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ABSTRACT 

There are many papers related to stability, some on suppression or on stabilization are one type of them. Functional diffe- 
rential systems are common and important in practice. They are special situations of neutral differential systems and 
generalization of ordinary differential systems. We discussed conditions on suppression on functional system with Mar- 
kovian switching in our previous work: “Suppression of Functional System with Markovian Switching”. Based on it, by 
slightly modifying and adding some conditions, we get this paper. In this paper, we will study a functional system who- 
se coefficient satisfies the local Lipschitz condition and the one-sided polynomial growth condition under Markovian 
switching. By introducing two appropriate intensity Brownian noise, we find the potential explosion system stabilized. 
 
Keywords: Stochastic Functional System; Brownian Noise; Markovian Switching; Boundedness; Stabilization 

1. Introduction 

There are many papers which discuss stability of systems. 
It is called a stabilization problem when we impose such 
conditions on a given unstable system to make it stable. 
There have been rich literatures on this topic, here we 
only mention [1-4]. It talkes about suppression of noise 
in [1,2]. It shows similar stabilization phenomena in sto-
chastic systems as those in deterministic systems in [3,4]. 
They all indicate clearly that different structures of envi-
ronmental noise may have different effects on the deter-
ministic system. On the other hand, there are also many 
papers related to stabilization of functional systems, such 
as [5-8]. [5] investigates a stochastic Lotka-Volterra sys-
tem with infinite delay, whose initial data come from an 
admissible Banach space C, and show that its unique 
global positive solution has asymptotic boundedness 
property by using the exponential martingale inequality. 
[6] studies existence and uniqueness of the global posi-
tive solution of stochastic functional Kolmogorov-type 
system and its asymptotic bound properties and moment 
average boundedness in time under the traditionally di-
agonally dominant condition. [7] studies the same prob-
lems as [6] under some other conditions. [8] discusses 
stabilization of a given unstable nonlinear functional 
system by introducing two Brownian noise. 

Many practical systems may experience abrupt changes 

in their structure and parameters caused by phenomena 
such as component failures or repairs, changing subsys-
tem interconnections, and abrupt environmental distur-
bances. The hybrid systems have been used to desribe 
such situations. Along the trajectories of the Markovian 
jump system, the mode switches from one value to an-
other in a random way are governed by a Markov process 
with discrete state space. [9,10] studied the stability of a 
jump system. Feng et al. [11] systematically studied sto-
chastic stability properties of jump linear systems and the 
relationship among various moment and sample path 
stability properties. Shen and Wang [12] presented new 
exponential stability results for recurrent neural networks 
with Markovian switching. Wang et al. [13] dealt with 
the problem of state estimation for a class of delayed 
neural networks with Markovian jumping parameters 
without the traditional monotonicity and smoothness 
assumptions on the activation function. 

Taking both the environmental noise and jump into 
account, the system under consideration becomes a sto-
chastic differential system with Markovian switching 
(SDSwMS), which has received a lot of attention (see 
[14-24]) recently. [17] provided some useful conditions 
on the exponential stability for general nonlinear 
SDSwMSs, which was improved by himself in Mao et al. 
[19]. Yuan and Lygeros [20] investigated almost sure ex- 
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ponential stability for a class of switching diffusion pro- 
cesses. [25] discusses the asymptotic stability and expo- 
nential stability of SDSwMSs, whose coefficients are 
assumed to satisfy the local Lipschitz condition and the 
polynomial growth condition. 

Motivated by [25,26] and some other literatures, we 
will investigate suppression and stabilization by noise of 
functional differential system with Markov chains, whose 
coefficient satisfies the local Lipschitz condition and the 
one-sided polynomial growth condition. For a given un-
stable functional system with Markovian switching 

    , , ,t x t f t x r t                 (1) 

where 
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introducing two independent scalar Brownian noise un-
der some conditions, we get a stochastic functional sys-
tem which admits a unique global positive solution. Fur-
thermore, choosing appropriate intensity noise, we can 
get an exponential stable stochastic functional system 
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In the next section we will give some necessary nota- 
tions and lemmas. In Section 3, we will give the main 
results of this paper. 

2. Preliminaries 

Throughout this paper, unless otherwise specified, let   
be the Euclidean norm in . If nR A  is a vector or ma-
trix, its transpose is denoted by TA . If A  is a matrix,  

its trace norm is denoted by  TA trace A A . Denote  

the inner product of , nX Y R  by ,X Y  or TX Y . 
Let  be positive integers. Let  denote the 
maximum of  and b , while  the minimum of 

 and . Let  . Denote by  
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and   ,0 ; nC C R    . Let  denote the family  2C

of functions  , ,tV t x i  on  which are con-
tinuously twice differentiable in 

nC R S 
x  and once in t . 

