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Abstract 

In this paper, a transportation problem with an objective function as the sum of a linear and fractional function is con- 
sidered. The linear function represents the total transportation cost incurred when the goods are shipped from various 
sources to the destinations and the fractional function gives the ratio of sales tax to the total public expenditure. Our 
objective is to determine the transportation schedule which minimizes the sum of total transportation cost and ratio of 
total sales tax paid to the total public expenditure. Sometimes, situations arise where either reserve stocks have to be 
kept at the supply points, for emergencies or there may be extra demand in the markets. In such situations, the total flow 
needs to be controlled or enhanced. In this paper, a special class of transportation problems is studied where in the total 
transportation flow is restricted to a known specified level. A related transportation problem is formulated and it is 
shown that to each basic feasible solution which is called corner feasible solution to related transportation problem, 
there is a corresponding feasible solution to this restricted flow problem. The optimal solution to restricted flow prob- 
lem may be obtained from the optimal solution to related transportation problem. An algorithm is presented to solve a 
capacitated linear plus linear fractional transportation problem with restricted flow. The algorithm is supported by a real 
life example of a manufacturing company. 
 
Keywords: Transportation Problem; Linear Plus Linear Fractional; Restricted Flow; Corner Feasible Solution 

1. Introduction 

Transportation problems with fractional objective func- 
tion are widely used as performance measures in many 
real life situations such as the analysis of financial as- 
pects of transportation enterprises and undertaking, and 
transportation management situations, where an individ- 
ual, or a group of people is confronted with the hurdle of 
maintaining good ratios between some important and 
crucial parameters concerned with the transportation of 
commodities from certain sources to various destinations. 
Fractional objective function includes optimization of 
ratio of total actual transportation cost to total standard 
transportation cost, total return to total investment, ratio 
of risk assets to capital, total tax to total public expendi- 
ture on commodity etc. Gupta, Khanna and Puri [1] dis- 
cussed a paradox in linear fractional transportation prob- 
lem with mixed constraints and established a sufficient 
condition for the existence of a paradox. Jain and Sak- 
sena [2] studied time minimizing transportation problem 

with fractional bottleneck objective function which is 
solved by a lexicographic primal code. Xie, Jia and Jia [3] 
developed a technique for duration and cost optimization 
for transportation problem. In addition to this fractional 
objective function, if one more linear function is added, 
then it makes the problem more realistic. This type of 
objective function is called linear plus linear fractional 
objective function. Khuranaand Arora [4] studied linear 
plus linear fractional transportation problem for restricted 
and enhanced flow. 

Capacitated transportation problem finds its applica- 
tion in a variety of real world problems such as tele- 
communication networks, production-distribution sys- 
tems, rail and urban road systems where there is scarcity 
of resources such as vehicles, docks, equipment capacity 
etc. Many researchers like Gupta and Arora [5], Misra 
and Das [6] have contributed to this field. Jain and Arya 
[7] studied the inverse version of capacitated transporta- 
tion problem. 
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Many researchers like Arora and Gupta [8], Khurana, 
Thirwani and Arora [9] have studied restricted flow 
problems. Sometimes, situations arise when reserve 
stocks are to be kept at sources for emergencies. This 
gives rise to restricted flow problem where the total flow 
is restricted to a known specified level. This motivated us 
to develop an algorithm to solve a linear plus linear frac- 
tional capacitated transportation problem with restricted 
flow. 

