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ABSTRACT 

Let  and A be the generator of an -times resolvent family 1 α< < 2 α ( ){ }
0t

S tα ≥
 on a Banach space X. It is shown 

that the fractional Cauchy problem , ( ) ( ) ( )t u t Au t f tα = +D ( ]0,t r∈ ;  has maximal regularity 

on 

( ) (0 ,u u′ ) ( )0 D A∈

[ ]( 0, ;C r )X  if and only if  is of bounded semivariation on ( )⋅Sα [ ]0, r . 

 
Keywords: -Times Resolvent Family; Maximal Regularity; Semivariation α

1. Introduction 

Many initial and boundary value problems can be re- 
duced to an abstract Cauchy problem of the form 

( ) ( ) ( ) [ ]
( ) ( )

, 0,

0

u t Au t f t t r

u x D A

′ = + ∈

= ∈
       (1.1) 

where A is the generator of a C0-semigroup. One says that 
(1.1) has maximal regularity on [ ]( 0, ;C r X ) if for every 

[ ]( 0, ; )f C r X∈  there exists a unique [ ](1 0, ;r X )u C∈  
satisfying (1.1). From the closed graph theorem it 
follows easily that if there is maximal regularity on 

[ ]( )0, ;C r X , then there exists a constant C > 0 such that 

[ ]( ) [ ]( ) [ ]( )0, ; 0, ; 0, ;
.

C r X C r X C r X
u Au f′ + ≤  

Travis [1] proved that the maximal regularity is equi- 
valent to the 0 -semigroup generated by C A  being of 
bounded semivariation on [ ]0, r . 

Chyan, Shaw and Piskarev [2] gave similar results for 
second order Cauchy problems. More precisely, they 
showed that the second order Cauchy problem 

( ) ( ) ( ) ( ]
( ) ( ) ( )

, 0,

0 , 0 , ,

u t Au t f t t r

u x u y x y D

′′ = + ∈
′= = ∈ A

       (1.2) 

has maximal regularity on [ ]0, r  if and only if the cosine 

opeator function generated by A is of bounded semivaria- 
tion on [ ]0, r . 

In this paper, we will consider the maximal regularity 
for fractional Cauchy problem 

( ) ( ) ( ) ( ]
( ) ( ) ( )

, 0,

0 , 0 , ,

u t Au t f t t r

u x u y x y D

α = + ∈
′= = ∈

tD

1,α ∈

A
     (1.3) 

where , ( )2 A  is the generator of an -times 
resolvent family (see Definition 2.2) and t  is under- 
stood in the Caputo sense. We show that (1.3) has ma- 
ximal regularity on 

α
uαD

[ ]( 0, ;C r X )  if and only if the 
corresponding -times resolvent family is of bounded 
semivariation on 

α
[ ]0, r . 

2. Preliminaries 

Let , 1 2α< < ( ) ( )0 :g t δ= t  and  

( ) ( ) ( )
1

: 0
t

g t
β

β β
β

−

= >
Γ

 

for . Recall the Caputo fractional derivative of 
order  

0
0α >

( )

t >

( ) ( ) [ ]
2

2 20

d
: d

d

t

t f , 0,t g t s f s s t r
sα−= − ∈Dα  

for [ ]( ; )2 0,f C r X∈ . The condition that *The authors are partially supported by the NSFC of China (Grant No. 
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can be relaxed to [ ]( )1 0, ;f C r X∈  and 

( ) ( )( ) [ ]( )2
2 20 0 0, ;g f f f g C r Xα− ′∗ − − ∈ , 

for details and further properties see [3] and references 
therein. And in the above we denote by 

( )( ) ( ) ( )
0

d
t

g f t g t s f s sβ β∗ = −  

the convolution of gβ  with f. Note that g g gα β α β+∗ = . 
Consider a closed linear operator A densely defined in 

a Banach space X and the fractional evolution Equation 
(1.3). 

Definition 2.1 A function [ ]( 0, ;u C r X∈ )  is called a 
strong solution of (1.3) if 

[ ] ( )( ) [ ]( )
( )( ) [ ]( )

1

2
2

0, ; 0, ; ,

0, ;

u C r D A C r X

g u t x ty C r Xα−

∈

∗ − − ∈


 

and (1.3) holds on [ ]0, r . [ ]( 0, ;u C r X∈ )  is called a  

mild solution of (1.3) if ( )g u D Aα ∗ ∈  and 

( ) ( )( ) ( )( )u t x ty A g u t g f tα α− − = ∗ + ∗  

for [ ]0,t r∈ . 
Definition 2.2 Assume that A is a closed, densely de- 

fined linear operator on X. A family ( ){ } ( )S t B Xα ⊂
0t≥

 
is called an α-times resolvent family generated by A  if 
the following conditions are satisfied: 

(a)  is strongly continuous on  and 
; 

( )Sα ⋅
S I=

(S t

+

( )
( )0α

(b)  and ) ( ) ( )D A D Aα ⊂ ( )AS t x S t Axα α=  
for all ( ) , 0x D A t∈ ≥

( )
; 

(c) For all x D A∈  and , 0t ≥
x( ) )( )S t x x t Aα α α= + ( g S∗ . 

