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Abstract

A mathematical model of CE reaction schemes under first or pseudo-first order conditions with different
diffusion coefficients at a spherical electrode under non-steady-state conditions is described. The model is
based on non-stationary diffusion equation containing a non-linear reaction term. This paper presents the
complex numerical method (Homotopy perturbation method) to solve the system of non-linear differential
equation that describes the homogeneous processes coupled to electrode reaction. In this paper the approxi-
mate analytical expressions of the non-steady-state concentrations and current at spherical electrodes for
homogeneous reactions mechanisms are derived for all values of the reaction diffusion parameters. These
approximate results are compared with the available analytical results and are found to be in good agreement.

Keywords: Non-Linear Reaction/Diffusion Equation, Homotopy Perturbation Method, CE Mechanism,
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1. Introduction

Microelectrodes are of great practical interest for quanti-
tative in vivo measurements, e.g. of oxygen tension in
living tissues [1-3], because electrodes employed in vivo
should be smaller than the unit size of the tissue of inter-
est. Microelectrodes having the geometry of a hemi-
sphere resting on an insulating plane are difficult to fab-
ricate, but their behavior is easily predicted [4]. They
also have advantages in electrochemical measurements
of molten salts with high temperature [5]. Microelec-
trodes of many shapes have been described [6]. Micro-
electrodes of simple shapes are experimentally preferable
because they are more easily fabricated and generally
conformed to simpler voltammetric relationships. Those
shapes with restricted size in all superficial dimensions
are of special interest because many of these reach true
steady-state under diffusion control in a semi infinite
medium [7]. Nevertheless, there is interest in microelec-
trodes of more complicated shapes, only because the
shapes of small experimental electrodes may not always
be quite as simple as their fabricators intended. Moreover,
and ironically, complex shapes may sometimes be more
easily modeled than simpler ones [8]. However, many
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applications of microelectrodes of different shapes are
impeded by lack of adequate theoretical description of
their behavior.

As far back as 1984, Fleischmann et al. [9,10] used
microdisc electrodes to determine the rate constant of
coupled homogeneous reactions (CE, EC’, ECE, and
DISPI mechanisms). Fleischmann et al. [9] obtained the
steady-state analytical expression of the concentration of
the species HA and H by assuming the concentration of
the specie A is constant. Also measurement of the cur-
rent at microelectrodes is one of the easiest and yet most
powerful electrochemical methods for quantitative me-
chanistic investigations. The use of microelectrodes for
kinetic studies has recently been reviewed [11] and the
feasibility demonstrated of accessing nano second time
scales through the use of fast scan cyclic voltammetry.
However, these advantages are earned at the expense of
enhanced theoretical difficulties in solving the reaction
diffusion equations at these electrodes. Thus it is essen-
tial to have theoretical expressions for non steady state
currents at such electrodes for all mechanisms.

The spherical EC’ mechanism was firstly solved by
Delmastro and Smith [12]. In electrochemical context
Diao et al. [13] derived the chronoamperometric current
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at hemispherical electrode for EC’ reaction, whereas
Galceran’s ef al. [14] evaluated shifted de facto expres-
sion and shifted asymptotic short-time expression for disc
electrodes using Danckwerts relation. Rajendran et al. [15]
derived an accurate polynomial expression for transient
current at disc electrode for an EC’ reaction. More re-
cently, Molina and coworkers have derived the rigorous
analytical solution for EC’, CE, catalytic processes at
spherical electrodes [16]. Fleischmann et al. [17] dem-
onstrate that Neumann’s integral theorem can be used to
numerically simulate CE mechanism at a disc electrode.
Dayton et al. [18] also derived the spherical response
using Neumann’s integral theorem. In this literature
steady-state limiting current is discussed in [19]

