
Wireless Sensor Network, 2009, 1, 1-60
Published Online April 2009 in SciRes (http://www.SciRP.org/journal/wsn/).

Copyright © 2009 SciRes. Wireless Sensor Network, 2009, 1, 1-60

Policy Based Self-Adaptive Scheme in Pervasive Computing

Jian Quan OUYANG#*1, Dian Xi SHI#2, Bo DING#3, Jin FENG※※※※4, Huai Min WANG#5
#1School of Computer, National University of Defence Technology, Changsha, China

*College of Information Engineering, Xiangtan University, Xiangtan, China
※Nanchang Military Academy Unit Battle, Nanchang, China

E-mail: 1kissingman1@gmail.com, 2dxshi@nudt.edu.cn, { 3maildb, 5whm_w} @163.com, 4fengjin0510@126.com
Received February 15, 2009; revised March 6, 2009; accepted March 10, 2009

Abstract

Nowadays, application systems in pervasive computing have to be self-adaptive, which means adapting
themselves to dynamic environments. Our aim is to enable systematic development of self-adaptive compo-
nent-based applications. The paper first introduces a novel policy based framework for self-adaptive scheme
in pervasive computing. Then the proposed policy ontology and policy language are well expressive and eas-
ily extensible to support the design of policy which is based on the Separation of Concerns principle. Fur-
thermore, the context-driven event channel decouples the communication between the suppliers and con-
sumers for asynchronous communication. The proposed framework can provide both a domain-independent
and a flexible self-adaptation solution.

Keywords: Policy Ontology, Self-Adaptive, Policy Language, Pervasive Computing

1. Introduction

Technology of software evolution drives the need for
software self-adaptive. Moreover, while pervasive com-
puting environment is open and dynamic, application
systems in pervasive computing have to be self-adaptive,
which is adapt themselves to work in dynamic environ-
ments. Previous adaptation work is based on predicting
future circumstances and adapting themselves by way of
embedding the adaptation decisions in the program code.
It is clearly that it is done in an ad hoc way. While policy
can define the behaviour of adaptive are applied by dif-
ferent research projects for the flexible reconfiguration
systems, it seems that a feasible approach to be decoup-
led from functional concerns and systematically develop
self-adaptive applications. Moreover, as it can separate
the business logic (rules) from the controls (program-
ming code) of the implementations, policy-based scheme
are typically more flexible and adaptable than non- pol-
icy-based approach. In a word, policies can specify and
adapt the behavior of a system and can be applied to
various areas: auction mechanisms, access control, Pri-
vacy (Information Collection Policies), Context aware
computing, etc.

In this paper, we present a policy based adaptive ar-
chitecture for pervasive computing. Different from cur-
rent policy approach, in the view of the proposed scheme,
the context information is used as meta data and the pol-

icy is applied to meta protocol, thus it can materialize a
reflective approach in the adaptation architecture. In ad-
ditional, the proposed policy ontology and policy lan-
guage can support for knowledge representation and
reasoning and knowledge sharing. And they are feasible
to support the design of policy which is based on the
Separation of Concerns principle.

The rest of the paper is structured as follows. In next
section, we introduce the current state of the art. Section 3
discusses the requirements of self-adaption. Section 4
describes the overview of adaptation architecture. Fol-
lowing this, Section 5 proposes a policy descriptive lan-
guage for pervasive computing. Section 6 illustrates the
event scheme. Section 7 will give an introduction to the
prototyping applications in fire alarm scenario and pre-
liminary experiments. Finally we summarize our work
and give future plan in Section 8.

