
Journal of Computer and Communications, 2013, 1, 18-24 
Published Online November 2013 (http://www.scirp.org/journal/jcc) 
http://dx.doi.org/10.4236/jcc.2013.16004  

Open Access                                                                                            JCC 

On the Operation of CMOS Active-Cascode Gain Stage 

Yun Chiu 
 

Analog and Mixed-Signal Lab, Texas Analog Center of Excellence, University of Texas at Dallas, Richardson, Texas, USA. 
Email: chiu.yun@utdallas.edu 
 
Received October 2013 

ABSTRACT 
An s-domain analysis of the full dynamics of the pole-zero pair (frequency doublet) associated with the broadly used 
CMOS active-cascode gain-enhancement technique is presented. Quantitative results show that three scenarios can arise 
for the settling behavior of a closed-loop active-cascode operational amplifier depending on the relative locations of the 
unity-gain frequencies of the auxiliary and the main amplifiers. The analysis also reveals that, although theoretically 
possible, it is practically difficult to achieve an exact pole-zero cancellation. The analytical results presented here pro-
vide theoretical guidelines to the design of CMOS operational amplifiers using this technique. 
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1. Introduction 
Invented in 1979 [1] and subsequently refined in 1990 
[2-4], the CMOS active-cascode gain-enhancement tech- 
nique1 finds wide applications in analog integrated cir- 
cuits, such as Nyquist-rate and oversampling data con- 
verters, sample-and-hold amplifiers, switched-capacitor 
filters, band-gap reference circuits, and voltage regula- 
tors. By boosting the low-frequency transconductance of 
the cascode device, the technique increases the output 
resistance of a CMOS cascode operational amplifier (op 
amp), and hence the voltage gain without degrading its 
high-frequency performance. As a result, it is ideally 
suitable for on-chip applications, where a large gain- 
bandwidth product is desirable while driving capacitive 
loads. In addition, as the technique derives extra gain 
laterally using an auxiliary amplifier (booster) without 
stacking multiple cascode transistors, it retains the high- 
swing feature of a simple cascode stage, and thus, be- 
comes widely popular in scaled CMOS technologies with 
low supply voltages. 

In sampled-data applications, the circuit accuracy and 
speed are usually determined by the settling behavior of 
op amps when employed. In an attempt to achieve a high 
unity-gain frequency and a high dc gain simultaneously, 
the active cascode introduces a pole-zero pair (doublet) 
near the unity-gain frequency of the auxiliary amplifier, 
which potentially leads to slow-settling behavior of such 
op amps [2]. A guideline to avoid the deleterious effects 

of the doublet was also discussed in [2]. However, an 
accurate, closed-form solution of the doublet does not 
exist. Lacking theoretical guidance, designers often re- 
sort to circuit simulators to verify and to fine-tune their 
op amps, rendering the design process time consuming 
and heuristic. 

This paper examines the doublet behavior of CMOS 
active cascodes. Quantitative analysis reveals that three 
scenarios can arise for the closed-loop settling behavior 
dependent on the ratio of the unity-gain bandwidth of the 
booster to that of the main amplifier. Sections 2 and 3 
review the principles of the cascode gain stage and the 
CMOS active-cascode technique, respectively. Section 4 
presents a small-signal analysis of the active cascode and 
a closed-form solution of the doublet followed by the 
corresponding result on settling behavior. In Section 5, 
computer simulation results are shown to validate the 
developed theory; and lastly, a brief summary concludes 
the paper in Section 6. 

2. CMOS Cascode Gain Stage 
Cascode provides a gain-enhancement function in am- 
plifier circuits, allowing the product of the intrinsic gains 
of two stages-a common-source stage (CS) and a com- 
mon-gate stage (CG)-to be developed in one. This has an 
advantage in the attainable bandwidth of the amplifier 
when driving a capacitive load, which itself acts as the 
compensation capacitor [5,6]. As a result, a single-stage 
cascode amplifier typically exhibits a better power effi- 
ciency relative to a Miller-compensated two-stage design, 

1Alternative names are gain boosting, regulated cascode, and active- 
feedback cascode. 
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and is widely used in analog circuits. 