2. Problem Formulation 

(P1): min
ij ij

i I j J
ij ij

i I j J ij ij
i I j J

s x

z r x
t x

 

 
 

 


 
 

subject to 
;i ij i

j J

a x A i I


                    (1) 

;j ij j
i I

b x B j J


                   (2) 

ij ij ijl x u   and integers ,i I j J     (3) 

min ,ij i j
i I j J i I j J

x P A B
   

  
      

         (4) 

 1,2, ,I m   is the index set of m origins. 
 1,2, ,J n   is the index set of n destinations. 

xij = number of units transported from origin i to des- 
tination j. 

rij = per unit transportation cost when shipment is sent 
from ith origin to the jth destination. 

sij = the sales tax per unit of goods transported from ith 
origin to the jth destination. 

tij = the total public expenditure per unit of goods 
transported from ith origin to the jth destination. 

lij and uij are the bounds on number of units to be 
transported from ith origin to jth destination. 

ai and Ai are the bounds on the availability at the ith 
origin, i   I 

bj and Bj are the bounds on the demand at the jth desti- 
nation, j   J 

It is assumed that 0ij ij
i I j J

t x
 

  for every feasible  

solution X satisfying (1), (2), (3) and (4) and all upper 
bounds uij;  ,i j I J   are finite. 

Sometimes, situations arise when one wishes to keep 
reserve stocks at the origins for emergencies, there by 
restricting the total transportation flow to a known speci-  

fied level, say min ,i j
i I j J

P A B
 

  
     

  . This flow con-  

straint in the problem (P1) implies that a total i
i I

A P


  
 
  

of the source reserves has to be kept at the various  

sources and a total j
j I

B P


 
 

 
  of destination slacks is  

to be retained at the various destinations. Therefore an 
extra destination to receive the source reserves and an 
extra source to fill up the destination slacks are intro- 
duced. 

In order to solve the problem (P1) we convert it in to 
related problem (P2) given below. 

(P2): min
ij ij

i I j J
ij ij

i I j J ij ij
i I j J

s y

z r y
t y

  

  
  


 



 
 

 

subject to 

ij i
j J

y A i I


     ij j
i I

y B j J


     

 , ,ij ij ijl y u i j I J      

1,0 m j j jy B b j J      

, 10 i n i iy A a i I      

1, 1 0m ny     i iA A i I    , 

1m j
j J

A B P


   , j jB B j J    , 1n i
i I

B A P


    

, ,ij ijr r i I j J     , 

1, , 1 0 ,m j i nr r i I j J        , 1, 1m nr M  
 

, ,ij ijt t i I j J     , 

1, , 1 0 ,m j i nt t i I j J        , 1, 1  m nt M    

, ,ij ijs s i I j J     , 

1, , 1 0 ,m j i ns s i I j J        ; 1, 1m ns M    

where M is a large positive number. 

 1,2, , , 1I m m   ,  1,2, , , 1J n n    

3. Theoretical Development 

Theorem1: A feasible solution 0
ij

I J

X x


   
 


 of prob- 

lem (P1) with objective function value o S
R

T

 
 

 



  will  

be a local optimum basic feasible solution iff the follow- 
ing conditions holds. 

     
 

 

2 3

1 1

3

1

0;

,

ij ij ij ij ij

ij ij ij ij

ij ij ij

T s z S t z
r z

T T t z

i j N


 



       
   

 

 

   
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     
 

 

2 3

2 1

3

2

0;

,

ij ij ij ij ij

ij ij ij ij

ij ij ij

T s z S t z
r z

T T t z

i j N


 



        
   

 

 

   

and if X0 is an optimal solution of (P2), then 

 1
10; ,ij i j N     and  2

20; ,ij i j N     

where 

ij ij
i I j J

R r x
 

   , ,ij ij
i I j J

S s x
 

    ij ij
i I j J

T t x
 

   , 

B denotes the set of cells (i, j) which are basic and N1 and 

N2 denotes the set of non-basic cells (i, j) which are at 
their lower bounds and upper bounds respectively. 

1 2 3 1 2 3, , , , , ; ,i i i j j ju u u v v v i I j J   are the dual variables 

such that  
1 1
i j iju v r  ; 2 2 ;i j iju v s   3 3

i j iju v t  ;  ,i j B  ; 

1 1 1
i j iju v z  ; 2 2 2 ;i j iju v z   3 3 3

i j iju v z  ;  ,i j B  . 