2. Current State of the Art

There are several ways for proposing polices. Previously,
the approaches to policy specification are proposals for
policy language specification. Lobo [1] depicted the PDL
(policy description language) to describe the strategies
for mapping a series of events into a set of actions.
Damianou [2] described a policy language (Ponder) ap-
plying for both management and security policies for
distributed systems. Anthony [3] introduced a policy

 J. Q. OUYANG ET AL. 49

Copyright © 2009 SciRes. Wireless Sensor Network, 2009, 1, 1-60

definition language which is designed to permit powerful
expression of self-managing behaviours. Moreover, a
prototype library implementation of the policy support
mechanisms which can facilitate adaptive-policy de-
ployment is illustrated. Ahn [4] proposed a high-level
policy description language for formally specifying con-
text entity relation, and introduced the translator which
can provide automatic generation of Java classes for
ubiquitous entities.

The other approach is based on logic programming for
supporting well defined semantic. Semantic Web Lan-
guages for policy specification: KaoS [5] and Rei [6].
Uszok [5] proposed a framework for specification, man-
agement, conflict resolution and enforcement of policies
which is used OWL ontology. Kagal [6] introduced a
policy language (Rei) for pervasive computing environ-
ment which can express the behaviour of entities and it is
used as part of a secure pervasive system.

Recently, there are several policy based applications
in the ubiquitous/pervasive computing scenarios. Rukzio
[7] presented policy based adaptive services for mobile
commerce, but the event scheme is not mentioned. Er-
radi [8] introduced policy-based middleware, Manage-
able and Adaptive Service Compositions (MASC), for
dynamic self-adaptation of Web services compositions.
David [9] presented an adaptive framework which is
based on the Fractal component model. In the framework
context-awareness service can provide information about
the execution context. Chan [10] proposed an event
model for a highly adaptive mobile middleware, Web
Proxy for Active Deployable Service (WebPADS).
Bandara [11] applied Event Calculus to transform both
policy and system behaviour specifications into a formal
notation. However, these methods did not concentrate
the Separation of Concerns principle to support recon-
figuring system based on reflective scheme.

Lately, Adamczyk [12] proposed a lightweight
framework called the Autonomic Management Toolkit,
which can support dynamic deployment and manage-
ment of adaptation loops.

3. Requirements of Adaptation in Pervasive

Computing Environment

Generally, self-adaptive applications need to control how
and when decisions and actions are taken. Policy-based
scheme can specific the adaptation layer and adaptation
time [13]. Different from the three basic requirements
(Uniformity, Separation and Generic) for the develop-
ment of adaptation architecture [7], we define the fol-
lowing three basic requirements of policy in pervasive
computing environment:

-Expressiveness: The first requirement is that suitable
expression of policies is important for describing the
rules to specify the behavior of a system. On the one
hand, it is need to be restricted to avoid ambiguities or
ill-defined policies. On the other hand, it can not be too
complex for untrained user to write rules.

-Well-defined semantics: The next requirement is
well-defined semantics. Obviously, Well-defined policy
can support for knowledge representation and reasoning
and knowledge sharing of polices. Moreover, it can en-
able interoperability of heterogeneous rules.

-Usability: As the perspective pervasive computing is
to seamless integration of computing into the user’s
everyday life, make it easy for users to write rules is one
of the critical requirement of policies. Make rules intelli-
gible to the common user and declarative, human read-
able interface is favourable for design polices

-Lightweight: Foe the reason of limitation of resource
in pervasive computing environment, strong rule engine
is difficult to run for the various devices in pervasive
computing environment. Lightweight policy architecture
is necessary for devising the rule engine.

4. Overview of Adaptation Architecture

4.1. Core Idea

The core idea of the adaptation architecture is shown in
Figure 1. The architecture is based on the tenets of pol-
icy-driven systems which are applied in various adaptive
systems.

We are using policies which can be seen as a set of
sophisticated rules modelled by Event-Condition-Action
rules for the definition of the adaptive behaviour in per-
vasive computing environment. Thus it can react to
changes of the context information by reconfiguring the
application.

Our proposed policy engine is based on the Separation
of Concerns [14] principle: extract explicit rules of busi-
ness logic from various applications. In the first step in a
cycle, Context data is provided by context-aware com-
ponent, PolicyController matches all polices with the
Context data and select the appropriate policy. Then
judge whether the conditions in the “action-event” table
are met. If they are met, EventMonitor triggered by
relevant events and notify PolicyExecutor. As the next
step PolicyExecutor will executes the predefined rules
and lead to a change of the context information.

