a b c d f h       

25. 00001001 e + h a b c d f g       26. 00000110 f + g a b c e f h       

27. 00000101 f + h a b c d e g       28. 00000011 g + h a b c d e f       
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Table 9. C(8,1) = 8 disjunctive singlets, C(8,7) = 8 conjunctive eptaplets. 

1. 10000000 a b c d e f g h        2. 01000000 b a c d e f g h        

3. 00100000 c a b d e f g h        4. 00010000 d a b c e f g h        

5. 00001000 e a b c d f g h        6. 00000100 f a b c d e g h        

7. 00000010 g a b c d e f h        8. 00000001 h a b c d e f g        

 
Table 10. C(8,0) = C(8,8). 

00000000 a b c d e f g h         

 
Table 11. One-dimensional subspaces in the tridimensional space. 

 a b c d e f g h 

X 1 1 1 2 1 2 2 2 

 7 7 7 8 7 8 8 8 

Y 3 3 4 3 4 3 4 4 

 9 9 10 9 10 9 10 10 

Z 5 6 5 5 6 6 5 6 

 11 12 11 11 12 12 11 12 

 
Table 12. Two-dimensional subspaces in the tridimensional space. 

a b c d e f g h  

X 1 1 1 2 1 2 2 2 

Y 3 3 4 3 4 3 4 4 

X 7 7 7 8 7 8 8 8 

Z 5 6 5 5 6 6 5 6 

Y 9 9 10 9 10 9 10 10 

Z 11 12 11 11 12 12 11 12 

   
12, then we could also substitute 1 by 7 and write from 
below 

variables and allows us both to drop any use of quanti- 
fication and deal with generalized relations. Therefore, 
the 3D space takes the form of a pentahedron with three 
surfaces representing the three 2D subspaces that 
generate three triangles in which the three vertexes are 
nodes of all the three variables, as displayed in Figure 4. 

   
   

7 10 12 7 9 12

7 10 11 7 9 11 ,

        
         




 

and from above 
From a geometrical point of view, each n1D 

subspace can be seen as a projection of the nD 
overordined space. This allows us to make use of partial 
derivatives with the additional difficulty that the planes 
we deal with are not orthogonal. 

   
  

7 10 12 7 9 12

7 10 11 7 9 11 .

        
          




 

This shows that both 1 and 7 point to the same variable 
X  and therefore we can consider the variable 

X  This formalism allows in principle to treat subspaces 
as the main tool of logic and therefore as boxes in which 
we can insert some content, and the variables as 
“dummy” variables that can be put in those boxes 
according to needs of computation. Nevertheless I shall 
still keep the use of variables as far as it can help the 
reader to assimilate this new way to treat logic. I also 
remark that in order to ascertain how many subspaces we 
have for a n-dimensional logic, it suffices to multiply the 

X  to be the coincidence of these two subspaces. 
Let us symbolize it as , and similarly for the 
other variables. Therefore, when we deal with con- 
nections through the 3D space we always have these 
cross spaces. This is crucial, since in this way we are able 
to explicitly symbolize the range of each variable when it 
is taken in connection with other ones. This is what 
makes the use of subspaces more rigorous than those of 

2 8,1 7 
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number of subspaces of the n1-dimensional logic with 
the number of variables of the n-dimensional logic. This 
makes the following series:  
 1 1D subspace (2 0D ones) for the one-dimensional 

logical space,  
 1 2 2   1D (4 0D) subspaces for the two- 

dimensional logical space,  
 2 3 6   1D (12 0D) subspaces for the three- 

dimensional logical space,  
 6 4 24   1D (48 0D) subspaces for the four- 

dimensional logical space,  
  1D (240 0D) subspaces for the five- 

dimensional logical space, and so on.  
24 5 120 

This is one of the main advantages of dealing with 
subspaces instead of logical expressions. In fact, whilst 
the number of monadic subspaces increases by a 
multiplication factor as the number of dimensions (varia- 
bles) increases according to the formula , 
where  parametrizes the subspaces and  para- me- 
trizes the variables, the number  of logical expressions 
grows exponentially as the number of variables increases:  

 1n n N  
Nn

m

     1 12 2 2
2 2 2

N N N

m
 

  ,












        (1) 

where again  is the number of variables. N
In analogy with traditional logical expressions, the 

following formulae can be helpful:  

  • 1 7 3 9 5 11 1 7 3 9 6 12

1 7 3 9 1 3

            
     

.  