In general, the characterization of subsequent homo-
geneous reactions involves the elucidations of the me-
chanism of reaction, as well as the determination of the
rate constants. Earlier, the steady-state analytical expres-
sions of the concentrations and current at microdisc elec-
trodes in the case of first order EC’ and CE reactions
were calculated [9]. However, to the best of our knowl-
edge, till date there was no rigorous approximate solu-
tions for the kinetic of CE reaction schemes under first or
pseudo-first order conditions with different diffusion
coefficients at spherical electrodes under non-steady-
state conditions for all possible values of reactio-
n/diffusion parameters yg, ¥ » Vs Vs Vsao Eis
g, and y,, have been reported. The purpose of this
communication is to derive approximate analytical ex-
pressions for the non-steady-state concentrations and
current at spherical electrodes for all possible values of
parameters using Homotopy perturbation method.

2. Mathematical Formulation of the
Problems

At a range of Pt microelectrodes, the electroreduction of
acetic acid, a weak acid, is strutinized by as in a usual
CE reaction scheme. This reaction is known to proceed
via the following reaction sequence [9]:

HA&H* T A
b 1 (1)

H+e\_H
2

where k, and k, are the rate constants for the forward
and back reactiuons respectively and are related to an-
other by the known equilibrium constant for the acid
dissociation [9]. The initial boundary value problems for
different diffusion coefficients ( Dy,,Dy,D, ) can be
written in the following forms [9]:

Ocya 826H A 2Dy, Ocy,
= DHA 2]
ot or r

—kieyy +hyeue, (2)
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oc ¢, 2D, dc
a_tH =Dy 8r2H + rH St keyy —kyeue,  (3)
ey d’c, 2D, éc,

—kycocqy  (4)

R " r  or i
where Dy, , Dy and D, are the diffusion coefficient of
the species HA,H and A, k and k, are the rate
constant for the forward and back reactions respectively
and c¢y,,cy and ¢, are the concentration of the species
HA, H and A. These equations are solved for the follow-
ing initial and boundary conditions:

t=0;cy =Cs Chya =Cpas Co =Ca ®)
r=ry; ey =0, dey,/dr=0, dc,[dr=0  (6)
F=0; ¢y =Cf, Chya =Clia> Ca =Cn @)

where rg is the radius of the spherical electrode. We
introduce the following set of dimensionless variables:

%, _Cu _Cy o
w 2T T VT T T T
CHA Cy Ca Ts
_ Dyt _ Dy _ D,
T= 2 B [;‘1 - D ) gz - D )
Ts HA HA
2 o oo 2
_ klrS _ kZCH cArS (8)
=Dy T Dt
HA HACHA
0 2
Vo = kcyats k. cArS
£~ o Vst = >
Dyachy Dy,
0 2
oy = kiciaTy k CH”s
£2 = o Vs2 =
Dy Dy,

where u, v, w, p and 7 represent the dimen-
sionless concentrations and dimensionless radial distance
and dimensionless time parameters respectively.

o T 2% sy ©)

8‘[ apz pap }/E }/S

ov o’v  2g ov

E:gly—i_ ,018 TV = VsiVW (10)
2

w_ aW+ﬁa—w+7/nu Vs VW an

—=¢
ot Cop*  p op

where yy, 75, Ve» Vs> 7p2 and yg, are the di-
mensionless reaction/diffusion parameters and ¢, &,
are dimensionless diffusion coefficients. The initial and
boundary conditions are represented as follows:

=0, u=1, v=1, w=1 (12)
p=1,v=0; (6u/op)=0; (ow/op)=0 (13)
poo,u=lv=1w=1 (14)

The dimensionless current at the microdisc electrode
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can be given as follows:
Iy=—nFAD, [rg (clv/a’p)p:1 (15)

3. Analytical Expression of Concentrations
and Current Using HPM

Recently, many authors have applied the HPM to various
problems and demonstrated the efficiency of the HPM
for handling non-linear structures and solving various
physics and engineering problems [20-25]. This method
is a combination of homotopy in topology and classic
perturbation techniques. The set of expressions presented
in Equations (9)-(14) defines the initial and boundary
value problem. The homotopy perturbation method [26-32]
is used to give the approximate solutions of coupled
non-linear reaction/diffusion Equations (9) to (11). The
dimensionless reaction diffusion parameters y., ¥,
Veis Vsi» Vg» and yg, are related to one another,
since the bulk solution is at equilibrium in the non-steady
state. Using HPM (see Appendix A and B), we can obtain
the following solutions to the Equations (9) to (11).