2.1. Small-Signal DC Gain 
A typical CMOS cascode gain stage is shown in Figure 
1(a) along with its output impedance as a function of 
frequency in Figure 1(b). In a voltage-gain amplifier, a 
two-port formulation readily shows that the small-signal 
gain is simply the product of the effective input tran- 
sconductance (Gm) and the output resistance (Ro) of the 
stage [7]. In Fig. 1a, assuming both transistors are biased 
in saturation, the drain current of M1 is only weakly in- 
fluenced by M2 (through channel-length modulation) and 
the following expression of Gm holds: 
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( )
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1 1

2 2 1 2

1
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1
m o o

m m m
m o o o
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g r r r
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= ⋅ ≈
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Thus, the extra gain developed by the cascode can on- 
ly be explained by the increase in Ro: 

( )2 1 2 11 .o m o o oR g r r r= + +             (2) 

Equation (2) is obvious when we consider the stage as 
a degenerated current source from the output-resistance 
standpoint, i.e., transistor M2 is degenerated by ro1 when 
the gates of M1 and M2 are both ac-grounded. The factor 
gm2·ro1 is just the loop-gain of the local series feedback 
formed by M2 and ro1. Thus, the dc gain of the stage is 

( )1 1 2 2 1 .dc m o m o m oA G R g r g r= − ⋅ = − ⋅ +      (3) 

2.2. Frequency Response 
Next we consider the frequency response of the stage by 
adding a load capacitor Co to the output. We will neglect 
all other capacitance in the circuit for simplicity. Since 
the addition of Co has no effect on the Gm part of (1), the 
frequency dependence derives solely from the output 
impedance Zo(s), which can be expressed as 

( ) ( ) 1 ,
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o o o

o o

RZ s R sC
sR C

−= =
+

         (4) 

and depicted in Figure 1(b) by the solid curve. Since in 
this case the Gm part exhibits no frequency dependence, 
the overall frequency response of the small-signal gain is 
simply 

( ) ( ) ,
1

m o
m o

o o

G RA s G Z s
sR C

= − ⋅ = −
+

        (5) 

which has a dominant pole at ωo (≈1/RoCo) and a unity- 
gain frequency of ωu (≈gm1/Co). 

3. CMOS Active-Cascode Gain Technique 
CMOS active cascode further improves the achievable dc 
gain by employing a lateral auxiliary amplifier—Aa(s) in 
Figure 2(a)—to enhance the cascode effect. The opera- 

 
(a) 

 
(b) 

Figure 1. CMOS cascode gain stage: (a) simplified circuit 
diagram and (b) Bode plot of the output impedance. The 
frequency dependence of the output impedance derives 
from Co. 
 

 
(a) 

 
(b) 

Figure 2. CMOS active-cascode gain stage: (a) simplified 
circuit diagram and (b) Bode plot of the output impedance. 
The frequency dependence of the output impedance derives 
from Co and the auxiliary amplifier Aa(s). 
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tion principles of the technique can be explained as fol-
lows. 

3.1. Output Resistance and Gain 
At this point, we understand that the extra voltage gain of 
the normal cascode stage in Figure 1(a) derives from the 
improved output resistance due to the local series feed- 
back formed by M2 and ro1. Therefore, additional gain 
can be potentially obtained by further increasing either 
gm2 or ro1. The active-cascode technique exploits the gm2 
option as shown in Figure 2(a). Let’s consider the effec- 
tive transconductance of M2 due to the presence of the 
auxiliary amplifier. The gate-source voltage of M2 is 0 − 
vx = −vx and vy − vx = −( Aa + 1)vx before and after the 
booster insertion, respectively. Therefore, the net effect 
of the booster is essentially to make the effective tran-
sconductance of M2 (Aa + 1) times larger, with every-
thing else being equal between Figures 1(a) and 2(a). 
Thus, the dc solution to the active-cascode amplifier of 
Figure 2(a) can be readily obtained by substituting 
(Aa+1)gm2 for gm2 in (1)-(3): 