  
   
   

• 1 7 3 9 5 11 1 7 3 9 6 12

1 7 3 9 5 11 4 10 6 12

1 7 9 11 10 12

          
         
       

. 

• .     1 7 3 9 1 7 5 11 1 7 9 11            

• .     1 7 3 9 1 7 5 11 1 7 9 11            

  
   

• 1 7 3 9 5 11 1 7 3 9 6 12

1 7 9 11 10 12

            
       

. 

   • 1 7 3 9 5 11 1 7 3 9 6 12

1 3

            
 

 

 

 

Figure 4. Three-dimensional space. Only the edges of the 
pentahedron are shown for the sake of representation. 

These operations display the fact that the concept of 
subspace has certain analogies with that of logical ex- 
pression. However, it is also slightly different. The last 
passage on the right shows only simplified connections be- 
tween  and Y Z  since it involves only their 2D subspace. 

Let us consider that the whole 3D space is constituted 
from a low level and an upper level instantiating for- 
mulae representing the combination of all three variables 
through product and sum, respectively (Levels 1 - 7 and 
7 - 1as displayed in Tables 3 and 9, respectively: I do not 
consider here contradiction and tautology). The pairwise 
combination of both the first and the second kind of 
statements will generate binary relations in terms of 
product and sum (Levels 2 - 6 and 6 - 2as displayed in 
Tables 4 and 8, respectively), that is a piece of two- 
dimensional logic. The pairwise combination of the first 
and second kind of binary relations will generate all cross 
triplets (Levels 3 - 5 and 5 - 3 as displayed in Tables 5 
and 7, respectively). Finally, the combination of the latter 
two kinds of formulae will generate from above and 
below the same formulae (Level 4 - 4). Most of these 
expressions involve all three variables but some of them 
are also monadic expression, another piece of two- 
dimensional logic and also the essence of one-dimen- 
sional one (Level 4-4). We may consider the expressions 
above for X , as an example. 

3. A Vectorial Representation 

An interesting possibility is to conceive all logical 
statements and also subspaces in vectorial terms [4] . We 
can indeed represent the 8 value assignments in Tab. 1 in 
terms of the following orthogonal basis: 

1 0 0

0 1 0

0 0 1

0 0 0
, , ,

0 0 0

0 0 0

0 0 0

0 0 0

a b c d

       
       
       
       
       
                 
       
       
       
              
       

0

0

0

1
,

0

0

0

0

 

0 0 0

0 0 0

0 0 0

0 0 0
, , ,

0

0

0

0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

e f g h

       
       
       
       
       
                 
       
       
       
              
       

.   (2) 
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We are now in position to write any statement in the 
3D space as a combination of these basis vectors. 
However, also the 0D components of any subspace can 
be written in this terms, since we have:  

1 1

1 1

1 0

0 1
1 7 , 3 9 , 5 11

1 0

0 1

0 0

0 0

     
     
     
     
     
               
     
     
     
          
     

1

0

1

1
,

0

0

1

0

 

0 0

0 0

0 1 0

1 0
2 8 , 4 10 , 6 12

0 1

1 0

1 1

1 1

     
     
     
     
     
               
     
     
     
          
     