4.2. Reflective Scheme

A reflective scheme can ensure that can support struc-
tural reconfiguration while examining and change envi-
ronment, aiming to self-adapt at runtime. As shown in
Figure 2, in our architecture, the strategy of the separa-
tion of component and policy can gain the decoupling of
meta-level scheme and based-level implementation. The
advantage of the reflective scheme can conclude two
parts:

1) The policy-based application system can be flexible,
extensible and adaptive, since the policy can be deployed
and modified in the course of runtime of systems.

50 J. Q. OUYANG ET AL.

Copyright © 2009 SciRes. Wireless Sensor Network, 2009, 1, 1-60

Figure 1. The core idea of the adaptation architecture.

2) Policy-based scheme decouples the reusable com-

ponent between the developments and deployability
stage. The developer can only focus on using policy to
describe the base-level business logic, and the deploy-
mentor can designate the component according to the
application environment.

Context is the provider of the meta-level data, policy
is the meta-level protocol between the business logic and
context, policy engine is meta-level procedure, and be-
haviour component is the base-level computing entity.

4.3. Context-driven Mechanism

Context is one of the most important features of perva-
sive computing. As the dynamic character of pervasive
computing, it is necessary to model and specify context
in a way such that context information can easily ex-
change, share and reuse their knowledge. For simplicity,
we define context as four tuple ConData=(ConSup,
ConType, Value, TimeStamp), ConSup is the supplier of
context data, ConType indicates the type of the context
(e.g., location, temperature), Value gives the content of
the context data, Timestamp describes the generation
time of the context.

Here, we classify the components into two classes:
Context-aware components which gain and aggregate the
context data and Behaviour components which carry out
the actions according to the predefined rules in policy
engine. The policy engine is driven by policies which are
a set of rules in XML files and describe how the behav-
iour component reacts in a specific context to support
deployable application. As shown in Figure 2, context is
the only starting point of self-adaptation and also the end
point of adaptation.

4.4. Context-driven Policy Based Framework

The model of context-driven policy consists of three
layers, which is shown as Figure 3. The bottom layer is
context layer. The top layer is self-adaptive layer, while
the policy layer is in the middle. Context layer can ab-
stract the state of physic and information space in perva-
sive computing environments and context-driven events.
The policy layer is used for describing self-adaptive
rules including context constraint, description of actions.
Self-adaptive layer is based on context-driven scheme.
Context based event is the jumping-off point of the

course of adapt procedure and the sole driver for adapt
procedure.

5. Policy Descriptive Language for Perva-

sive Computing (PDLPC)

5.1. Policy Ontology

To attain better semantic language understanding and
share knowledge for reusable, Figure 4 illustrates the
policy ontology we are developing to express the struc-
ture of polices precisely.

The proposed policy ontology defines the vocabularies
for indicating rules that perform different types of ac-
tions. To describe policy rules, the ontology define the
basic concepts of “policy ontology” including “Priority”,
“Event”, “Precondition” and “LogicType”. Furthermore,
we use “Unionof” relation to design the hierarchical
structure of the policy ontology.

The structure of the policy ontology is as follows.
Priority: The “Priority” class defines the priority be-

tween policies. It has been further classified into “High”
and “Low” subclass.

LogicType: LogicType class indicates types of logic
including two-valued logic and fuzzy logic.

Precondition: Preconditions are constraints on the ac-
tion and environment. We use “Unionof” relation to
model the composition of the value restriction.

Event: The “Event” class implies the policy is trig-
gered by the changed environment context. The “Event”
class include:

1) “EventTpye” subclasses comprise “AtomEvent”
and “Composite” subclasses. In the meantime, “Com-
posite” subclass is composed by “EventOperator” and
“AtomEvent” via “Unionof” relation.

