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ABSTRACT 

In this paper, we will give a theoretical foundation for a quaternion-valued widely linear estimation framework. The 
estimation error obtained with the quaternion-valued widely linear estimation method is proved to be smaller than that 
obtained using the usual quaternion-valued linear estimation method. 
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1. Introduction 

The widely linear (WL) estimation method has been pro- 
ved mathematically to be effective for estimation prob- 
lems using complex-valued data. Estimation using WL 
uses complex conjugate parameters in addition to com- 
plex-valued parameters [1]. It has been applied to com- 
munications [2,3] and adaptive filters [4], together with 
so-called augmented complex statistics, a concept intro- 
duced by Picinbono et al. Moreover, an extension of the 
WL method to quaternion-valued case has been pre- 
sented [5], which fully exploits available statistical in- 
formation. A quaternion, a four-dimensional number 
invented by W. R. Hamilton in 1843, is an extension of a 
complex number. Let H  be a four-dimensional vector 
space over  with an ordered basis, denoted by  
and  where  is a set of real numbers. Any quarter- 
nion 

R 1, ,i j
k
q

R
H  is expressed as  where 

. The three basis elements  satisfy 
the relations 

q a ib jc kd   
, ,i j k, ,a b ,c d R

2 2 2 1,i j k                     (1) 

, ,ij ji k jk kj i ki ik j         .       (2) 

Quaternion algebra has been used in fields such as ro- 
botics, computer vision, neural networks, signal pro- 
cessing, and communications (e.g. [6-8]). 

In this paper, we present a theoretical foundation for 
quaternion-valued WL estimation: it is proved that the 
estimation error obtained using the quaternion-valued 
WL estimation method is smaller than that obtained us- 

ing the usual quaternion-valued estimation method [9]. 

2. The WL Model 

In this section, the complex-valued WL model and the 
quaternion-valued WL model are reviewed. 

2.1. The Complex-Valued WL Model 

Let yC  be a scalar complex-valued random vari- 
able to be estimated in terms of an observation that is a 
complex-valued random vector Nx C

N
x

 where  is a 
set of complex numbers, and  is a natural number. 
That is,  is a true value and  is an observed value. 
In complex-valued linear mean square estimation 
(LMSE), the problem is to find an estimate written as 

C

y

ˆ ,H
Ly  h x                 (3) 

where Nh C , and H  represents the complex conju- 
gation and transposition. Then, the objective of the prob- 
lem is to find the parameter Nh C  that minimizes the 
estimation error 

2ˆLyE y . 
In the meantime, the complex-valued widely linear 

mean square estimation (WLMSE) problem can be stated 
as follows: Consider the scalar  defined as ŷ

ˆ ,H Hy  h x g x               (4) 

where , Ng h C , and 
def

v a b i   is the complex con- 
jugate of v a bi  C

,
. Then, the objective of the 

problem is to find parameters NCg h  that minimize 
the estimation error 

2ˆE y y  . 
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Picinbono et al. gave a theoretical foundation for the 
complex-valued WLMSE described above: it was proved 
that the estimation error obtained using the complex- 
valued WLMSE method is smaller than that obtained 
using the usual complex-valued LMSE method:  

2ˆ ˆLE y y E y y   2
 where the equality holds only in 

exceptional cases [1]. 
Figures 1 and 2 demonstrate the effectiveness of com- 

plex-valued widely linear estimation. Samples of com- 
plex-valued random variable x and y are axisymmetric 
about the broken line: the white circle, the black circle, 
and the christcross in Figure 1 correspond to the white 
circle, the black circle, and the christcross in Figure 2, 
respectively, and the three marks in Figure 1 and the 
three marks in Figure 2 are all axisymmetric about the 
broken line. It is therefore difficult to estimate the three 
samples in Figure 1 by performing rotation, reduction, or 
expansion of the three samples in Figure 2 about the 
origin. Nevertheless, inversion of the samples about the 
real axis, i.e., assuming it as the samples of conjugate 
complex-valued random variable, allows to be estimated 
by rotation, reduction, and expansion about the origin. 
This is an intuitive explanation that the complex-valued 
widely linear estimation is superior to the conventional 
linear estimation method. 
 

 

Figure 1. Three samples of a complex-valued random vari- 
able x. 
 

 

Figure 2. Three samples of a complex-valued random vari- 
able y. 

2.2. The Quaternion-Valued WL Model 

The quaternion-valued WL model is a natural extension 
of the complex-valued WL model described in Section 
2.1. Let y H  be a scalar quaternion-valued random 
variable to be estimated in terms of an observation that is 
a quaternion-valued random vector Nx H . That is, y 
is a true value and  is an observed value. x

In quaternion-valued linear mean square estimation 
(LMSE), the problem is to find an estimate written as 

ˆ ,H
Ly  h x                 (5) 

where Nh H , N is a natural number, and H repre- 
sents the quaternionic conjugation and transposition.  