0

1

0
,

1

1

0

1

  (3) 

where the columnar sequence of numbers corresponds to 
the ID of each denoted variable or statement. Note that 
1   7  and 2   8  constitute an orthogonal 

basis for the 1D logical space and similarly for the other 
variables. Instead, all vectors on the first row are parallel 
(as well as those in the second row), what can be seen by 
the fact that they pairwise share 4 values out of 8 (2 out 
of the first 4 numbers and the other 2 out of the last 4 
numbers of each column vector). This means that the 2D 
reference frame whose axes are 3  and 4  is 
displaced of some length relative to reference frame 
constituted by axes 1  and 2 . This means that the 
line connecting the points individuated by 1  and 2  
and the line connecting the points individuated by 3  
and 4  are parallel, what allows to recover the plane 
shown in Figure 3, as displayed in Figure 5. Similarly, 
also the reference frame whose axes are 11  and 12  
is displaced of same length relative to the reference 
frame 9 10  as well as the he reference frame 
whose axes are 5  and 6  is displaced of same 
length relative to the reference frame 7 8 . This 
allows to fully recover the 3D logical space of Figure 4, 
as displayed in Figure 6. Note that at least one of the 
reference frames (here 1 2 ) needs to be displaced 
along two directions, one for each of the other two 
reference frames. 

An alternative representation is to make use of 2D 
subspaces as vectors. For instance an orthogonal basis is 
constituted by subspaces 

 2 8 3 9,1 7 6 12, 4 10 5 11       


,  
where  stands for either sum or product between sub- 
spaces. If we take all these alternative choices together in 
the 3D space, we get an intersection of two planes as 
shown in Figures 7 and 8. Note that the vectors of the 
second representation can be considered as superposi- 
tions of the first one and vice versa. 

This representation allows us to write a classical 
derivation like the syllogism Barbara in this terms:  

 Tr 1 7 4 10 2 8 5 11

11 10 ,

X       

 
   (4) 

where  symbolizes the mathematical operation of 
tracing the “system” 

TrX

X  out. However, considered that  
 

 

Figure 5. Relations between 2D vectorial spaces and 2D 
logical subspaces. 
 

 

Figure 6. Relations between 3D vectorial spaces and 3D 
logical space. 

 

Figure 7. 2D subspaces as vectors: first two planes. 
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Figure 8. 2D subspaces as vectors: second two planes (the 
horizontal plane is only rotated relatively to the previous 
figure). 
 
the nature of the connections (that have the value of 
operations on logical subspaces) the sign connecting 
(either  or  ) the two states in the final state needs 
to correspond to logical rules. Such a tracing out 
corresponds to a kind of information election, what 
establishes an interesting connection between inferences 
and information [5]. These rules allow for following 
definitions:  



1 1

1 0

1 1

0 1
1 4 , 8 5 , 11 10 .

1 0

0 1

1 1

1 1

     
     
     
     
     
               
     
     
     
          
     

1

0

1

1

1

0

1

1

   (5) 

Analogously, we can define similar vectors in the case 
of subspaces product, for instance:  

0 0

0 0

1 0

0 1
1 4 , 8 5 , 11 10 .

1 0

0 0

0 1

0 0

     
     
     
     
     
               
     
     
     
          
     

0

0

1

0

0

0

1

0

   (6) 

Clearly, all of the above vectors represent the IDs of 
the relative statements. 

4. Quantum Computing: Raising and  
Lowering Operators 

The previous formalism can be easily used for imple- 

menting quantum computation [6-8; 9: Ch.17]. For 
instance, we can represent the three sets ,X Y  and Z  as 
three harmonic oscillators that can be in ground (0) or 
excited (1) state each (it suffices to choose and arbitrary 
state n  as the threshold between ground and excited 
states; otherwise systems implementing binary choices 
can be chosen, for instance spin-particles). What we need 
then is a family of raising and lowering operators 
allowing us to climb or descend the ladder of the possible 
states. We focus on the tridimensional logic (the results 
can be easily extracted for the one- and bi-dimensional 
case). Obviously, the rules for product and sum establish- 
ed previously need always to be taken into account. We 
can build a family of raising operators whose combination 
can give rise to any of the passages from one level to the 
next higher one (see Figure 9). Any of these operators 
can be assumed to act on columnar vectors represented 
by the ID sequence of each statement of the starting level 
(as shown in the previous section) and produces other 
columnar vectors of the upper level as output (repetitions 
are not considered as well as results that are identical to 
the input). 