Remark 2.3 Since A is closed and densely defined, it 
is easy to show that for all x X∈ , ( ) ( ) ( )g S t x D Aα α∗ ∈  
and ( )( ) .A g S t x S∗ = x x−α α α

The α-times resolvent families are closely related to 
the solutions of (1.3). It was shown in [3] that if A ge- 
nerates an α-times resolvent family , then (1.3) has  

 

( )Sα ⋅

a unique strong solution given by . ( ) ( )
0

d
t

S t x S s y sα α+ 
Next, we recall the definition of functions of bounded 

semivariation (see e.g. [4]). Given a closed interval 
[ ],a b  of the real line, a subdivision of [ ],a b  is a finite 
sequence 0 1 . Let : nd a d d d b= < < < = [ ],D a b  de- 
note the set of all subdivisions of [ ],a b . 

Definition 2.4 For  

[ ] ( ): ,G a b B X→  and [ ],d D a b∈ , 

define 

[ ]

( ) ( )1
1

sup : , 1

d

n

i i i i i
n

SV G

G d G d x x X x−
=

 
 = − ∈  

 


and 

[ ] [ ] [ ]{ }sup : ,dSV G SV G d D a b= ∈ . 

We say G is of bounded semivariation if [ ]SV G < ∞ . 

3. Main Results 

We begin with some properties on -times resolvent 
families which will be needed in the sequel. 

α

Proposition 3.1 Let  and 1 α< < 2 ( ){ }
0t≥
 be the 

-times resolvent family with generator 
S tα

α A . Define 

( ) ( )( )
( ) ( )

1

10
d , ,

t

P t x g S t x

g t s S s x s x X

α α α

α α

−

−

= ∗

= − ∈
 

then the following statements are true. 
x X∈ ,  and ( ) ( )

0
d

t
P s x s D Aα ∈

( )( )t

(a) For every 

0
d ;A P s x s S t x x= −α α  

(b) For every x X∈ , ,  0 ,a b t≤ ≤

( ) (d
b

a
)sP t s x x D Aα − ∈  

and 

( ) ( ) ( )

( )

d

d ;

b

a

b

a

A sP t s x s aS t a x bS t b x

S t s x s

α α α

α

− = − − −

+ −




 

(c) For every x X∈ , 

( ) ( ) (
0

d
t )g t s sP s x s D Aα α− ∈  

and 

( ) ( )( )
( )( ) ( )

0
d

;

t
A g t s sP s x s

g S t x tP t x

α α

α α αα

−

= − ∗ +

  

(d) If [ ]( )0, ;f C r X∈ , then ( )g S f D Aα α∗ ∗ ∈

( )
 and 

( ) 1 .A g S f S fα α α∗ ∗ = − ∗          (3.1) 

Proof. (a) follows from the fact that 

( ) ( )( )
( )( ) ( )

1 10
d

t
P s x s g g S t x

g S t x D A

α α α

α α

−= ∗ ∗

= ∗ ∈
  

and ( )( ) ( )A g S t x S t x xα α α∗ = −  by Remark 2.3. 

(b) By integration by parts we have 

( ) ( )

( )( )

( )( ) ( )( )
( )( ) ( )( )

( )( )

0
d d d

d

d

d ,

b b s

sa a

b

sa

bb

a a

b

a

sP t s x s s P t x

s g S t s x

s g S t s x g S t s x s

a g S t a x b g S t b x

g S t s x s

α α

α α

α α α α

α α α α

α α

τ τ − = −  

 = ∗ − 

= − ∗ − + ∗ −

= ∗ − − ∗ −

+ ∗ −

  







 

≤
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since ( )( ) ( )dg S t x s D Aα α∗ ∈  by Remark 2.3, opera- 
ting A  on both sides of the above identity gives (b). 