( )
( )

2 2 1
1 1

2 2 1 2

1 1
,

1 1
a m o o

m m m
a m o o o

A g r r
G g g

A g r r r
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     (6) 

( ) 2 1 2 11 1 ,o a m o o oR A g r r r= + + +                 (7) 

( )1 1 2 21 1 .dc m o a m oA g r A g r= − ⋅ + +  
2            (8) 

We see that the key function of the booster is to en-
hance gm2, hence to further increase the output resistance 
(and gain) of the amplifier.3 This is done by introducing a 
push-pull operation between the source and gate voltages 
of M2, i.e., between nodes X and Y, through the insertion 
of a booster amplifier. This inevitably introduces another 
negative feedback loop that is local to the cascode M2. As 
the bandwidth of the booster amplifier is finite, the fre-
quency response of the active cascode exhibits an inter-
esting artifact—a pole-zero pair or frequency doublet, 
which will be explained next. 

3.2. Frequency Doublet 
For simplicity, we will assume a single-pole roll-off for 
the auxiliary amplifier: 

( ) .
1

a
a

a

a

AA s As
ω

=
+

                 (9) 

Therefore, the frequency dependence of the gain stage 
can be readily obtained by replacing Aa with Aa(s) in 
(6)-(8). 

The effect of Aa(s) on the output resistance was quali-
tatively analyzed in [2], which is sketched in Figure 2(b). 
Let’s examine Ro first. The roll-off of Aa(s) at high fre-
quency introduces frequency dependence of Ro as illu-
strated by the dash-dotted curve in Figure 2(b), mathe-
matically, 

( ) ( ) 2 1 2 1 21 .o a m o o o oR s A s g r r r r= + + +          (10) 

In Figure 2(b), ro = gm2ro1ro2 + ro1 + ro2, which can al-
so be obtained from (10) by setting Aa(s) to 0. Thus, Ro(s) 
exhibits a pole at ω3 and a zero at ωa in Figure 2(b). The 
overall output impedance of the stage Zo(s) is then the 
parallel combination of Ro(s) and (sCo)−1, 

( ) ( ) ( ) 1 ,o o oZ s R s sC −=              (11) 

which is represented by the solid curve in Figure 2(b). 
An equivalent RC model of Zo(s) was proposed in [8], 

which is sketched in Figure 3. If we divide the frequency 
axis into three bands by ω3 and ωa in Figure 2(b), the 
left resistor Aaro in Figure 3 captures the low-frequency 
output resistance in region A (ω ≤ ω3), the middle series 
RC network captures the roll-off part of Ro(s) in region B 
(ω3 ≤ ω ≤ ωa) and the flat part in region C (ω ≥ ωa), and 
lastly the right Co represents the shunt load capacitor. In 
regions A and B, an approximate expression of the out-
put impedance is 

( ) 1 ,o a o
o o

xZ s A r
sC sC

≈            (12) 

where, x = ω3/ωo = ωa/ω2. Obviously, this only results in 
one pole at ωo. In regions B and C, an approximate ex-
pression of the output impedance is given by 

( )
11 .

11
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r Csx xZ s r
r CsC sC sC s

x x

+ 
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 

    
(13)

 

Apparently, this results in two poles and one zero, with 
a pole at ( )1 /p o os x r C= − +  and a zero at /z o os x r C= −  
—both are very close to the unity-gain frequency of the 
booster ωa when x>>1 holds. This is the pole-zero pair or 
doublet. 
 

