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ABSTRACT 

Let the generalized function (tempered distribution) f  on  be a p-periodic eigenfunction of the Fourier transform 

operator , i.e., 


     ,f x p f x f f   , for some   . We show that 1, , 1, or ,i i      that p N  

for some  and that 1,2, ,N  f  has the representation    
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  mp  where   is the Dirac 

functional and   is an eigenfunction of the discrete Fourier transform operator N  with  
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   1,k 1.N   We generalize this result to -periodic 

eigenfunctions of  on  and to -periodic eigenfunctions of  on . 
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1. Introduction 

In this paper, we will study certain generalizations of the 
Dirac comb (or III functional, see [1]) 

   III :
n

x x n




              (1) 

where   is the Dirac functional. We work within the 
context of the Schwartz theory of distributions [2] as 
developed in [1,3-7]. For purposes of manipulation we 
use “function” notation for  ,  and related func- 
tionals. Various useful proprieties of 

III
  and  are 

developed in [1,3-5]. 
III

The  functional is used in the study of sampling, 
periodization, etc., see [1,4,5]. We will illustrate this 
process using a notation that can be generalized to an 
n-dimensional setting. Let 

III

1a   with , and let  1 0a 

1
1

1
:A

a
 . We define the lattice 

 
1 1: :a na n    

and the corresponding -periodic Dirac comb 1a

  
1

1

grid : .
a

a
a
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          (2) 

The Fourier transform of the -periodic Dirac comb 
is 

1a

   
1 1grid grid .a 1As A  s           (3) 

Let g  be any univariate distribution with compact 
support. We can periodize g  by writing 

    
1

: grid ,af x x g x             (4) 

where   represents the convolution product, to obtain 
the weakly convergent Fourier series 

    12
1 1 e ikA x

k

f x A g kA






  .         (5) 
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We observe that 
1

 has support at the points 

1  of the lattice 
1a , while the Fourier 

transform 

grida

, 0, 1, 2,na n     

11 grid AA  has support at the points  

1

, 0, 1, 2,
n

n
a

     of the lattice  It follows that 
1
.A

1 1
grid grida a

   

if and only if 

1 1,a    

i.e., if and only if 

1
grid III.a                  (6) 

Let  be the Fourier transform operator on the 
space of tempered distributions. It is well known [1,4,5], 
that  is linear and that 




4 ,                   (7) 

where  denotes the identity operator on the space of 
tempered distributions. We are interested in tempered 
distributions  such that 



f

,f f                  (8) 

where   is a scalar. Any distribution f that satisfies (8), 
and that we will call eigenfunction of , must also sat- 
isfy the following equation 



,n nf f n              (9) 

due to the linearity of the operator . When  4n  , 
then 4 4f f

1, ,i i 
. Thus the eigenvalues of the operator 

 are 1, . 

Eigenvectors of  N

We first consider the eigenvectors of the discrete Fourier 
transform operator N  since, as we will see later, they 
can be used to construct all periodic eigenfunctions of the 
Fourier transform operator  [8,9]. 

Definition 1. Let  . The matrix 1,2,N  

  

2 1

2 4 2 2

1 2 2 1 1

1 1 1 1

1
1

: ,1

1

N

N
N

N N N N

N

  
  

  





   




 
 
 
  





    








 

2π: e i N  , is said to be the discrete Fourier transform 
operator. 

It is easy to verify the operator identity 

2 1
N NN
   

where 

1 0 0 0 0

0 0 0 0 1

0 0 0 1 0
:

0 0 1 0 0
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is the reflection operator. It is easy to verify 
2

4 2
2 2

1 1 1
N N N NI

N N N
     

    

where NI  is the N N  identity matrix. In this way we 
see that if  

, 0N f f f ,   

then 

4
2

1
0,

N
    

so   must take one of the values 1 ,N i N  . 
Let  rM N  be the multiplicity of the eigenvalue 

 r
i

N



  

of , 0,1,2,3N r ,  and let 

   , , , 1, 2, ,N r rf n M    N         (10) 

be orthonormal eigenvectors of N  corresponding to 
the eigenvalue 

 
, 0,1, 2,3

r
i

r
N




  .  