Proof: Let 0
ij

I J

X x


   
 


 be a basic feasible solution  

of problem (P1) with equality constraints. Let z0 be the 
corresponding value of objective function. Then 

 

 

   
   
   

2 2 2 2

1 1 1 1

3 3 3 3

say
ij ij

i I j J o
ij ij

i I j J ij ij
i I j J

ij i j ij i j ij
i I j J i I j J

ij i j ij i j ij
i I j J i I j J ij i j ij i j ij

i I j J i I j J

s x
S

z r x R
t x T

s u v x u v x

r u v x u v x
t u v x u v x

 

 
 

   

   
   

 
    

 

    


     
   




 

 
 

 




 
 

 

 
 

   
 

 
 

 
 

 
 

 
 

 
 

 
 

1 2

1 2

1 2

1 1 1 1 1 1

, ,

2 2 2 2 2 2

, ,

3 3 3 3 3 3

, ,

ij i j ij ij i j ij i j ij
i j N i j N i I j J

ij i j ij ij i j ij i j ij
i j N i j N i I j J

ij i j ij ij i j ij i j ij
i j N i j N j J

r u v l r u v u u v x

s u v l s u v u u v x

t u v l t u v u u v x

   

   

  




 
 



       

      


      

    

    

    







 
 

 
 

 
 

 
 

 
 

 
 

1 2

1 2

1 2

1 1 1 1

, ,

2 2 2 2

, ,

3 3 3 3

, ,

i I

ij ij ij ij ij ij i i j j
i j N i j N i I j J

ij ij ij ij ij ij i i j j
i j N i j N i I j J

ij ij ij ij ij ij i i j j
i j N i j N i I j J

r z l r z u a u b v

s z l s z u a u b v

t z l t z u a u b v



   

   

   

 
 
 
 
 

     

     


 
    

 



     

     

     




 
 

Let some non-basic variable 1ijx N  undergoes change by an amount pq  where pq is given by 
 

   
    

min ;  for all basic cells ,  with   entry in loop;

 for all basic cells ,  with   entryin loop

pq pq ij ij

ij ij

u l x l i j a

u x i j a

 

 

   

  





 
 

Then new value of the objective function ẑ  will be given by 
 

   
 

   
 

     
 

 

2

1

3

2

1

3

2 3

1 1

3

ˆ

ˆ

say

pq pq pq

pq pq pq

pq pq pq

pq pq pq

pq pq pq

pq pq pq

pq pq pq pq pq

pq pq pq pq

pq pq pq

S s z
z R r z

T t z

S s z S
z z R r z R

TT t z

T s z S t z
r z

T T t z












 



  
           

  
              

       
   






 
  



 

 
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Similarly, when some non-basic variable 2pqx N  undergoes change by an amount pq  then 
 

     
 

2 3

1 2

3
ˆ

pq pq pq pq pqo
pq pq pq pq

pq pq pq

T s z S t z
z z r z

T T t z


 



         
   

 

 
 

 
Hence X0 will be local optimal solution iff 

 1
10; ,ij i j N     and  2

20; ,ij i j N    . If X0 is a 
global optimal solution of (P2), then it is an optimal so- 
lution and hence the result follows. 

Definition: Corner feasible solution: A basic feasible 
solution   ,ijy i I j J    to(P2) is called a corner fea- 
sible solution (cfs) if 1, 1 0m ny     

Theorem 2. A non-corner feasible solution of (P2) 
cannot provide a basic feasible solution to (P1). 