Let   0
, , ,t t

    be a complete probability space 

with a filtration   0t t
 satisfying the usual conditions 

(i.e. it is increasing and right continuous while  con-  0
tains all -null sets). Let   ,

t p nL R  denote the fam-  

ily of -valued t -measurable random variables nR    
with 

p
E   . Denote the family of Rn-valued bounded 

t -measurable random variables by . If  ,
t

b nL R  x t  

is an Rn-valued process on , let  ,t   

  : 0,tx x t t   0      . 

If M  is a continuous local martingale, denote the 
quadratic variation of M  by ,

t
M M . Let  

   1,2 , 0iB t i t   

be independent scalar Brownian motion defined on the 
probability space. Let   , 0r t t   be a right-continuous 
Markov chain on the probability space taking values in a 
definite state space  1,2, ,S   N  with the generator 
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where 0,   ij  is the transition rate from  to   i j
and 0ij   if i j  while ii ij

i j

 


  . We assume  

that the Markov chain  r   is independent of the Brow- 
nian motion  B  . For any initial value 

    0 ,0 n;x C R    , 

denote the solution of the corresponding initial value 
problem by   ;0, , 0x t r  or simply  x t  on . 0t 
In order to obtain the main results, we need the following 
assumptions. 

(H1) There are some nonnegative constants , ,i i    
such that 
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       (3) 

for all  , ,t i R C S    , where   is a probability 

measure on  ,0  and  means some functions   o y

satisfying 
 

lim 0
y

o y
. 

y

    ,  
(H2) For every integer , there is a  such 

that 
1j  0jK 
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Definition 1: The irreducibility of the Markov chain 

means that the Markov chain has a unique stationary (pro- 
bability) distribution   1

1 2, , ,

modify the condition on the coefficient of (1) and obtain 
the following theorem. 

,N
N R       which 

can be determined by solving the following linear equa-
tion 

Theorem 1: Let (H1) - (H3) hold, for any initial value 

0x C  , if 
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2
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subject to 
then there exists a unique global solution  x t  of sys-
tem (2) on all  0,t   a.s. 

1
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Similarly to that in [28], we define the stopping time 
Lemma 1: [27] Let (H2) hold, for any initial value 

0x C  , system (2) has a unique maximal local 
strong solution on  , e  , where e  is the explosion 
time. 
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and a C2-function    2 21
p

V x x  , for any  0,1p .  

3. Main Results Using the Itô formula and the Young inequality, for any 
 0,1p , by (H1) and (H3), we get Similar to the proof of Theorem 1 in [28], we slightly  
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where 
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These results will be used in the following. 

3.1. Boundedness 

Theorem 2: Let (H1) - (H3) hold, for any initial value 

0x C   and  0,1p , if 2 2ˆ ˆ2 2 2i i i iw w w    2
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and 1
2

   , then there exists a constant pM  such  

that the global solution  x t  of system (2) has the 
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property that 
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p

p
t

E x t M


            (14) 

where pM  is dependent on  and independent of the p

initial value  , that is,  x t  is bounded in moment. 
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That is, the global solution  x t  of system (2) is 

bounded in -th moment for any p  0,1p . 
Theorem 3: Let (H1) - (H3) hold, if  
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Proof: By Theorem 1, there a.s. exists a unique global solution  x t  to system (2) on  a.s. Let  0,t 
  p

V x x , by the Itô formula, we have 
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By (H1) and (H3), we have 
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Let k  be the same stopping time as defined in the 

proof of Theorem 1. By (13) and (14), we have 
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By the ergodic and irreducibility property of the 
Markov chain, we have 
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as required. 

3.2. Stabilization of Noise 

The following lemma can be obtained by slightly modi-
fying the proof of Mao [2]. 

Lemma 2: Let (H1) - (H3) hold, for any initial value 

0x C   with  0 0x  , the global solution of sys-
tem (2) has the property that 

  0 on 0 1.P x t t            (18) 

where e  is the explosion time. 
Theorem 4: Let (H1) - (H3) hold, assume that 
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then for any initial value 0x C  , satisfying 

, the global solution of system (2) has the prop-
erty that 
 0 0x 
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ln
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t

x t
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That is, the solution to system (2) is a.s. exponentially 
stable. 

Proof: By Lemma 2 and Theorem 1,   0,x t t R     

a.s. Thus, applying the Itô formula to  ln x t  yields 
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where I  is an identity matrix and 
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Clearly  1M t  and  2M t  are continuous local  

martingales with the quadratic variation 
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By (H3), 
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Applying the strong law of large number, 
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From (H1) and (H3), 
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By the definition of i  in (20), 
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Applying the strong law of large number to the 
Brownian motion, 
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4. Conclusion 

In this paper, we study a stochastic functional system 
with Markovian switching. Motivated by [25,26] and 
other literatures, we introduce two appropriate intensity 
Brownian noise to perturb the system so as to suppress 
its potential explosion and stabilize it. Based on [28], we 
just slightly modify some conditions on its coefficients 

and add some contents, then we get some new conclu-
sions about boundedness and stabilization of the system. 
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