The quaternion-valued widely linear mean square es- 
timation (WLMSE) problem can be stated as follows: 
Consider the scalar  defined as ŷ

ˆ ,H Hy  h x g x               (6) 

where , Ng h H

bi cj dk

, N is a natural number, H represents 
the quaternionic conjugation and transposition, and def

v a    
bi cj dk

 is the quaternionic conjugate of 
v a    H . Then, the objective of the prob- 
lem is to find parameters , Ng h H  that minimize 

2ˆE y y  . 
Took and Mandic derived an augmented quaternion 

least mean squares (AQLMS) algorithm for quaternion 
valued adaptive filters based on the quaternion-valued 
WL model, and confirmed its effectiveness via computer 
simulations [5]. Actually, the experimental results on the 
Lorenz attractor, real-world wind forecasting, and data 
fusion via quaternion spaces support the approach. Con- 
sequently, computer simulations proved that the quarter- 
nion-valued WL estimation method is superior to the 
usual quaternion-valued linear estimation method. 

Moreover, the three perpendicular quaternion involu- 
tions can be introduced into the quaternion-valued 
WLMSE, which are given by 

,iq iqi a ib jc kd                 (7) 

,jq jqj a ib jc k      d            (8) 

,kq kqk a ib jc kd                (9) 

where q a ib jc kd    H  [10-12]. The quarter- 
nion-valued WLMSE using (6) is an initial insight. 
However, in order to achieve the complete description of 
the second order statistics in H ,

ŷ

 we need to consider the 
involutions ((7)-(9)). Actually, the quaternion-valued 
widely linear mean square estimation (WLMSE) problem 
using the involutions has been formulated as follows [12]: 
Consider the scalar  defined as 

ˆ ,H H i H j H ky    h x g x u x v x        (10) 

where , , , Ng h u v H . Then, the objective of the prob- 
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lem is to find parameters , , , Ng h u v H  that minimize 
2ˆE y y . 

However, no theoretical proof for the superiority of the 
quaternion-valued WL estimation method on estimation 
errors has been given to date, as it has been for the com- 
plex-valued WL estimation method. In the complex- 
valued setting, Picinbono et al. proved that the estimation 
error obtained with the complex-valued WLMSE is 
smaller than the error obtained using the complex-valued 
LMSE [1]. 

3. A Theoretical Foundation of the  
Quaternion-Valued WL Model 

In this section, we show the superiority of the quarter- 
nion-valued WLMSE method. The main result is as fol- 
lows: the estimation error obtained using the quarternion- 
valued WL estimation method based on (6) is smaller 
than that obtained using the usual quarternion-valued 
linear estimation method, except in rare cases. The result 
is obtainable in the same manner described by [1]. How- 
ever, the noncommutativity of the quaternion products 
must be considered during the analysis ( xy yx  for any 

,x y H ). 
Define 

      def

, .H HX Z      h x g x g h H N



 

Therein, X is a set of scalar quaternion-valued random 
variables that constitutes a linear space, and which be- 
comes a Hilbert subspace of the one-dimensional quarter- 
nion-valued Hilbert space  Y z  H  with the  

scalar product 
def

, ,z E z z X      
 . Then, for a  

true value y Y , an observed value Nx H , and the 
estimate , the following equations hold: ŷ X

 ˆ ,y y  x                  (12) 

 ˆ ,y y   x                 (13) 

where  means that all the components of  are 
orthogonal to u with the scalar product 

u  v v
,   

 , Nu H H v . From (12) and (13), we obtain 

ˆ ,E y E y      x x 

s

            (14) 

ˆ .E y E y         x x            (15) 

Consequently, from (6), (14), (15), the following equa- 
tions hold (see the appendices for the detail of the deri- 
vation): 

1 ,C r  h g               (16) 

2 ,HC   h g             (17) 

where    
def

1 ,HE     xx
def

T
2 ,E     x x

def
T ,C E    xx

def

,r E y   x   
def

.s E y x

1H s C   

11 r C


 Equations (16) 

and (17) yield 

  1

2 1C C


 

 1 2
HC C

1

1

1 ,H r g       (18) 

2 s     h  

1
1

       (19) 

where we assume that    and 1
2
   11

2 1
HC C

    
exist (see the appendices for the detail of the derivation). 
Then, the estimation error WL  is calculated from (6), 
(16), and (17) as follows: 

 
def

WL 2 22 Tˆ .HE y y E y r s    h g      (20) 

The estimation error L  in the quaternion-valued 
LMSE can be obtained using (5) as shown below. 