Proof: Let  ij I J
y

 
 be a non-corner feasible solu- 

tion to (P2). Then  1, 1 0m ny      
Thus 

, 1 , 1 1, 1

, 1

i n i n m n
i I i I

i n i
i I i I

y y y

y A P

   
 


 

 

   

 

 
 

Therefore, 

 , 1i n i
i I i I

y A P 
 

     

Now, for i I , 

ij i i
j J

ij i
i I j J i I

y A A

y A



  

 

 



 
 

The above two relations implies that ij
i I j J

y P 
 

   

This implies that total quantity transported from all the 
sources in I to all the destinations in J is P P  , a 
contradiction to the assumption that total flow is P and 
hence  ij I J

y
 

 cannot provide a feasible solution to 
(P1). 

Lemma1: There is a one-to-one correspondence be- 
tween the feasible solution to (P1) and the corner feasible 
solution to (P2).  

Proof: Let  ij I J
x


 be a feasible solution of (P1). So 

 ij I J
x


 will satisfy (1) to (4). 

Define  ij I J
y

 
 by the following transformation 

, ,ij ijy x i I j J    

, 1 ,i n i ij
j J

y A x i I


    

1, ,m j j ij
i I

y B x j J


    

1, 1 0m ny     

It can be shown that  ij I J
y

 
 so defined is a cfs to 

(P2) 
Relation (1) to (3) implies that 

for all ,ij ij ijl y u i I j J     

, 10 ,i n i iy A a i I     

1,0 ,m j j jy B b j J     

1, 1 0m ny    , 

Also for i I  

, 1ij ij i n
j J j J

ij i ij i i
j J j J

y y y

x A x A A


 

 

 

    

 

 
 

For 1i m   

1, 1, 1

1

m j ij m n j ij
j J j J j J i I

j ij j m
j J i I j J j J

y y y B x

B x B P A

  
   


   

     
 
    

   

  
 

;ij i
j J

y A i I


      

Similarly, it can be shown that ;ij j
i I

y B j J


     

Therefore,  ij I J
y

 
 is a cfs to (P2). 

Conversely, let  ij I J
y

 
 be a cfs to (P2). Define  

, ,ijx i I j J   by the following transformation. 

, ,ij ijx y i I j J    

It implies that , ,ij ij ijl y u i I j J     
Now for i I , the source constraints in (P2) implies 

ij i i
j J

y A A


   

, 1ij i n i
j J

y y A


   

i ij i
j J

a y A


    (since , 10 ,i n i iy A a i I    ). 

Hence, ,i ij i
j J

a x A i I


    

Similarly, for j J , j ij j
i I

b x B


   

For i = m + 1, 

1, 1m j m j
j J j J

y A B P 
 

     
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1,m j j
j J j J

y B P
 

     (because 1, 1 0m ny    ) 

Now, for j J  the destination constraints in (P2) 
give 

1,ij m j j
i I

y y B


   

Therefore, 1,ij m j j
i I j J j J j J

y y B
   

     

1,ij j m j
i I j J j J j J

y B y P
   

      

ij
i I j J

x P
 

   

Therefore  ij I J
x


 is a feasible solution to (P1) 

Remark 1: If (P2) has a cfs, then since 1, 1m nc M     

and 1, 1m nd M   , it follows that non corner feasible 
solution cannot be an optimal solution of (P2). 

Lemma 2: The value of the objective function of  

problem (P1) at a feasible solution  ij I J
x


 is equal to  

the value of the objective function of (P2) at its corre-  

sponding cfs  ij I J
y

 
 and conversely. 

Proof: The value of the objective function of problem  

(P2) at a feasible solution  ij I J
y

 
 is 

 

, 1

, ,

, ,

, ,

, ,
because

ij ij

ij ij

ij ij

ij ij ij ij
ij iji I j J i I j J

ij ij ij ij
i I j J i I j Jij ij ij ij i n

i I j J i I j J

r r i I j J

s s i I j J

t t i I j J
s y s x

x y i I j J
z r y r x

t y t x r
    

     
    

    

    

    
    

                    

 
  

   

1,

, 1 1,

, 1 1,

1, 1

0; ,

0; ,

0; ,

0

the value of the objective function of P1  at the corresponding feasible solution

m j

i n m j

i n m j

m n

ij I J

r i I j J

s s i I j J

t t i I j J

y

x



 

 

 



 
 
 
 
 
  
      
       
      
 

  



 

 
The converse can be proved in a similar way. 
Lemma 3: There is a one-to-one correspondence be- 

tween the optimal solution to (P1) and optimal solution 
to the corner feasible solution to (P2). 