2) “LogicTpye”.
3) “Precondition”.
4) “Component” subclasses can indicate the related

component which can perform a specific action.
5) “Action” subclasses can represent an invocation to

certain type of computing procedures to acquire user in-
formation or provide services in the pervasive environ-
ment.

Also, the “Unionof” relation can describe the “Event-
Tpye”, “LogicTpye”, “Precondition”, “Component” and
“Action” to form “Event” class.

5.2. Policy Descriptive Language for Pervasive

Computing (PDLPC)

Policies can be described at different levels of abstraction.
At a high level, Policies could be specified using natural
language. At a low level, the method of logic or algebraic
can be applied to specify policy description. In the inter-
mediate point, production rules are be found to specify
policies. In this paper, we prefer in the intermediate point
for effectively computing in pervasive computing

 J. Q. OUYANG ET AL. 51

Copyright © 2009 SciRes. Wireless Sensor Network, 2009, 1, 1-60

Figure 2. Reflective scheme of context-driven policy scheme.

Figure 3. Model of context-driven policy.

environments. For this reason we propose a Policy De-
scriptive Language for Pervasive Computing (PDLPC)
based on the proposed policy ontology.

The syntax of PDLPC is defined based on the BNF
notation. The most important features of BNF used in
this paper are as follows:

·=is the defining symbol. On the left-hand side is the
name of the grammar rule and on the right-hand side is
the definition of that name.

·| indicate optional elements.
·{and} indicate repetition. Zero or more elements.
·, is the definition separator symbol. It separates al-

ternatives in a grammar rule.
·; is the terminator symbol. Every rule is terminated

by this symbol.
The definition of PDLPC is as follows.

<PolicySet>::={<Policy>};
<Policy>::= <PolicyID>,<Priority>,<LogicType>,

<EventPreconditionGroup>,<Event>;
<Priority>::=<High>|<Low>;
< LogicType >::=<Two-Valued >|<Fuzzy>;
<EventPreconditionGroup>::= {<EventPrecondition>};
<EventPrecondition>::= <EventPreconditionid>,

<EventCondition>,<Restriction>;
<EventCondition>::=<Context>|<State>;
<Con-

text>:==<ContextTime>,<ContextAattribute>,<DataType>;
<DataType>:==<int>|<char>|<float>|<double>|<datetime>;
<Restriction>::=<LogicOperator>,<Value>;
<LogicOperator>::=<Over>|<Below>|<Equate>;
<Event>::=<EventType>,<LogicType>, <Precondi-

tionGroup>,<Component>,<ActionGroup>;

<EventType>::=<AtomEvent>|<CompositeEvent>;
<AtomEvent>::=<ContextValueEvent >|<StateEvent>;
<Compo-

siteEvent>::=<AtomEvent>,<EventOperator>;
<EventOperator>::=<→>|<and>|<or>|<not>|;
<LogicType>:=<Two-valued>|<Fuzzy>;
<PreconditionGroup>::={<Precondition>};
<Precondi-

tion>::=<PreconditionID><Context>,<Restriction>;
<ActionGroup>::={<Action>};
<Action>:: =<ActionID>, <Component>, <Method>,

<ParameterSet>;

PDLPC consists of there layers: policy-event-action.
Policy is at a high level and could be a set of rules which
govern the behaviour of a system can be triggered by
events. At a low level, Action is a domain dependent action
and Precondition is constraints on the Action and Compo-
nent. It can reveal the execution of actions and consider
greater understanding of the action and its parameters. In
the middle level, Event is used to trigger policy and repre-
sent the execution of action reacts in a specific context.

From the above description, it is convenient to be able
to define polices separately, and re-use them via PDLPC.

5.3. XML Based Representation

For rules are intuitive and natural way of thinking, there
is need to write rules conveniently. As XML becomes
the de facto standards for data representation and inter-
change, and XML data which can be viewed as a hierar-
chically-structured rooted tree is convenient for represent
the policy descriptive language. Here, we prefer to use
XML-based representation for PDLPC.