 
Figure 3. Model of the output impedance of the active cas-
code in Figure 2. 
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2The body effect of M2 can be readily included in (6)-(8). For example, 
the dc gain is ( ){ }1 1 2 2 21 1dc m o a m mb oA g r A g g r= − ⋅ + + +    with body 

effect. 
3A similar argument also suggests that the technique works only for 
MOSFET, not BJT amplifiers, in that the base resistance of BJT will 
ultimately limit the achievable amplifier output resistance to approx-
imately β0ro, where β0 is the small-signal current gain of the BJT, re-
gardless of the value of Aa. 
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3.3. Slow Settling 
In [9-11], a closed-loop amplifier containing a closely 
spaced pole-zero pair in its frequency response was ex-
amined. It was found that, although the doublet effect on 
the open-loop Bode plot is often negligible, its delete-
rious impact on the time-domain settling behavior may 
be significant. Specifically, it introduces a so-called 
slow- settling component to the step response of the am-
plifier. The magnitude of the slow component is propor-
tional to the doublet spacing and the time constant cor-
responds to the doublet frequency. 

The same line of development will be followed here to 
establish a framework for the next two sections. Let the 
open-loop transfer function have a closely spaced pole- 
zero pair at (ωz, ωp). The dominant pole and unity-gain 
frequencies, ωo and ωu, respectively, are given for the 
open-loop response. When the loop is closed, the feed- 
back will reduce the pole-zero spacing by an amount 
equal to the loop-gain at the doublet frequency; and the 
closed-loop pole frequency will move to ωp' [10,11]. 
With the assumption ωo << (ωz, ωp) << βωu, the step 
response of the closed-loop amplifier is given as 

( ) ( )'

1 21 ,pu tt
oV t V k e k e ωβω −−≈ − +        (14) 

where, β is the feedback factor, and 

'
21 , .z p z p

p z z
u z u

k
ω ω ω ω

ω ω ω
βω ω βω

− − 
≈ + ≈ ≈ − 

    (15) 

The k2 term in (14) is the slow-settling component 
when ωp' < βωu holds. 

4. Solving Doublet 
For the CMOS active cascode, although the approximate 
equivalent circuit model of Zo(s) in Section 3.2 reveals 
the existence of a pole-zero pair near the unity-gain fre-
quency of the auxiliary amplifier ωa, the results are only 
qualitative as the frequency dependence of Gm(s) is not 
considered in the model. In this section, we will attempt 
to obtain an exact small-signal solution for the doublet. 
In the treatment, the frequency dependence of the circuit 
is assumed to derive from the load capacitor Co and the 
booster Aa(s); and all other capacitances will be neglected 
first to keep the math tractable. After the first-order pole- 
zero behavior is derived, the effects of other capacitances 
in the circuit will be examined in Section 5 using com-
puter simulation. 

4.1. Open-Loop Transfer Function 
To solve for the open-loop transfer function, we first 
obtain the expressions for Gm(s) and Zo(s): 
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The product of (16) and (17) gives the small-signal 
voltage gain in (18) (see below), where A1 = gm1·ro1, A2 = 
gm2·ro2, and the expression of Aa(s) in (9) is assumed. 

4.2. Frequency Doublet 
The numerator of (18) readily solves to one LHP zero: 
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To solve for the poles, we define γ = ro2/ro1, ωu = 
gm1/Co, and ro1 = A1/Coωu; the denominator of (18) reduc-
es to the following: 
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Due to the presence of the doublet, we may assume 
that one pole is at sp1 = −αωa with α ≈ 1; and (20) can be 
factorized into 
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Compare (21) with (20), we obtain 
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where, ( ) ao
a
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γ
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 is assumed since x >>  

1. At this point, we arrive at the solution for the two LHP 
poles of the open-loop transfer function: 
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where, the fact x = ω3/ωo>>1 is again assumed. 