(c) follows from the fact that 

( ) ( )

( )( ) ( ) ( ) ( )

( ) ( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

0

0 0

10

1

1 1 1

1

d

d

d

t

t t

t

g t s sP s x s

dg t s s t P s x s t g t s P s x s

g t s P s x s t g P t x

g P t x t g P t x

g g S t x t g g S t x

g g S t x t g g S t x

α α

α α α α

α α α α

α α α α

α α α α α α

α α α α α α

α

α

α

α

+

+

+ − −

−

−

= − − + −

= − − + ∗

= − ∗ + ∗

= − ∗ ∗ + ∗ ∗

= − ∗ ∗ + ∗ ∗



 

  

belongs to  and ( )D A

( ) ( )( )
( )( )( ) ( )( ( )

( )( )( ) ( )( )( )
( )( ) ( )
( )( ) ( )
( )( ) ( )

0

1

1

1

1

d

1 1

.

t
A g t s sP s x s

)g A g S t x t g A g S t x

g S t x t g S t x

g S t x g t x

t g S t tg t x

g S t x tP t x

α α

α α α α α α

α α α α

α α α

α α α

α α α

α

α

α α

α

−

−

+

−

−

= − ∗ ∗ + ∗ ∗

= − ∗ − + ∗ −

= − ∗ +

+ ∗ −

= − ∗ +



 

(d) (3.1) is true for step functions, and then for con- 
tinuous functions by the closedness of A . 

The following two lemmas can be proved similarly as 
that in [1,2]. 

Lemma 3.2 If [ ]( 0, ; )f C r X∈
( )S tα

 and the -times 
resolvent family  is of bounded semivariation on  

α

[ ]0, r , then  and ( )( ) ( )t D A∗ ∈P fα

( )( ) ( ) ( )
0
d
t

s .A P f t S t s f sα α∗ = − −    

Lemma 3.3 If [ ]( 0, ; )f C r X∈
( )S tα

 and the -times 
resolvent family  is of bounded semivariation on  

α

[ ]0, r , then  is continuous in t on ( ) (
0
d
t

s S t s f sα −   )
[ ]0, r . 

We next turn to the solution of 

( ) ( ) ( ) ( ]
( ) ( )

, 0,

0 0, 0 0,

t u t Au t f t t r

u u

α = + ∈
′= =

D ,
     (3.2) 

where A  is the generator of an -times resolvent 
family. If  is a mild solution of (3.2), then by De- 
finition 2.1 

α
( )v t
( )( ) ( )g v t D A∗ ∈α  and 

( ) ( )( ) ( )( )v t A g v t g f tα α= ∗ + ∗ . 

It then follows from the properties of -times re- 
solvent family that 

α

( )( )
( )

( )( )

1

,

v S A g S v

S v S A g v

S v A g v

S g f

α α α

α α α

α α

α α

∗ = − ∗ ∗

= ∗ − ∗ ∗

= ∗ − ∗

= ∗ ∗

 

which implies that g S fα α∗ ∗  is differentiable and 

( ) ( )( )

( ) ( )
( )( )

1

d

d

.

v t g S f t
t
g S f t

P f t

α α

α α

α

−

= ∗ ∗

= ∗ ∗

= ∗

 

Therefore, the mild solution of (1.3) is given by 

( ) ( ) ( ) ( )( )
0

d .
t

u t S t x S s y s P f tα α α= + + ∗    (3.3) 

Proposition 3.4 Let A be the generator of an α -times 
resolvent family , and let ( )Sα ⋅ [ ]( );0,f C r X∈  and 

( ),x y D A∈ . Then the following statements are equi- 
valent: 

(a) (1.3) has a strong solution; 

(b) ( )( ) [ ]( )1 0, ;S f C r Xα ∗ ⋅ ∈ ; 

(c)  for 0 ≤ t ≤ r and ( )( ) ( )P f t D Aα ∗ ∈ ( )( )A P f tα ∗  
is continuous in  on t [ ]0,

( )u t
r . 

Proof. (a) If  is a strong solution of (1.3), then 
 is given by (3.3) since every strong solution is a mild 

solution. Therefore, by the definition of strong solutions,  
u

[ ]( )2
2 1 0, ;g P f g S f C r Xα α α− ∗ ∗ = ∗ ∗ ∈ ; 

it then follows that [ ](1 0, ;S f C r Xα ∗ ∈ ) , this is (b). 

(b)(c). Suppose that [ ]( 0, ;S f C r Xα ∗ ∈ )1 . Since 

1g P f g S fα α α∗ ∗ = ∗ ∗ , by Proposition 3.1(d), 

( )1g P f D Aα∗ ∗ ∈  

and 

( ) ( ) ( )1 1 .A g P f A g S f S fα α α α∗ ∗ = ∗ ∗ = − ∗  (3.4) 

Since A  is closed and [ ](1 0, ;S f C r Xα ∗ ∈ ) , we  

have  and ( )P f D Aα ∗ ∈ ( ) ( )A P f S f fα α∗ = ∗ −′  is  

continuous. 
(c)(a). By (3.4),  

( ) ( ) ( )1 1 1g A P f A g P f S fα α α∗ ∗ = ∗ ∗ = − ∗ , 

therefore  is differentiable and thus  S fα ∗

2 1g P f g S fα α α− ∗ ∗ = ∗ ∗  

is in [ ](2 0, ;C r X ) . It is easy to check that  de- 
fined by (3.3) is a strong solution of (1.3). 