We use the fire alarm example to illustrate PDLPC
using XML, as show in Figure 5. From the example, we
can find the useful features of our approach.

1) Policy is a hierarchically-structured that can be fa-
vourable to XML parser.

2) Events and parameters are attached to a component.

5.4. The Lifecycle of Polices

The lifecycle of polices is as shown in Figure 6. It in-
cludes the main steps and related activities in the policy
life cycle.

The step of policy analysis is to parse the policy set
via XMLParser. In the meantime, for the efficiency and
simplify of policy management, priorities of policies fall
into two main categories: low and high. The conflict
between the two policies can be resolved at run-time.

When PolicyController check the policy is high prior-
ity, the policy will be activated, otherwise it will be de-
activated. According to the reflective scheme, applica-
tion developer can adjust relevant policies to the new
situation including insert, modify and delete policy in
Policy Set. The policy maintenance mechanism is con-
venient to improve the policy definition and deployment.

52 J. Q. OUYANG ET AL.

Copyright © 2009 SciRes. Wireless Sensor Network, 2009, 1, 1-60

Figure 4. Policy ontology.

<PolicySet PolicyID=”FireAlarm”>
 <Policy>
 <Priorities>High</Priorities>
 <LogicType>Two-Valued</LogicType>
 <PreconditionGroup>
 <Precondition PreconditionID=”First”>
 <Context>

 <ContextTime>180506</ContextTime>
<ContextAattribute>temperature</ContextAattribute>

 <DataType>float</DataType>
 </Context>
 <Restriction>
 <Over>
 <Value>200</Value>
 </Over>

 </Restriction>
 <Component>Temperature_sensor_demo</Component>

 </Precondition>
 </ PreconditionGroup>
<Event>
 <EventType>ContextEvent</type>
 < LogicType >IF-THEN</Type>
 < PreconditionGroup>
 < Precondition PreconditionID=”first”>
 <Context>
 <ContextTime>180507</ContextTime>

<ContextAattribute>fog</ContextAattribute>
 <DataType>float</DataType>
 </Context>
 <Restriction>
 <Over>
 <Value>0.3</Value>
 </Over>

</Restriction>
 <Component>Fog_sensor_demo</Component>

 </Precondition>
 </ PreconditionGroup>

<ActionGroup>
 <Action ActionID=”Fire_alarm”>
 <Component>Fire_alarm_demo</Component>
 <Method>Forecast</Method>
 <ParameterSet></ParameterSet>
 </Action>
 </ActionGroup>
 </Event>
 </Policy>
</PolicySet>

Figure 5. Fire alarm example in XML.

6. Event Scheme

6.1. Context-Driven Event Channel

The context-driven event channel decouples the commu-
nication between the suppliers and consumers for asyn-
chronous communication. Event scheme supports asyn-
chronous communication and lets one or more suppliers
to send events to more than one consumers occurring at
the same time. Context-driven event channel is as shown
in Figure 7.

Figure 6. The lifecycle of polices.

Figure 7. Context-driven event channel.

 J. Q. OUYANG ET AL. 53

Copyright © 2009 SciRes. Wireless Sensor Network, 2009, 1, 1-60

Context Suppliers and Consumers: ContextManager
is the context suppliers consist of context data which is
organized as hierarchical ontology including Service,
Entity, User and Environment. When the context data is
changed, context suppliers will push events to consumers.
Context consumers which are managed by PolicyCon-
troller are final goals of the events generated by the con-
text suppliers pushing the events.

Event Channel: The event channel plays the role of a
central mediator between the context consumers and
suppliers. Both the suppliers and consumers connect to
one or more event channels which are managed by
EventMontior. An event channel is responsible for trans-
ferring events from the suppliers to the consumers.

Reflective Scheme: PolicyExecutor can dynamically
change context data via EventMonitor for reflection.
Moreover, when the policy in Policy Set is modified or
deleted, it will lead to relevant change in Context-
eventTable and EventMonitor.