Mathematically speaking, we cannot act with a raising 
operator on a vector composed only of zeros (Level 0 - 8). 
However, this can be easily done by adding a qubit 
representing the environment and keeping it constant (=1) 
so that it is irrelevant for the operations inside the logical 
space. Having said this, in the following I shall no longer 
deal with this problem. 

A family of raising operators from Level 1 - 7 to Level 
2 - 6 is shown in Figure 10. They are the result of the 
combination of the previously shown operators. Starting 
from the top line from the left to right (see Tables 8 and 
9):  
 The first operator allows the generation of Level 2 - 6 

Statements 1, 8, 14, 19, 23, 26, and 28. Consider that 
the number of the propositions perfectly correspond 
to the number of the operator in the series displayed 
in Figure 9 and the same is true for each of the 
subsequent transformations. This is due to the fact 
that each of these statements is an eigenvector of this 
operator and the same is true for the following 
transformations.  

 The second one the generation of Statements 2, 9, 15, 
20, 24, and 27.  

 The third the generation of Statements 3, 10, 16, 21, 
25.  

 The fourth (the first on left in the bottom line) the 
generation of Statements 4, 11, 17, and 22.  

 The fifth the generation of Statements 5, 12, 18.  
 The sixth the generation of Statements 6 and 13.  
 Finally, the last operator generates Statement 7.  

The raising operators allowing the ascension from  
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Figure 9. The 28 raising operators allowing the passage 
from any level to the next higher one. 
 

Level 2 - 6 to Level 3-5 (see Tables 7 and 8) are 
represented in Figure 9 (always starting from the top line 
from the left to right):  
 Operator 1 generates Level 5-3 Statements 1, 2, 3, 4, 

5, 6.  
 Operator 2 generates Statements 7, 8, 9, 10, 11.  
 Operator 3 generates Statements 12, 13, 14, 15.  

 

Figure 10. The seven raising operators allowing the passage 
from Level 1 - 7 to Level 2 - 6. 

 

 

Figure 11. The eight lowering operators allowing the pas- 
sage from any level to the next lower level. 
 
 Operator 4 generates statements 16, 17, 18.  
 Operator 5 generates Statements 19, 20.  
 Operator 6 generates Statement 21. Operator 7 is 

redundant.  
 Operator 8 generates Statements 22, 23, 24, 25, 26.  
 Operator 9 generates Statements 27, 28, 29, 30.  
 Operator 10 generates Statements 31, 32, 33.  
 Operator 11 generates Statements 34 and 34.  
 Operator 12 generates Statement 36. Operator 13 is 

redundant.  
 Operator 14 generates Statements 37, 38, 39, 40.  
 Operator 15 generates Statements 41, 42, 43.  
 Operator 16 generates Statements 44 and 45.  
 Operator 17 generates Statement 46. Operator 18 is 

redundant.  
 Operator 19 generates Statements 47, 48, 49.  
 Operator 20 generates Statements 50 and 51.  
 Operator 21 generates Statement 52. Operator 22 is 

redundant.  
 Operator 23 generates Statements 53 and 54.  
 Operator 24 generates Statement 55. Operator 25 is 

redundant.  
 Operator 26 generates Statement 56. Operators 27 and 

28 are redundant.  
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Again I have not considered repetition, so that "later" 
operators are more diminished in their generating 
capacity than is actually the case. We can reiterate this 
procedure and generate any subsequent level. 

The lowering operators that bring back statements 
from any given level to the next lower one can be built as 
in Figure 11. It is clear that the first one (always starting 
from the top line from the left to right) annihilates the 
term a in any statement, the second the term b, and so on. 
They are sort of negative projectors: instead of projecting 
e.g. on the component a they project on not-a. 

5. Conclusion 

What is interesting with the previous approach is that we 
can build a quantum computer that generates only logical 
statements (in fact any of the previous 256 statements 
and their connections in the 3D space are logical). This 
means that we can build in this way any kind of logical 
rule. Moreover, by implementing the procedures of 
tracing-out, we are able to generate any kind of inference 
on a quantum computer. In other words, a quantum 
“processor” would spontaneously generate both logical 
rules and inferences, which would represent a consider- 
able progress. 
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