Proof: Let ij
I J

x


 
 
 


 be an optimal solution to (P1)  

yielding objective function value z0 and ij
I J

y
 

 
 
 


 be the  

corresponding cfs to (P2).Then by Lemma 2, the value  

yielded by ij
I J

y
 

 
 
 


 is z0. If possible, let ij

I J

y
 

 
 
 


 be  

not an optimal solution to (P2) . Therefore, there exists a 
cfs  ijy  say, to (P2) with the value z1 < z0 Let  ijx  
be the corresponding feasible solution to (P1).Then by 
Lemma 2, 

1
ij ij

i I j J
ij ij

i I j J ij ij
i I j J

s x

z r x
t x

 

 
 

 
    
  


 

, 

a contradiction to the assumption that ij
I J

x


 
 
 


 is an op-  

timal solution of (P1).Similarly, an optimal corner feasi- 
ble solution to (P2) will give an optimal solution to (P1). 

Theorem 3: Optimizing (P2) is equivalent to optimiz- 

ing (P1) provided (P1) has a feasible solution. 
Proof: As (P1) has a feasible solution, by Lemma1, 

there exists a cfs to (P2). Thus by Remark 1, an optimal 
solution to (P2) will be a cfs. Hence, by Lemma 3, an 
optimal solution to (P1) can be obtained. 

4. Algorithm 

Step 1: Given a linear plus linear fractional capacitated 
transportation problem (P1), form a related transportation 
problem (P2). Find a basic feasible solution of problem 
(P2) with respect to variable cost only. Let B be its cor- 
responding basis. 

Step 2: 
Calculate ij , 

1 2 3 1 2 3 1 2 3, , , , , , , , ; ,i i i j j j ij ij iju u u v v v z z z i I j J   

such that 

 1 1 2 2 3 3
 ; ; , ,i j ij i j ij i j iju v r u v s u v t i j B        ; 

 1 1 1 2 2 2 3 3 3; ; , ,i j ij i j ij i j iju v z u v z u v z i j B         

ij  = level at which a non-basic cell (i,j) enters the 
basis replacing some basic cell of B. 

1 2 3 1 2 3, , , , , ; ,i i i j j ju u u v v v i I j J   are the dual variables 
which are determined by using the above equations and 
taking one of the ui’s or vj’s. as zero. 
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Step 3: Calculate , ,R S T    where  

, ,ij ij ij ij ij ij
i I j J i I j J i I j J

R r x S s x T t x
     

        

Step 4: Find  1
1; ,ij i j N    and  2

2; ,ij i j N    
where 

     
 

 

2 3

1 1

3

1

;

,

ij ij ij ij ij

ij ij ij ij

ij ij ij

T s z S t z
r z

T T t z

i j N


 



      
   

 

 

   

and 

     
 

 

2 3

2 1

3

2

;

,

ij ij ij ij ij

ij ij ij ij

ij ij ij

T s z S t z
r z

T T t z

i j N


 



       
   

 

 

   

where N1 and N2 denotes the set of non-basic cells (i,j) 
which are at their lower bounds and upper bounds re- 
spectively. 

If  1
10; ,ij i j N     and  2

20; ,ij i j N     then 
the current solution so obtained is the optimal solution to 
(P2) and subsequently to (P1). Then go to step (5). Oth- 
erwise some   1,i j N  for which 1 0ij   or some  

  2,i j N  for which 2 0ij   will enter the basis. Go to  

Step 2. 