4.3. Closed-Loop Settling Behavior 
We recognize that sp1 of (23) is the dominant pole of the 
open-loop amplifier and (sz, sp2) of (19) and (24) form a 
doublet. Substituting (19) and (24) in (15) results in an 
expression for the slow-settling component: 

' ,p aω ω≈                     (25) 
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AAk
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ωγ
β γ ω γ

 −
≈ − + + + + + 

  (26) 

Equation (26) reveals that three scenarios can arise for 
the closed-loop settling behavior dependent on ωa/ωu, the 
ratio of the unity-gain bandwidth of the auxiliary am-
plifier to that of the open-loop main amplifier: 

1) k2 = 0, critically damped, when ωu/ωa ≈ γA1 = gm1·ro2. 
The pole cancels the zero exactly and the slow-settling 
term vanishes; 

2) k2 > 0, overshoot, when ωu/ωa < gm1·ro2. This results 
in a falling doublet; 

3) k2 < 0, slow settling, when ωu/ωa > gm1·ro2. This re- 
sults in a rising doublet, the one often cited in the litera- 
ture [2]. 

In addition, as ωu = gm1/Co, the criterion ωu/ωa = gm1·ro2 
leads to ωa = 1/ro2Co. In other words, even when a con- 
stant Co is assumed, the significant dependence of ro2 on 
the amplifier output voltage makes it practically difficult 
to achieve an exact pole-zero cancellation. 

There are two strategies to avoid the deleterious effect 
of the doublet. One suggests to make ωa > βωu to avoid 
slow settling [2]. The other suggests to make k2 small 
enough, i.e., to have a “slow-but-accurate” doublet. Let’s 
examine the feasibility of the latter. Assuming a very 
slow doublet, i.e., ωa << βωu holds, then following (26), 

2
1 2

1 1 .
o

k
A A Aβ β

≈ − ≈ −              (27) 

This implies that k2 cannot be made arbitrarily small— 
the smallest value of k2 is inversely proportional to the 
loop-gain of the main amplifier without gain enhance-
ment. A “slow-but-accurate” doublet does not exist. 

5. Computer Simulation 
Computer simulations have been performed to validate 
the analysis developed in Section 4. For easy access to 
and programmability of all device parameters, i.e., gm, ro, 
etc., a small-signal linear model of the active cascode 
shown in Figure 4 was used instead of a real transistor 
circuit. An ideal VCVS models the auxiliary amplifier 
with a transfer function Aa(s). In Figure 5, the external 
feedback is assumed ideal with a feedback factor β = 1/2 
(i.e., the closed-loop gain is 2); and a 1-V step is applied 
at the input. A capacitor Cm on node X (resulting in the  

 
Figure 4. Small-signal model of the CMOS active cascode. A 
capacitor Cm on node X and the Cgs’ and Cgd’s of M1 and M2 
are also included for second-order effects. 
 

 
(a) 

 
(b) 

Figure 5. (a) Closed-loop amplifier model and (b) the input 
voltage step used in simulation. 
 
second pole) and the Cgs’ and Cgd’s of M1 and M2 are also 
included for completeness. All device parameters used in 
the simulation are listed in Table 1. 

5.1. Intrinsic Doublet Behavior 

To evaluate the intrinsic behavior of the doublet, all ca- 
pacitors are removed except Co in Figure 4; the uni- 
ty-gain frequency of Aa(s) is swept to observe the settling 
behavior of the closed-loop amplifier. Figures 6(a) and 
(b) show the output voltage and the normalized settling 
error of the circuit, respectively. The settling error is de- 
fined as 
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It is apparent that indeed three scenarios for the set-
tling behavior exist as predicted in Section 4.3. Specifi-
cally, a critically damped output transient was observed 
confirming the possibility of an exact pole-zero cancella-
tion. In the example used here, (26) predicts that k2 = 0 
when fa = (2πro2Co)−1 ≈ 10 MHz; while computer simula- 
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Table 1. Small-signal parameters used in simulation. 