6.2. Event Composition

An adaptation policy consists in a set of rules, each of
the form Event-Condition-Action (ECA). The event can
be classified into two classes: AtomEvent and Compo-
siteEvent. AtomEvent consists of two types: ContextVal-
ueEvent represents the change of the context data, while
StateEvent gives a clue to the state of the system.

There is four event operators that allow various kinds
of complex events to be specified:→, and, or, not.

·→: If A and B are events, A→B denotes that event B
must only be triggered after event A or that event A and
B must be triggered in sequence.

·and: If A and B are events, A and B denotes that
CompositeEvent is triggered when both event A and B
have been happened no matter the occurrence time of
event A, B.

·or: If A and B are event s, A or B denotes that
CompositeEvent is triggered when either event A or B is
happened.

·not: If A is a event, not A denotes that Compo-
siteEvent is triggered when event A is not happened.

The event composition can be composed via simple
Boolean expressions. The hierarchical event composition
consists of multiple levels of atom events. The example

Figure 8. Hierarchical event composition example.

is as shown in Figure 8, The composition event F is
composed by five atom events A,B,C,D,E: (not A) and
(B or (D→E)) and C.

7. The Implementation of Adaptation

Architecture

For the convenience of implementing the self adaption,
we extend the CCM component container for supporting
policy scheme. As shown in Figure 9, We augment the
infrastructure of CCM component container including
increasing the context list, Context-Event table, Policy-
Controller, Policy Table and Policy Executor for sup-
porting the parse and handle of policy. Context list is a
two-dimension table, which consists of component name,
context name and the value of the context data. Con-
text-event table can describe the change of physical and
information space. It includes the field of context name,
event ID and event name. PolicyController is responsible
for matching all polices with the Context data and select
the appropriate policy. Policies are defined as a set of
sophisticated rules which is described in XML (EXtensi-
ble Markup Language). The Policy Table can maintain
the policy information which contains policy ID, policy
priority, event ID, The reference of PolicyExecutor
pointer. They indicate the execution of action reacts in a
specific context and are storaged by hash table.

The functionality of Policy Engine is monitoring the
change of the value of Context and executing the prede-
fined polices. It comprises the Event Monitor, Policy
Executor, PolicyController, Policy Table, Policy Parser
and POA (Portable Object Adapter).

Figure 9. Extension of CCM component container for component fault detection.

54 J. Q. OUYANG ET AL.

Copyright © 2009 SciRes. Wireless Sensor Network, 2009, 1, 1-60

◆ Policy Parser is a CORBA object, which is a XML

parser. The functionality of Policy Parser is to match all
polices in the Context Event Table and select the appropri-
ate policy to dynamically generate the Policy Executor.

◆ Policy Executor is a two dimension pointer array.
The first dimension is context name, and the second is a
pointer which point to a group of CORBA objects and
corresponding interfaces. The policy is storied as a
structure of policy condition, action type, component
name, method of component. Policy Executor can check
the condition of policy is met, if it is true, the method of
the component can be triggered by POA.

◆ PolicyController takes charge loading, uninstalling,
activating/deactivating the polices. In the meantime, it
can adjust the priority of the polices according the de-
mand of the applications.

◆ Policy Table is initialized by PolicyController and
can providing the query operation. For instance, it can
retrieve the reference of the corresponding Policy Ex-
ecutor by event ID.

◆ Event Monitor is also initialized by PolicyControl-
ler. The role of Event Monitor is to register the event to
the Context Event Table or remove the event from the
Context Event Table. The event ID is unique and can be
bound to the Policy Table. It can periodically monitor the
change of value the Context List. When the change is
detected, it judge whether the context event is in the
Context Event Table, if it is false, insert the context event
into Context Event List.