Step 5: Find the optimal value of o S
z R

T

 
  
 



  

5. Problem of the Manager of a Cell Phone 
Manufacturing Company 

ABC company produces cell phones. These cell phones 
are manufactured in the factories (i) located at Haryana, 
Punjab and Chandigarh. After production, these cell 
phones are transported to main distribution centres (j) at 
Kolkata, Chennai and Mumbai. The cartage paid per cell 
phone is 2, 3 and 4 respectively when the goods are 
transported from Haryana to Kolkata, Chennai and Mum- 
bai. Similarly, the cartage paid per cell phone when 
transported from Punjab to distribution centres at Kolkata, 
Chennai and Mumbai are 6, 1 and 2 respectively while 
the figures in case of transportation from Chandigarh is 1, 
8 and 4 respectively. In addition to this, the company has 
to pay sales tax per cell phone. The sales tax paid per cell 
phone from Haryana to Kolkata, Chennai, Mumbai are 5, 
9 and 9 respectively. The tax figures when the goods are 
transported from Punjab to Kolkata, Chennai and Mum- 
bai are 4, 6 and 2 respectively. The sales tax paid per unit 
from Chandigarh to Kolkata, Chennai and Mumbai are 2, 
1 and 1 respectively. The total public expenditure per 
unit when the goods are transported from Haryana to 
Kolkata, Chennai and Mumbai are 4, 2 and 1 respectively 

while the figures for Punjab are 3, 7 and 4. When the 
goods are transported from Chandigarh to distribution 
centres at Kolkata, Chennai and Mumbai, the total public 
expenditure per cell phone is 2, 9 and 4 respectively. 
Factory at Haryana can produce a minimum of 3 and a 
maximum of 30 cell phones in a month while the factory 
at Punjab can produce a minimum of 10 and a maximum 
of 40 cell phones in a month. Factory at Chandigarh can 
produce a minimum of 10 and a maximum of 50 cell 
phones in a month. The minimum and maximum month- 
ly requirementof cell phones at Kolkata are 5 and 30 re- 
spectively while the figures for Chennai are 5 and 20 
respectively and for Mumbai are 5 and 30 respectively. 
The bounds on the number of cell phones to be trans- 
ported from Haryana to Kolkata, Chennai and Mumbai 
are (1, 10), (2, 10) and (0, 5) respectively. The bounds on 
the number of cell phones to be transported from Punjab 
to Kolkata, Chennai and Mumbai are (0, 15), (3, 15) and 
(1, 20) respectively. Thebounds on the number of cell 
phones to be transported from Chandigarh to Kolkata, 
Chennai and Mumbai are (0, 20), (0, 13) and (0, 25) re- 
spectively. The manager keeps the reserve stocks at the 
factories for emergencies, there by restricting the total 
transportation flow to 40 cell phones. He wishes to de- 
termine the number of cell phones to be shipped from 
each factory to different distribution centres in such a 
way that the total cartage plus the ratio of total sales tax 
paid to the total public expenditure per cell phone is mi- 
nimum. 

5.1. Solution 

The problem of the manager can be formulated as a 3 × 3 
linear plus linear fractional transportation problem (P1) 
with restricted flow as follows. 

Let O1 and O2 and O3 denotes factories at Haryana, 
Punjab and Chandigarh. D1, D2 and D3are the distribution 
centres at Kolkata, Chennai and Mumbai respectively. 
Let the cartage be denoted by rij’s (i = 1, 2, 3 and j = 1, 2 
and 3). The sales tax paid per cell phone when trans- 
ported from factories (i) to distribution centres (j) is de- 
noted by sij. The total public expenditure per cell phone 
for I = 1, 2 and 3 and j = 1, 2 and 3 is denoted by tij. Then 

11 12 13 21 22

23 31 32 33

2, 3, 4, 6, 1,

2, 1, 8, 4

r r r r r

r r r r

    

   
 

11 12 13 21 22

23 31 32 33

5, 9, 9, 4, 6,

2, 2, 1, 1

s s s s s

s s s s

    

   
 

11 12 13 21 22

23 31 32 33

4, 2, 1, 3, 7,

4, 2, 9, 4

t t t t t

t t t t

    

   
 

Let xij be the number of cell phones transported from 
the ith factory to the jth distribution centre. 
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Since factory at Haryana can produce a minimum of 3 
and a maximum of 30 cell phones in a month, it can be  

formulated mathematically as 
3

1
1

3 30j
j

x


  .  