( )u t

Now we are in the position to give the main result of 
this paper. The proof is similar to that of Proposition 3.1 
in [1] or Theorem 4.2 in [2], we write it out for com- 
pleteness. 
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position 3.4(c) , it thus follows from the 
closedness of A that 

( )Lf D A∈
[ ]( ): 0, ;AL C r X X→  is bounded. 

Theorem 3.5 Suppose that A  generates an α -times 
resolvent family ( ){ }

0t≥
. Then the function (3.3) is a 

strong solution of the Cauchy problem (1.3) for every 
pair 

S tα

)(,x y D∈ A  and continuous function f  if and 
only if  is of bounded semivariation on ( )Sα ⋅ [ ]0, r . 

Let  be a subdivision of { } 0

n

i i
d

= [ ]0, r  and   0>
such that { }1 1min i n i id d≤ ≤ −< − . For  with  Xi ∈x

( )1 1,2, , 1ix i n≤ = + , define [ ]( ), 0, ;df C r X∈  by Proof. The sufficiency follows from Lemmas 3.2 and 
3.3. 

( ) ( )
1

,

1 1

,
,

,

i i

d i
i i i i

x d
f d

i

i

d

x x x d d

τ
τ τ τ

−

+ +

≤ ≤ −
=  −

+ − − ≤ ≤







 Conversely, suppose that for ( ),x y D A∈  and con- 
tinuous function f ,  given by (3.3) is a strong 
solution for (1.3). Define the bounded linear operator  

( )u t

[ ]( ): 0, ;L C r X X→  by . By Pro-  ( ) ( )( )L f P f rα= ∗ then 
[ ]( ), 0, ;

1d C r X
f ≤ . By Proposition 3.1, 

 

( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( ) ( )

( )( ) ( )( )

1

, ,0

1 1
1

1 1
1

1 1

d

d d di i i

i i i

r

d d

n d d d i
i i i id d d

i

n

i i i i i i i i
i

i i i i i i

AL f A P r s f s s

s d
A P r s x s A P r s x s A P r s x x x

S r d x S r d x S r d x S r d x

d
S r d x x S r d x x

α

α α α

α α α α

α α

−

−
+ +− −

=

− +
=

+ +

= −

− = − + − + − −  
   = − − − + + − + − −   

 − − + − − − − 



   



 



  

 




1+

( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )

1 1

1 1 1
1

1 1 1
1

1 1
d

1
d

1
d

i

i

i

i

i

i

d

i i i i i i i i i id

n d

i i i i i id
i

n d

i i i i i i i id
i

d S r d x x d S r d x x S r s x x s

S r d x S r d x S r s x x s

S r d S r d x S r d x x S r s x x s

α α α

α α α

α α α α

ε + + −

− + +−
=

− + +−
=

 + − − + − − − − + − −   
  = − − − + − −   
  = − − − − − − + − −  



 

 








 




,



1+

 

 
it then follows that 
 

( ) ( ) ( ) ( ) ( ) ( )( )1 , 1
1 1

1
d .i

i

n n d

i i i d i i i id
i i

S r d S r d x AL f S r d x x S r s x x sα α α α− + +−
= =
 − − − ≤ + − − − − −     1 i  

 
By letting , we obtain that  is of bounded 

semivariation on 
0→ Sα

[ ]0, r . 
{ ( )}Corollary 3.6 Suppose that 

0tα ≥
 is an - 

times resolvent family with generator 
S t α

A  and  is 
of bounded semivariation on 

( )Sα ⋅
[ ]0, r  for some .  0>r

Then  for ( )( ) ( )R P t D Aα ⊂ [ ]0,t r∈ ( )tAP t and   α

is bounded on [ ]0, r
Xx ∈
. 

Proof. For , consider ( ) ( )f t S tαα=

( )( ) ( )P f t tP t xα α∗ =

x . By 
Proposition 3.1(c),  is a mild solution of (3.2). 
Moreover, it follows from Proposition 3.4 that  
is a strong solution of (3.2). Since a strong solution must 
be a mild solution, we have . Thus 
our claim follows from Proposition 3.4. 

( )t xαtP
P fα ∗

Remark 3.7 Let . If 1α = A  generates a 0C -semi- 
group , then the condition that  is bounded 
on 

( )T ⋅ ( )tAT t
[ ]0,
2=

r  implies that  is analytic (see [5]). When 
 and A generates a cosine function , then the 

condition that  is bounded on 

( )T ⋅

( )t
α (⋅)C

tAC [ ]0, r  implies that 

A  is bounded ([3]). However, since there is no semi- 
group properties for α -times resolvent family, it is not 
clear that one can get the analyticity of  from the 
local boundedness of . 

( )Sα ⋅
( )tαtAP
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