8. Prototype Implementation

8.1. Fire Alarm Scenario

The first prototype implement is based on fire alarm
scenario, as shown in Figure 9. There are temperature
infrared sensor, sprinkler control valve and fire warning
light in a room. The fire alarm application consists of
sprinkler control valve component, fire warning light
component, temperature-aware component and fire
alarm policy. The temperature-aware component aggre-
gate the context information from the temperature sensor
and the aggregated data which is the occurrence likeli-
hood of fire alarm (0%-100%) is displayed by fire monitor
terminal. When the captured values from temperature sen-
sor exceed the threshold, fire alarm component will drive
the fire alarm lamp give off flashes of light and sprinkler
control valve begin to sprinkle water which can be acti-
vated by sprinkler control valve component. As the prede-
fined value which is assigned by policy stored in XML file
is update from 200 to 150, it is need to only restart the fire
alarm application without recoding the program code.
Moreover, while the temperature exceeds the threshold,
policy engine will result in a change of the context infor-
mation by way of executing the predefined polices.

The XML parser is based on TinyXML parser (from
SourceGauge Website). In the mean time, the register/
recall mechanism is used in the communication between
the temperature-aware component and context manager
component.

8.2. Error Tolerant Policy

As pervasive computing environments is open and dy-
namic, the technology is sustainable and high confident
if it is inconspicuous to the user and does not disturb the
user’s attention. This necessitates the pervasive comput-
ing system has to be resilient to faults and should be able
to be error-tolerant.

Here, a prototype implementation of component error
recovery has been realized based on fire alarm scenario.

The instance of error tolerant policies is as shown in
Figure 11. It means that “If temperature context name=
[CompomentStatus], and context value=[Component
Failure], then call the activate () method of tempera-
ture-aware component”.

Figure 10. Fire alarm scenario.

<PolicySet>
 <Policy>
 <Policy Description>Temerature error tolerent policy</Policy

Description >
 <Priorities>High</Priorities>
 <Event>
 <Event Description >Platform cotext event</Event Descrip-

tion >
 <EventType>ContextEvent</type>
 <Type>IF-THEN</Type>
 <PreconditionGroup>
 <Precondition>//Error event triggered
 <Contextid>
 <Component>Temperature_sensor</Component>
 <ContextTime>180506</ContextTime>//
 <Attribute>ConponentState</Attribute>
 <LogicType>Bool</LogicType>//
 </Contextid>
 <Restriction>
 <Equate>
 <Value>Failure</Value>//The Component is failed
 </Equate>
 </Restriction>
 </Precondition>
 </PreconditionGroup>
 <ActionGroup>//action
 <Action>
 <Component>Temperature_sensor</Component>
 <Method>activate</Method>//reload the component
 <ParameterSet></ParameterSet>
 </Action>
 </ActionGroup>
 </Event>
 </Policy>
</PolicySet>

Figure 11. Instance of error tollrant policy.

 J. Q. OUYANG ET AL. 55

Copyright © 2009 SciRes. Wireless Sensor Network, 2009, 1, 1-60

8.3. Comparison with Current Methods

The proposed self-adapt model is based on reflective
scheme for adaptive middleware support. It means that
context information is used as meta data and policy can
be regarded as meta protocol. Thus it can separate self-
adapt functionality from business logic of a system.
Compared with David [9], the proposed framework can
be more reusable and flexible. Compared with Adamczyk
[12], the proposed policy ontology is well defined se-
mantic. This means that it can adapt the behaviour of
applications in the pervasive computing without re-
coding functionality, and a change in the applications can
be applied without restarting the system. Moreover, the
proposed policy language is based on the policy ontology,
which has a common semantic understanding of aadap-
tive rules for well-defined semantics, thus it is well ex-
pressive and easily extensible to support the design of
policy engine which is based on the Separation of Con-
cerns principle.

However, there is still a limitation of the proposed
scheme that has an impact on the complexity of compo-
nent management because there both exist behaviour
component in the base-level and context-aware compo-
nent in the meta-level.