rea | 1 (p-1)°
u(p,r)—l+m[\/_rexp(—/2—r]

—exp(p-1) exp(f)e’f"(‘/;+ ;)J_?IH
1

+ T exp(p-1) exp(r VWM*E)

(18)
—5){ exp(p—1)exp(&,7)

f(r+%ﬂ(( eyE)
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The Equations (16)-(18) satisfies the boundary condi-
tions (12) to (14). These equations represent the new
approximate dimensionless solution for the concentration
profiles for all possible values of parameters y,, 7,
Vers Vsis Veas Vsa» & and &, . From Equations (15)
and (17), we can obtain the dimensionless current, which
is as follows:

=1 rS/nFD ACy
, 056419 028217 y,, (19)
\ET JEar

Equation (19) represents the new approximate expres-
sion for the current for small and medium of parameters.

4. Comparison with Fleischmann Work [9]
Fleischmann et al. [9] have derived the analytical ex-

pressions of dimensionless steady-state concentrations u
and v as follows:
Tetéay,

u(p)=l+g|l-———=
Q II: Vet Vs

x{l_%exp[_(p_l)m]ﬂ

(20

<
—~

I N ey

EVe s P
(21

Fleischmann assumed that the concentration profiles
of w is constant. So the definite solution for concentra-
tion profiles of w is not arrived upon in the third specie A.
The normalized current is given by

w = Igrg [nFD, ACT,

_(7E1+517E) (l+\/75+751/31) (22)

- (517E+7’31)

When y,,

(p)=1+a | Lea[~(o-0 v rufa ]| @
V(p):[l_leXP[_(p_l)\N/E+7/51/51 :|:| (24)

P

The normalized current is given by
w = Irg [nFDyACT =14y, +7, /¢, (25)

Previously, mathematical expressions pertaining to
steady-state analytical expressions of the concentrations
and current at microdisc electrodes were calculated by
Fleischmann et al. [9]. In addition, we have also pre-

=y, the above equation becomes
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sented an approximate solution for the non-steady state
concentrations and current.

5. Discussions

Equations (16)-(18) are the new and simple approximate
solution of the concentrations of the isomers calculated
using Homotopy perturbation method for the initial and
boundary conditions Equations (12)-(14). The closed
approximate solution of current is represented by the
Equation (19). The dimensionless concentration profiles
of u versus dimensionless distance p are expressed in
Figures 1(a)-(d). From these figures, we can infer that
the value of the concentration decreases when 7z and
distance p increases when y, <1. Moreover when
vp <1 and 7 >1, the concentration attains the steady-
state value. In Figures 2(a)-(d), the normalized concen-
tration profiles of isomers v for various values of pa-
rameters are plotted. From these figures, it is inferred
that the concentration v increases abruptly and reaches
the steady-state value when p >5. In Figures 1(a)-(d)
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and 2(a)-(d), the values of dimensionless concentrations
u and v for various values of y,, 7, and z and for
g <1 arereported and a satisfactory agreement with the
available [9] estimates of Fleischmann et al. is noticed
when 7 is large. Figures 3(a)-(d) show the normalized
dimensional concentration profile of w in p space cal-
culated using Equation (18). The plot was constructed for
various values y,, =0.1,1 and & <1. From these
figures it is confirmed that the value of the concentration
profile of w increases when 7 and y,, increases. Al-
so from the Figures 1(a)-(d) and 2(a)-(d), it is evident
that the concentration of species HA and H increases
when the radius of the electrode (7, ) decreases. There-
fore, the use of the electrode of the small radius is clearly
advangeous for the study of CE reaction mechanism. The
concentration of specie A decreases when the radius of
the electrode decreases. It reaches the steady state value
when 7 <1. The dimensionless current logy versus 7
for various values of y,, is given in Figure 4. From
these figure, it is evident that the value of the current
decreases abruptly and reaches the steady-state value.
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Figure 1. Normalized concentration « at microelectrode. The concentrations were computed using Equation (16) for various
values of ¢ and for some fixed small value of y,, when the reaction/diffusion parameter and dimensionless diffusion coef-
ficient () 7,=0.1, & =0.01 (b) ,=0.1, =05 (c) y,=1 =001 (d) 7,=1 & =0.5. The key to the graph: (__)