β 0.5 ro2 10 kΩ 

fu 200 MHz Cm Co/3 

Aa 40 dB Cgs1 Co/6 

gm1 2 mA/V Cgs2 Co/6 

gm2 1 mA/V Cgd1 Co/12 

ro1 10 kΩ Cgd2 Co/12 

 

 
(a) 

 
(b) 

Figure 6. Closed-loop settling behavior for fa = 10 kHz, 100 
kHz, 1 MHz, 5 MHz, 9 MHz, 10.95 MHz, 20 MHz, and 30 
MHz: (a) the amplifier output voltage (increasing in fa from 
bottom up), and (b) the normalized settling error (increas-
ing in fa from top down). Open-loop parameters: fa = 10 
kHz, βfu = 100 MHz, and βAdc = 80 dB. The dashed curves 
(fa = 10.95 MHz) correspond to the case of k2 = 0, i.e., exact 
pole-zero cancellation. 
 
tion reveals that this actually occurs for fa ≈ 10.95 MHz. 
In addition, Figure 6(b) further indicates that, when the 
slow-settling component is really “slow” (ωa << βωu), 
the knee accuracy where the slow term starts to dominate 
is always nearly −40 dB, corresponding to k2 = 1/βAo = 
−0.01 as predicted by (27). 

5.2. Effect of the Second Pole 
A capacitor Cm at node X in Figure 4 is added to intro-

duce a non-dominant pole with a frequency three times 
larger than βωu, the close-loop bandwidth (i.e., the phase 
margin of the loop-gain is around 71˚). The simulation 
results are shown in Figures 7(a) and (b). The basic set-
tling behavior is unaltered with the inclusion of the 
second pole; and the slow tails after the initial overshoots 
die out closely resemble those of the case with Cm = 0, 
especially when ωa << βωu holds. 

5.3. Effect of Other Parasitics 
The Cgs’ and Cgd’s of the transistors M1 and M2 are fur- 
ther included to make the small-signal model complete. 
Reasonably large values for these capacitors are assumed 
(Table 1), and the simulation results are shown in Fig- 
ures 8(a) and (b). Again, the behavior of the slow-set- 
tling component is seemingly independent of the various 
second-order effects introduced by the parasitics. An 
exact pole-zero cancellation always occurs for fa ≈ 10.95 
MHz. 

In [2], the criterion βωu < ωa < ωp2 was proposed to 
ensure proper operation of the active cascodes. This is 
verified in simulation by keeping Cm constant while 
stepping ωa up to and beyond ωp2. Figure 9 illustrates 
 

 
(a) 

 
(b) 

Figure 7. The same results as those of Figure 6 with the 
inclusion of Cm. The phase margin of the loop-gain is 71˚. 
The dashed curves are for Cm = 0. The basic settling beha- 
vior remains the same in the presence of a second pole. 
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(a) 

 
(b) 

Figure 8. The same results as those of Figure 6 with the 
inclusion of Cm and the Cgs’ and Cgd’s of M1 and M2. The 
slow tails of the transients closely resemble those of the 
original case (the dashed curves) in spite of the initial sig-
nificant overshoots. 
 

 
Figure 9. The normalized settling error for fa = 10.95 MHz 
(dashed curve), 100 MHz, and 1 GHz with fp2 ≈ 300 MHz. 
 
that sluggish settling occurs when ωa is in the vicinity of 
ωp2, where the local feedback loop formed by the booster 
and the cascode becomes marginally stable. The instabil- 
ity is lifted when ωa is further pushed out (not shown in 
the figure). 

6. Summary 
An accurate, closed-form s-domain analysis and comput- 

er simulation results of the pole-zero pair (doublet) asso- 
ciated with the widely used CMOS active-cascode gain 
stage are presented. The conventional picture of “slow 
settling” is clarified and augmented with a set of equa- 
tions that completely describe the doublet dynamics. 
These results provide easy-to-follow guidelines to the 
design of such amplifiers in practice. 
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