9. Conclusions

In this paper, we have presented policy based adaptive
architecture for pervasive computing. The proposed pol-
icy ontology can support for knowledge representation
and reasoning and knowledge sharing and integration for
defining adaptive rules. Also, the proposed policy de-
scriptive language for pervasive computing can enable
define polices separately, and re-use them. Moreover,
policy management allows application developers to
ensure flexibility and adaptability. Furthermore, the pol-
icy mechanism is based on not only event- condi-
tion-action rules, but also more abstract utility/goal poli-
cies.

Now our ongoing work is to apply the adaptive archi-
tecture to the museum monitor scenario in China in prac-
tice.

10. Acknowledgment

This work was supported by the National High-Tech
Research and Development Plan of China under Grant
No 2006AA01Z198 and China Postdoctoral Science
Foundation Grant No 20070420187.

11. References

[1] J. Lobo, R. Bhatia, and S. Naqvi, “A policy description

language,” 16th National Conference on Artificial
Intelligence, Orlando, Florida, USA, 1999.

[2] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “Ponder:
A language for specifying Security and management
policies for distributed systems, V 2.3,” Imperial College
Research Report DoC 2000/1, October 2000.

[3] R. J. Anthony, “A policy-definition language and
prototype implementation library for policy-based
autonomic systems,” 2006 IEEE International Conference
on Autonomic Computing, pp. 265-276, 2006.

[4] J. Ahn, B. M. Chang, and K. G. Doh, “A policy
description language for context-based access control and
adaptation in ubiquitous environment,” Emerging
Directions in Embedded and Ubiquitous Computing, pp.
650-659, 2006.

[5] Uszok, Bradshaw, Jeffers, Suri, Hayes, Breedy, Bunch,
Johnson, L. Kulkarni, “KAoS policy and domain services:
Toward a description-logic approach to policy representation,
deconfliction, and enforcement,” in POLICY, pp. 93-96,
2003.

[6] K. Lalana, F. Tim, and J. Anupam, “A policy language
for a pervasive computing environment,” Proceedings of
the 4th International Workshop on Policies for Distributed
Systems and Networks, Washington, DC, USA: IEEE
Computer Society, pp. 63-74, 2003.

[7] E. Rukzio, S. Siorpaes, O. Falke, and H. Hussmann,
“Policy based adaptive services for mobile commerce,”
2nd Workshop on Mobile Commerce and Services
(WMCS 2005), Munich, Germany, pp. 183-192, July 19,
2005.

[8] P. C. David and T. Ledoux, “Towards a framework for
self-adaptive component-based applications,” Proceedings
of Distributed Applications and Interoperable Systems
2003, Lecture Notes in Computer Science 2893, pp. 1-14,
November 2003.

[9] A. Erradi1, P. Maheshwari, and V. Tosic, “Policy-driven
middleware for self-adaptation of web services composi-
tions,” Middleware 2006, LNCS 4290, pp. 62–80, 2006.

[10] A. T. S. Chan, S. N. Chuang, J. N. Cao, and H. V. Leong,
“An event-driven middleware for mobile context aware-
ness,” The Computer Journal, 47(3), pp. 278-288, 2004.

[11] A. K. Bandara, E. Lupu, and A. Russo, “Using event
calculus to formalise policy specification and analysis,”
4th IEEE International Workshop on Policies for
Distributed Systems and Networks, pp. 26-39, 2003.

[12] J. Adamczyk, R. Chojnacki, M. Jarząb, and K. Zieliński,
“Rule engine based lightweight framework for adaptive
and autonomic computing,” International Conference on
Computational Science 2008, LNCS 5101, pp. 355-364,
June 23-25, 2008.

[13] P. McKinley, S. Sadjadi, E. Kaste, and B. Cheng,
“Composing composing adaptive software,” IEEE
Computer, 37(7), pp. 56-64, July 2004.

[14] W. Hürsch and C. V. Lopes, “Separation of concerns,”
Technical Report NU-CCS-95-03, Northeastern University,
Boston, Massachusetts, 1995.