represents Equation (16) and (+) represents Equation (23) [9].

Copyright © 2011 SciRes.

AJAC



A.ESWARI ET AL.

97

N . B = 1r
g g
E | g
§ § 0.8F
=) =]
S 1 8
2 v 0.6
2L 5}
E 7 =0.1, & =0.01 g
2] T 7]
= s 041
.qé g 7r1=0.1,6=05
a | A
0.2 1
0 . : . . . : . . . 0 . ) ) ) ) ) )
1 1.1 1.2 13 14 15 16 1.7 18 19 2 1 1.5 2 25 3 3.5 4 45 5
Dimensionless distance p Dimensionless distance p
(@ (b)
= ot
T +—*
S T *
g - = T
g i .g J
£ E
g g
38 . g i
©n Q
[ 2
= 2
1S =
B B 9 4
g { y=1, 6 =001 2
E ; EL1 1 61 . 15
02 A 4 a i
A
0 I 1 L L I 1 1 1 1 O N N N " 1
1 12 14 16 18 2 22 24 26 28 3 1 1.5 2 2.5 3 35 4
Dimensionless distance p Dimensionless distance p

©

(d

Figure 2. Normalized concentration v at microelectrode. The concentrations were computed using Equation (17) for various
values of 7 and for some fixed small value of », when the reaction/diffusion parameter and dimensionless diffusion coef-

ficient (@) y,,=0.1, =001 (b) »,,=0.1 6 =05 (c) y,,=1 & =001 (d) y,, =1 ¢ =05. The key to the graph: (__)
represents Equation (17) and (+) represents Equation (24) [9].
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Figure 3. Normalized concentration w at microelectrode. The concentrations were computed using Equation (18) for various
values of = and for some fixed value of the reaction/diffusion parameter and dimensionless diffusion coefficient (a)
7:,=01 6=001 (b) y,,=01 6 =05 (c) 7,,=16=001 (d) 7,,=1 &=05.
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Figure 4. Variation of normalized non-steady-state current response logy as a function of the dimensionless time z for
various values of y,, and for the fixed values of (a) & =0.01 (b) ¢ =0.5. The curves were computed using Equation (19).
The key to the graph: (__) represents Equation (19) and (+) represents Equation (25) [9].

when the values of y,, >0.1. Also, the value of the
current i increases when the reaction diffusion pa-
rameter y,, increases

6. Conclusions

The time dependent non-linear reaction/diffusion equa-
tions for spherical microelectrodes for CE mechanism
has been formulated and solved using HPM. The primary
result of this work is simple approximate calculation of
concentration profiles and current for all values of fun-
damental parameters. We have presented approximate
solutions corresponding to the species HA, H and A in
terms of the parameters of y., Vs, Vo> Vsi> Ve2o

Copyright © 2011 SciRes.