Example 1. 2N   
The matrix 

2

1 11

1 12

 
   

  

has the eigenvalues 1 1 2  , 2 1 2    with cor- 
responding eigenvectors 

1 1
, .

1 2 1 2

   
   
      

 

We normalize these vectors to obtain 

   2,0,1 2,0,1

1 1
0 , 1

4 2 2 4 2 2
f f

 
 

 

2
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   2,2,1 2,2,1

1 1
0 , 1

4 2 2 4 2 2
f f


  

 

2
.  
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2. The Main Results  
1 1 2 2 2

III III III III ,
2 2 2 2 2

f x

x x x x



A generalized function ,f f  , is said to be an eigen-
function of the Fourier transform operator  if 

3 2            


        
        

 

f f  is such an eigenfunction, constructed from the eigen- 
vector 4,0,2f  of 4 . We will now characterize all such 
periodic eigenfunctions. 

For 1, i    . We would like to characterize all pe-
riodic eigenfunctions f of the Fourier transform operator 

, i.e.,  Since f  is p-periodic, f  is represented by its weakly 
convergent Fourier series 

, 0f f f ,   
    2e ikx p

k

f x k






            (11) 
within the context of 1,2,3 dimensions. 

We Fourier transform term by term to obtain the 
weakly convergent series 2.1. Periodic Eigenfunctions of or   

Let f  be a p-periodic generalized function on  , 
, and assume that 0p     

k

k
F s k s

p
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:F f f   
for the Fourier transform of f . Now since F f  
and 0  , F  must also be p- periodic with where 1, i     and . The 2-periodic function  0f 
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and 

   .n n    Now if the term 
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 thus 

2p N  
appears in the sum (13) then (since f  is p-periodic) 

for some 1, 2,N   , and since  n  is N-periodic, we 
can use (13) to write   n

n x p
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must also appear. Thus 
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for some integer . It follows that n where 
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is the inverse Fourier transform of the N-periodic 
sequence of Fourier coefficients . Since  F f  we 
can use (12), (14) to see that 

      , 0,1, ,Nk k k k N
N

      1,  

i.e., that   is an eigenvector of the discrete Fourier 
transform operator N  associated with the eigenvalue  

N


. In this way we prove the following 

Theorem 1. Let the generalized function f  on  
be a -periodic eigenfunction of the Fourier transform 
operator  with eigenvalue 


p

 1, , 1i    , or i . 
Then p  N  for some integer  and 1,2,N   f  
has the representation 
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where   is an eigenvector of the discrete Fourier 

transform operator N  with 

  

 

 

1

0

N

n

k









21
e

, 0,1, , 1.

N

ikn Nn
N

k k N
N





 

  



  

Example 2. When 1N   we obtain the corres- 
ponding 1-periodic 

     III ,
n

f x x n


  





N

x  

with 

III III.  

Of course, this particular result is well known, see [1]. 
Our argument shows that a periodic eigenfunction of the 
Fourier transform operator that has one singular point per 
unit cell must be a scalar multiple of the Dirac comb 

. III
Example 3. When 2 , we obtain the 2 -periodic 

eigenfunctions 
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from the eigenvectors 2,0,1f  and 2,2,1f  for . It is 
easy to verify that 

2

         1 1 2 2, .f s f s f s f s     

Characterization of periodic eigenfunctions of  
on  


2

Let f  be a bivariate generalized function and 
assume that f  is an eigenfunction of , i.e., 

:F f f   

with 1, , 1,i     or , (and ). Assume further 
that 

i 0f 
f  is -periodic, i.e., 1 2,a a

       1 2, .f x a f x f x a f x     

Here  are linearly independent vectors in . 1 2,a a 2

We simplify the analysis by rotating the coordinate 
system as necessary so as to place a shortest vector from 
the lattice 

1 2,a a  along the positive x-axis. We can and 
do further assume with no loss of generality that  
have the form 


21,aa

   T T

1 1 2 1 2,0 , ,a a     

where 

1 0                   (16) 