def

 2 22 1
1ˆ H

L LE y y E y r r     .         (21) 

Then, from (16) and (18), (20), (21), the quantity 2  
can be expressed as 

 
  

2 1
1

11 1
2 1 1 ,

HH
L WL

H H

s C r

C C s C r

  

  

    

    

def
2 2 

  

C

     (22) 

which is the difference between the estimation error of 
the quaternion-valued LMSE and that of the quarter- 
nion-valued WLMSE. Equation (22) is nonnegative be- 
cause the matrix  is positive-semidefinite 
(see the appendices for the proof). Furthermore, (22) is 
equal to zero only when one of the following conditions 
holds: 

1
2 1

HC   

1
1 ,Hs C r    0               (23) 

ˆ .y y                   (24) 

Equation (23) is an exceptional case, and (24) means 
that the true value y can be estimated with probability of 
one, which is a rare case. 

4. Discussions 

In the previous section, a theoretical foundation of the 
quaternion-valued WL model based on (6) is given, 
which guarantees the superiority of the quaternion-val- 
ued WLMSE method. It is difficult to analyze the quater- 
nion-value WLMSE method using (7)-(9) which contains 
all the necessary second order statistical information be- 
cause the process of the analysis is very complicated due 
to the three involutions if we adopt the way of proof used 
in [1]. To solve the problem, another approach would be 
needed. 

5. Conclusion 

We have presented a theoretical foundation for the qua- 
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ternion-valued WL estimation method. It was proved that 
the estimation error obtained using the quaternion-valued 
WL estimation method is smaller than that obtained us- 
ing the usual quaternion-valued linear estimation method, 
except in rare cases. In our future studies, we will pro- 
ceed with analyses of the WL estimation based on the 
Clifford algebra [13]. 
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Appendices 

Proof of Equations (16) and (17): 

   ˆ0 from Equation 12

ˆ .

E y y

E y E y



 

   
       

x

x x










       (25) 

So, we obtain 

ˆ .E y E y      x x             (26) 

Similarly, from Equation (13) we obtain 

ˆ .E y E y         x x            (27) 

Here, 

   
   

T

ˆ from Equation 6

.

H H

H H

H

y
 

 

 

 

 

h x g x

h x g x

x h x g

   (28) 

Note that   due to the non- 
commutativity of the quaternion products. Thus, from 
Equations (26) and (28), 

T ,H x h h x T Tx g g x

   
   

T

T

T ,

H

H

H

E y E E

E E

E E

          
       
       

x x x h x x g

xx h xx g

xx h xx g

      (29) 

which means that Equation (16) holds. 
It also follows from Equations (27) and (28), 

   

 

T

T

T
2

2 .

H

H

H

H

E y E E

E E

E

C

   

 

         
       
     

  

x x x h x x

x x h x x g

xx h g

h g


g



    (30) 

The left hand side of Equation (30) is given as: 

     .E y E y E y s
         x x x      (31) 

Equations (30) and (31) complete the proof of Equa- 
tion (17). ■ 

Proof of Equations (18) and (19): 

From Equation (16), we obtain 

 1
1 .r C  h g

h

C

             (32) 

Equations (17) and (34) lead Equation (18). And also, 
from Equation (17), we obtain 

1
2 .HC C s C   g           (33) 

Equations (16) and (33) lead Equation (19). ■ 
Proof that the matrix  is positive- 

semidefinite: 

1
2 1

HC   

Consider the following problem. Let Nx H  and 
Ny H  be two random vectors such that 

   E E y 0x . The problem is to estimate linearly 
y  in terms of x , which means to find the N-dimen- 

sional quaternion valued matrix M such th Mat ŷ  x  is 
the best linear mean square (LMS) estimation of  in 
terms of . The solution is given by the orthogonality 
principle saying that 

y
x

ˆ y y y  is orthogonal to the  

observation  or  That is, x  ˆ .HE    y y x 0

yx M xx  
def

H
xx E

 where  and  
def

HE     yxyx

    xx . Assuming that 1
xx
  exists, the solution 

is obviously 
1.yx xxM   

def

              (34) 

Here, the matrix   is positive- 
semidefinite because for any 

HE    yy  
Nu H  such that u 0 , 

2
0H HE u u y u  . Using the definition ˆ y y y  

and Equation (34) yield by simple algebra 
1

yy yx xx x


y                   (35) 

where 
def

H
yy E     yy  and . 

def
H

xy E     xy
Suppose now that y x . This yields 2yy   , 

H
yx C  , 1

1xx
1     and . Thus we obtain 

from Equation (35) 
xy C 

1
2 1 .HC C                 (36) 

As seen above, since   is positive-semidefinite, the 
right-hand side of Equation (36) is positive-semidefinite. 
■ 
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