Vs2s &, & and 7 based on the Homotopy perturba-
tion method. This method can be easily extended to find
the concentrations and current for all mechanism for all
microelectrodes for various complex boundary condi-
tions.
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Appendix A: Solution of the Equations (9) to
(11) Using Homotopy Perturbation Method

In this Appendix, we indicate how Equations (16) to (18)
in this paper are derived. To find the solution of Equa-
tions (9) to (11) we first construct a Homotopy as fol-
lows:

07|

d*u 2 du du}

(AT)

d’v 2g dv dv
(1-p)| Tus 20t 2
dp p dp drt

(A2)
26 dv dv }_ 0

(A3)

d*w 2& dw dw
TP\ & +____T+7EZ”_752VW =0

and the initial approximations are as follows:
=0, u,=1v,=0; w, =1 (A4)
p=1v,=0; (du,/dp)=0, dw,/dp=0 (AS)
p >0 uy=1; v, =0; wy =1 (A6)
7=0;u,=0;v,=0; w, =0 (A7)
p=1Lv,=0; (du,/dp)=0, (dw,/dp)=0  (AS8)
po>o;u,=0v,=0w=0 Vi=12-- (A9)
and
U=uy+ pu, + piu, + pug +-o
V=V, +py PV, + Py e (A10)
W= Wy + pw, + pow, + PP, +ee
Substituting Equation (A10) into Equations (Al) and

(A2) and (A3) and arranging the coefficients of powers
p , we can obtain the following differential equations.

2
O:du;) Eduo_duozo (A11)
dp~ pdp dr
d*u, 2du, du
L e Ty u +yovow, =0 Al2
p dp2 odp d YUy TV sVoWo ( )
and
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2
»° l—zvg+ﬁ%—%=o (A13)
P pdp dr
d*v. 2¢& dv, dv
pl tE dpzl +71d_pl_d_;+751”0 —VsiVoW, =0 (Al4)
and
2
2
pO:gz—‘ZW; i%—%_o (A15)
P p dp dr
d*w, 2e, dw  dw
P ;gzﬁ+72d_pl_d_;+7£2uo —Vs2VoW, =0(A16)

Subjecting Equations (All) to (Al16) to Laplace
transformation with respectto 7 results in

2_ o —

d et LS R (A17)
dp~ pdp

) _
d % 2dvy s 1 (A18)
dp” pdp & &

2 o —

d it 2dw sy (A19)
dp” pdp & &

d2ul 2% Su__]/_E+ __e(_\/%(p_l))

dp* pdp ' s s sp (A20)
=0

dp® pdp & &s & (S sp

=0

P, 2dw sy g1

dp* pdp & &S & | s sp (A22)

Now the initial and boundary conditions become

=0, u,=1v,=0; w, =1 (A23)
p=1v,=0; (duy/dp)=0, (dw,/dp)=0 (A24)
p =05 uy =1/s5 v, =1/s5 wy =1/s (A25)
=0 u,=0;v,=0; w, =0 (A26)
p=1 v,=0; (du,/dp)=0, (dw,/dp)=0  (A27)
po>ou,=0v,=0w=0 Vi=12-- (A28)

where s is the Laplace variable and an overbar indicates
a Laplace-transformed quantity. Solving equations (A17)
to (A22) using reduction of order (see Appendix-B) for
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solving the Equation (A20), and using the initial and
boundary conditions (A26) to (A28), we can find the
following results

uy(p)=1/s (A29)
—d5(p-
wip)= 2dm Y
T (a-)p(Vs 1) st
(~s/z(p-1) (—s(p-1) (430)
—Js/e (p-1 —s(p-1
_Vséi€ v n Vsé € ’
ps(e=1)  (5-1)p Vs (Vs +1)
and
l e(_\/S/TI(/J_I))
v (P) T (A31)
~ e(—«/%(p—l)) AR
Vi (,0) - 2 P 2
P 5T s 5T s A32)
y e (o) (
s (1 p-1
2\/g\/; (//0 )
and
wy(p)=Vs (A33)
_Te2 _Tsa Vs 516(7\/%(1071))
W (,0) T2 2 \/’
5SS ps (&, —¢)
+ Vs2 \/“’T\/g e(_M(p_]))
(A34)
P(\/§+ & )(‘92 -5)
+ 75251\/5 e(i\/S/TZ(pil))
P(\/E"' & )\/;(52 _51)