Similarly, 
3 3

2 3
1 1

10 40, 10 50j j
j j

x x
 

     . 

Since the minimum and maximum monthly require- 
ment of cell phones at Kolkata are 5 and 30 respectively,  

it can be formulated mathematically as 
3

1
1

5 30i
i

x


  . 

Similarly, 
3 3

2 3
1 1

5 20, 5 30.i i
i i

x x
 

      

The restricted flow is P = 40. 
The bounds on the number of cell phones transported 

can be formulated mathematically as 

11 12 131 10, 2 10, 0 5,x x x       

21 22 230 15, 3 15, 1 20,x x x       

31 32 330 20, 0 13, 0 25x x x       

The above data can be represented in the form of Ta- 
ble 1 as follows. 

Introduce a dummy source and a dummy destination in 
Table 1 with 

3

4
1

3

4
1

120 40 80,

80 40 40

i
i

j
j

B A P

A B P





    

    



  

4 4 4 0, 1,2,3i i ir s t i      

and 

4 4 4 0, 1, 2,3j j jr s t j      

and 

44 44 44r s t M   . 

 
Table 1. Problem (P1). 

 D1 D2 D3 Ai 

2 5 3 9 4 9 30 
O1 

4  2  1   

6 4 1 6 2 2 40 
O2 

 3 7  4   

1 2 8 1 4 1 50 
O3 

2  9  4   

Bj 30  20  30   

Note: values in the upper left corners are rij’s and values in upper right corners 
are sij’s and values in lower right corners are tij’s

 for I = 1,2,3 and j = 1,2,3. 

Also we have  

14 24 34

41 42 43

0 27, 0 30, 0 40,

0 25, 0 15, 0 25

x x x

x x x

     
     

 

Now we find an initial basic feasible solution of prob-
lem (P2) which is given in Table 2 below. 

157
50 50.95

167

o
o

o

S
R

T
     

50, 157, 167o o oR S T    

Since  1
10; ,ij i j N     and  2

20; ,ij i j N     
as shown in Table 3, the solution given in Table 2 is an 
optimal solution to problem (P2) and subsequently to  

(P1). Therefore 
157

min 50 50.94
167

o
o

o

S
z R

T
      

Therefore, the company should send 1 cell phone from 
Haryana to Kolkata, 2 units from Haryana to Chennai. 
The number of cell phones to be shipped from factory at 
Punjab to Chennai and Mumbai centres are 15 and 5 
 

Table 2. A basic feasible solution of problem (P2). 

 D1 D2 D3 D4 
1

iu 2

iu 3

iu

2 5 3 9 4 9 0 0 
O1 

14 22 0 1 27 0 
0 0 0

6 4 1 6 2 2 0 0 
O2 

 3 15 7 5 4 20 0 
0 0 0

1 2 8 1 4 1 0 0 
O3 

172 9  4 33 0 
0 0 0

0 0 0 0 0 0 M M 
O4 

12 0 3 0 25  0  M 
−1 −2 −2

1

jv  1 1 2 0    

2

jv  2 2 2 0    

3

jv 2 2 4 0    

Note: Entries of the form a and b  represent non basic cells which are at 
their lower and upper bounds respectively. Entries in bold are basic cells. 
 

Table 3. Calculation of ij 1  and ij 2 . 