2 2
1 1

2
2                  (17) 

2 0                   (18) 

1 10 .                  (19) 
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The dual vectors then have the representation 

   T T
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where  1 2det ,A A  . Now since f  is 

1 2 -periodic, ,a a f  can be represented by the weakly 
convergent Fourier series 
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We Fourier transform the series (20) to obtain the  

weakly convergent series 
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for some integers 1 2 1 2, , ,n n n n    . From the supports of 
these  -functions we see that 
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for some 1 1, 2,N    . Likewise, we see in turn that 

Open Access                                                                                           AJCM 



C. DE SOUZA, D. W. KAMMLER 309

   
 

1 1 2 1 1 1 2 1

1 1 1 2 2 1

2
1 1 2 2 1

1 1 2 2

,

,

,

n n n n

n n n n

n n

n n M

   
 

  
 

   

   

 

  

 

for some , and analogously 0, 1, 2,M    

1 2 1 2
1

1 2 1 2

1 1 1 1

,

.

n n

n n M

 


   
 


 

  
 

Finally, 

 

1 1 2 1 1 1 2 1
2

1 2 1 2

2 1
2 1 1 2 2

1

2 1
2 1 1 2 2

1

2 2
2 1 2

,

,

,

n n n n

n n n n

n n

N

   


   






  



 

  
  

    

  

 

 

for some . Using these expressions we can 
now write 

2 1, 2,N  

 

 

   

 
 

1 1 1

1

2
1 2

2

1

T

1 1

1

T
2

2 1 2

1

T
2

1 1 2
2

1 1 2

T

2 1
2

1 1 2

, ,

1
,0

1
,

1
,

1
0,

M
N

N

N N M

N

a N
N

a M N N M
N

A N N
N N N M

A N
N N N M

 



 






 

 





M M

1

 

where, in view of (16)-(19) 
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We will now consider separately the cases 
0, 0M M  . 

Case 0M   
When 0M   the vectors 1  are orthogonal and 2,a a

f  has the corresponding periods 

1 1 2, ,N N   2  

along the x-axis and y-axis, respectively. The function   
is represented by the synthesis equation 
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Thus   must be an eigenvector of the bivariate 
discrete Fourier transform 
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Case  0M 
We observe that 
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Since f  is 1 2 -periodic, then ,a a f  is also 
-periodic. Thus 1 1 2 1,a N a aM f  has the periods 

 2
1 1 2 1 1 2, andN N N N    M  

along the x-axis and the y-axis, respectively, a situation 
covered by the analysis from the  case. In this 
way we prove 

0M 

Theorem 2. Let the generalized function f  on  
be an 21 -periodic eigenfunction of the Fourier 
transform operator  with eigenvalue 

2
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to the constraint that 
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Note that the  normalized eigenfunctions 1 2   
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Theorem 3. Let the generalized function  on  
be an 1 2 3 -periodic eigenfunction of the Fourier 
transform operator  with eigenvalue 
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1, i
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The generalized function  is -periodic, 
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for 
is a quarter turn rotation. We will use this fact to generate 
quasiperiodic eigenfunctions of  on  with 
rotational symmetry. 
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 In this section we will construct some quasiperiodic 
eigenfunctions of the Fourier transform operator. A 
generalized function f  is said to be quasiperiodic if the 
Fourier transform f   is a weighted sum of Dirac   
functionals with isolated support [10]. 
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where  be the vertices of a regular 0 k n  
gonn   with center at the origin. The parameter   

has been chosen so that (a)                        (b) 
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Figure 1. (a) f5 ; (b) f5 ; The quasiperiodic eigen- 

functions f5  with 10-fold rotational symmetry, and f5  

with 20-fold rotational symmetry for the Fourier transform 
operator  with respectively  = 1 , and = 1 . 
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(a)                        (b) 

Figure 2. (a) f7 ; (b) f7 ; The quasiperiodic eigen- 

functions f7  with 14-fold rotational symmetry, and f7  

with 28-fold rotational symmetry for the Fourier transform 
operator  with respectively  = 1 , and = 1 . 
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