According to the HPM, we can conclude that
u(p)zLiLnlu(p)zuO+u,+-~- (A35)
v(p)zl}'}g}v(p):v0+vl+--- (A36)
w(p)=lmw(p)=w,+w +-- (A37)

p—l

After putting Equations (A29) and (A30) into Equa-
tion (A35) and Equations (A31) and (A32) into Equation
(A36) and Equations (A33) and (A34) into Equation
(A37). Using inverse Laplace transform [33], the final
results can be described in Equations (16) to (18) in the
text. The remaining components of u,(x) and v, (x)
be completely determined such that each term is deter-
mined by the previous term.
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ET AL
Appendix B

In this Appendix, we derive the solution of Equation
(A20) by using reduction of order. To illustrate the basic
concepts of reduction of order, we consider the equation

2
di+P£+Qc=R (B1)
dp dp

where P, O, R are function of r. Equation (A20) can be
simplified to

27 - (/1 (p-1)
d ”21+£%_Su1_7_5+7,s e =0 (B2)
dpo~ pdp s s sp

Using reduction of order, we have

P= z; O=-s
P
and
1 e(-«/S/TI (1)
R:ﬁ_ys{__— (B3)
s s sp
Let u=cv (B4)
Substitute (B4) in (B1), if u is so chosen that
2 de +Pc=0 (B5)
dp

Substituting the value of P in the above Equation (A7)
become

c=1/p (B6)
The given Equation (B3) reduces to
V+Ov=R (B7)
where
P P R
0=0-—-—=0, R=— (B8)
4 2 c

Substituting (B8) in (B7) we obtain,

(~s/z (1)
v"—sv:M—M+}/S[e— (B9)
s s s

Integrating Equation (B9) twice, we obtain

5
v=Adelr+Be” _7E2,0
s
VsP gle(imwil))
t Y (B10)
S Vs (& -1)

Substituting (B6) and (B10) in (B4) we have,
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Js —Jsp
u= Ae”” Be Ve D, Diffusion coefficient of the species A (cm*-sec™)
2
P P N D . . . 2 -1
(Bl 1) Diffusion coefficient (cm™sec ')
—Js/e (p-1
Vs & e( s/ (p1) ) R Radial distance(cm)
s e .
s p\/g(gl -1) ime (s)
kl Rate constant for the forward reactions (cm’/mole-sec)
Using the bound.ary conditions Equations (A27) and . Rate constant for the backward reactions
(A28), we can obtain the value of the constants 4 and B. 2 (cm*/mole-sec)
Substituting the value of the constants 4 and B in the p Radius of spherical electrode (cm)
. . . .. adius of spherical electrode (cm
Equation (B11) we obtain the Equation (A30). Similarly § us ot
we can solve the other differential Equations (A17), r Distance in the radial direction (cm)
(A18), (A19), (A21) and (A22) using the reduction of u,v,w Dimensionless concentrations (dimensionless)
order method. L o L
P Dimensionless radial distance (dimensionless)
Appendix C T Dimensionless time (dimensionless)
I Current density at a sphere (ampere/cm?)
Nomenclature A Area of the spherical electrode (cm?)
Symbols F Faraday constant (C-mole ™)
Cia Concentration of the species HA (mole-cm ™) n Number of the electron (dimensionless)
. . -3
Cy Concentration of the species H (mole-cm ) Greek symbols
c, Concentration of the species A (mole-cm %)
Bulk concentration of the species HA £ Dimensionless diffusion coefficient
Cia (mole-cm %) P ' (dimensionless)
& Bulk concentration of the species H e Dimensionless diffusion coefficient
" (mole-cm ) : (dimensionless)
o Bulk concentration of the species A Ves Ves
A (mole-cm™) Vo 7 Dimensionless reaction/diffusion parameters
B 2S (dimensionless)
D,, Diffusion coefficient of the species HA (cm*sec ") Ver V2
D, Diffusion coefficient of the species H (cm*sec™)
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