NB O1D1 O1D2 O1D3 O2D1 O2D2 O3D2 O3D3 O4D3

ij  7 3 4 7 3 3 4 3 

1

ij ijr z 1 2 2 5 0 7 2 -1 

2

ij ijs z 3 7 7 2 4 −1 −1 0 

3

ij ijt z 2 0 −3 1 5 7 0 −2

1

ij  7.04 6.125 8.25 35.04  20.879 7.976  

2

ij      0.0138   2.967
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respectively. Factory at Chandigarh should send 17 units 
to Kolkata only. The total cartage paid is 50, total sales 
tax paid is 157 and total public expenditure is 167. 

6. Conclusion 

This paper deals with a linear plus linear fractional trans- 
portation problem where in the total transportation flow 
is restricted to a known specified level. A related trans- 
portation problem is formulated and it is shown that it 
exited an optimal solution. An algorithm is presented and 
tested by a real life example of a manufacturing com- 
pany. 

7. Acknowledgements 

We are thankful to the referees for their valuable com- 
ments with the help of which we are able to present our 
paper in such a nice form. 

References 
[1] A. Gupta, S. Khanna and M. C. Puri, “A Paradox in Lin-

ear Fractional Transportation Problems with Mixed Con- 
straints,” Optimization, Vol. 27, No. 4, 1993, pp. 375- 
387. http://dx.doi.org/10.1080/02331939308843896 

[2] M. Jain and P. K. Saksena, “Time Minimizing Transpor- 
tation Problem with Fractional Bottleneck Objective 
Function,” Yugoslav Journal of Operations Research, Vol. 
21, No. 2, 2011, pp. 1-16. 

[3] F. Xie, Y. Jia and R. Jia, “Duration and Cost Optimiza- 
tion for Transportation Problem,” Advances in Informa- 
tion Sciences and Service Sciences, Vol. 4, No. 6, 2012, 
pp. 219-233. http://dx.doi.org/10.4156/aiss.vol4.issue6.26 

[4] A. Khurana and S. R. Arora, “The Sum of a Linear and 
Linear Fractional Transportation Problem with Restricted 
and Enhanced Flow,” Journal of Interdisciplinary Mathe- 
matics, Vol. 9, No. 9, 2006, pp. 373-383. 
http://dx.doi.org/10.1080/09720502.2006.10700450 

[5] K. Gupta and S. R. Arora, “Paradox in a Fractional Ca- 
pacitated Transportation Problem,” International Journal 
of Research in IT, Management and Engineering, Vol. 2, 
No. 3, 2012, pp. 43-64. 

[6] S. Misra and C. Das, “Solid Transportation Problem with 
Lower and Upper Bounds on Rim Conditions—A Note,” 
New Zealand Operational Research, Vol. 9, No. 2, 1981, 
pp. 137-140. 

[7] S. Jain and N. Arya, “An Inverse Capacitated Transporta- 
tion Problem,” IOSR Journal of Mathematics, Vol. 5, No. 
4, 2013, pp. 24-27. 
http://dx.doi.org/10.9790/5728-0542427 

[8] S. R. Arora and K. Gupta, “Restricted Flow in a Non- 
Linear Capacitated Transportation Problem with Bounds 
on Rim Conditions,” International Journal of Manage- 
ment, IT and Engineering, Vol. 2, No. 5, 2012, pp. 226- 
243. 

[9] A. Khurana, D. Thirwani and S. R. Arora, “An Algorithm 
for Solving Fixed Charge Bi—Criterion Indefinite Quad-
ratic Transportation Problem with Restricted Flow,” In- 
ternational Journal of Optimization: Theory, Methods 
and Applications, Vol. 1, No. 4, 2009, pp. 367-380. 

 

http://dx.doi.org/10.1080/02331939308843896�
http://dx.doi.org/10.4156/aiss.vol4.issue6.26�
http://dx.doi.org/10.1080/09720502.2006.10700450�
http://dx.doi.org/10.9790/5728-0542427�

