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ABSTRACT 

Live line measurement methods can reduce the loss of power outages and eliminate interference. There are three live 
line measurement methods including integral method, differential method and algebraic method. A simulation model of 
two coupled parallel transmission lines spanning on the same towers is built in PSCAD and the calculation errors of 
these three methods are compared with different sampling frequencies by using of Matlab. The effect of harmonic on 
calculation is also involved. The simulation results indicate that harmonic has the least effect on the algebraic method 
which provides stable result and small error. 
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1. Introduction 

With the development of power system and limitation of 
transmission line corridor, the number of lines with mu-
tual inductance increases. Zero sequence parameters of 
the lines, which include zero sequence self-impedance 
and mutual impedance, are important basis of relay set-
ting so that the parameters’ precision has a significant 
effect on power system’s safe operation [1]. These pa-
rameters are mainly influenced by earthling resistance 
rate. Chinese relay rules specify that zero sequence pa-
rameters of lines belong to 110kV and higher voltage 
levels must be measured [2, 3]. In the methods of live 
line measurement [2], there are two approaches to avoid 
the disadvantage that all the lines to be measured should 
be shut down? First, shut down one of the lines and add 
an external power source. Second, generate big zero se-
quence current in the way that open one phase breaker of 
an operating line (about 0.5 seconds) by the protective 
relay, re-close the phase breaker automatically to restore 
normal operation. An over determined equation set used 
for calculating the parameters are obtained under differ-
ent measurement modes. The set is solved by using least 
square method. There are three live line measurement 
methods, including integral method, differential method 
and algebraic method [4-8]. Data that algebraic method 
needs is sampled in a period, while several successive 

sampling points are needed by integral method and dif-
ferential method [9-11]. This paper simulates all these 
three methods in different sampling frequencies, with 
and without harmonic, and analyses the measurement 
errors. The conclusion can help to choose a proper meas-
urement method. 

2. The Three Measurement Methods 

2.1. Algebraic Method 

The model of n transmission lines with mutual induc-
tance is shown in Figure 1. 

Where iiZ  are the zero sequence self-impedances of 
the lines, and ijZ  ( i j ) are the mutual impedances. 
While the zero sequence current increment is generated 
on a line, the other lines coupled with it will induct zero  
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Figure 1. The model of transmission lines with mutual in-
ductances. 

Copyright © 2013 SciRes.                                                                                  EPE 



J. J. SU  ET  AL. 1436 

sequence current increment iI   and zero sequence volt-
age increment i . The voltage-current characteristic 
of the lines with mutual inductance is described in Equa-
tion (1). 
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Simplify Equation (1) as: 

Z I U                       (2) 

where Z is the zero sequence impedance matrix, I   
and  are the increment vector of zero sequence 
currents and voltages of all lines. 

U 

The increments can be produced by adding large 
enough current on a shutdown line while the other lines 
are on operation. Different equations produced by dif-
ferent measurement modes form the over determined 
equation set. The set is solved through least square 
method. 

The algebraic method excludes the influence of zero 
sequence voltage and current existed in the lines by using 
increment of voltage and current. The algebraic method 
needs at least half period sampling points. The algebraic 
method’s accuracy increases by eliminating harmonic 
through the Fourier method. 

2.2. Differential Method 

The model of n transmission lines with mutual induc-
tance is shown in Figure 2. 

Where ii  and ii  are the zero sequence self-resis- 
tance and self-inductance of the -th line, ij  and ij  
are the zero sequence mutual resistance and inductance 
between the i-th and the -th line ( ),  

i  is the instantaneous value of the i-th line’s zero se-
quence current, i  and iu  are the instantaneous val-
ues of zero sequence voltage of the i-th line’s head and 
end separately,  is The instantaneous value of the i-th  
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Figure 2. The model of transmission lines with mutual in-
ductances by differential method. 

line’s zero sequence voltage difference, which i iiu u  
u . Equation set of the differential method is described 

in Equation (3). 
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where ( 1ii k ) , ,  and , , 

i

( )ii k ( 1)ii k  ( 1)iu k  ( )iu k
(u k 1)  are separately the zero sequence current and 

voltage of three successive sampling points. Equation (4) 
is the matrix form of Equation (3), and is discretized in 
the way of replacing the derivative terms idi dt  by 
[ (i k 1) (i ii k 1)] 2Ts   . 
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An equation can be achieved with any three successive 
sampling points. Parameters of the lines can be solved 
from the over determined equation set obtained through 
different measurement modes. 

For only three sampling points needed in the differen-
tial method, much more equations can be obtained by 
sampling a series successive points. Different equation 
sets can be obtained by sampling different series of 
points. The accuracy of differential method can be en-
hanced by averaging the results solved from these sets. 

2.3. Integral Method 

Equation (5) is the integral equation set of the live line 
measurement. It is formed in the way of replacing the 
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derivative terms in Equation (3) by integral terms. 
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Trapezoidal rule is used to calculate the integral value 
approximately. Therefore, Equation (5) is transformed 
into Equation (6). 

Where sT  is the sampling period? Only two sampling 
points are needed. Much more equations can be obtained 
by sampling a series of successive points. Therefore, the 
accuracy of integral method will be enhanced. 
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The influence of distributed capacitance is ignored in 
all these three methods. 

3. PSCAD Simulation Model 

A simulation model built in PSCAD is shown in Figure 
3. In the model, there are two coupled parallel transmis-
sion lines spanning on the same towers. The lengths of 
the lines are both 50 km. All the lines are shut down and 
connected with an external zero sequence power sources 
in turn where L1 is the line that operates normally. The 
head end is connected with a 110 kV three-phase power 
source. The tail end is connected with 50 MW active load 
and 10 Mvar reactive load. Tail end of L2 is three-phase 
connected and grounding. L2’s head end is three-phase 

connected and an external voltage source is applied with. 
PSCAD describes the line’s characteristic in RLC 

mode. Transmission line is represented by the Bergeron 
model which separates the line into several distributed 
  type modules. This model assumes that the line’s 
self-impedance and mutual impedance per unit length is 
constant and frequency-independent. The parameters per 
unit length in RLC mode are shown in Figure 4. 

The reference values of zero sequence impedances are 
obtained according to the input parameters. The self- 
impedances of L1 and L2 are 8.479+ j66.385 , and 
their module values are 66.920 . The mutual imped-
ance between L1 and L2 is 6.750+ j34.500 , and its 
module value is 35.154 . 

4. Calculation Result and Error Analysis 

In the PSCAD model, an external zero sequence power 
source is connected to the shutdown line. There are two 
types of the source. Type 1 only outputs fundamental 
voltage while type 2 outputs both fundamental and har-
monic voltage. This section illustrates the influence and 
analyzes the errors of the both types. 

4.1. Type 1 

The output voltage of type 1 is 1 kV. Simulation lasts 0.5 
s. Data sampling begins at 0.4 s. Data of a whole period 
is used by algebraic method. Several successive sampling 
points are used by differential method and integral 
method separately. The results of differential method and 
integral method are achieved in the way of averaging the 
measurement results. Table 1 shows the lines’ self-im- 
pedance and mutual impedance calculated through three 
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Figure 3. PSCAD simulation model. 
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Figure 4. The reference values of the lines’ parameters. 
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methods and their errors under different sampling fre-
quencies. Errors are calculated by 

algebraic method. Errors of the other two methods dete-
riorate apparently compared with the ones without har-
monic, and get bigger as the sampling frequency de-
creases. Curves of errors changing with sampling fre-
quency are shown in Figure 5. 

100%c r

r

Z Z
error

Z


  , 

where cZ  is the calculated value and rZ  is the refer-
ence value. 

4.3. Error Analysis 

The simulation model contains two 50 km lines. All the 
three methods ignore the influence of distributed capaci-
tance. Therefore, the errors caused by distributed capaci-
tance are contained in the results [8]. 

The effect of distribution capacitance is included in 
errors. Table 1 indicates that the errors of algebraic 
method are the smallest. Errors of the other two methods 
get bigger as the sampling frequency decreases. Curves 
of errors changing with sampling frequency are shown in 
Figure 5. 

The algebraic method utilizes the data of a period. 
Calculated after Fourier filtering, the algebraic method is 
not affected by harmonic. Therefore, it has the highest 
accuracy. And its error gets bigger as the sampling fre-
quency decreases. In differential method, principle error 
exits due to using [ ( 1) ( 1)] 2i i s

4.2. Type 2 

The voltage output by Type 2 contains 8% 3rd, 5% 5th 
and 5% 7th harmonic. Table 2 shows the lines’ zero se-
quence parameters calculated with the three methods and 
their errors under different sampling frequencies. 

i k i k T    to approxi-
mate idi dt . In integral method, principle error exits due 
to using trapezoid area to approximate integral value. 
Errors of the two methods both increase as the sampling 
frequency decreases. Table 2 indicates that harmonic has no influence on  

 
Table 1. The calculated values with power source type 1. 

Sampling Frequency 

1 kHz 2 kHz 5 kHz 10 kHz Measurement Method 
Zero Sequence  
Impedance( ) 

|Z| Error (%) |Z| Error (%) |Z| Error (%) |Z| Error (%)

Self-Impedance 66.972 0.071 66.972 0.071 66.970 0.068 66.970 0.068 
Algebraic Method 

Mutual Impedance 35.179 0.072 35.180 0.072 35.180 0.072 35.180 0.072 

Self-Impedance 68.171 1.725 67.237 0.468 67.016 0.138 66.985 0.090 
Differential Method 

Mutual Impedance 35.734 1.650 35.333 0.510 35.212 0.168 35.185 0.075 

Self-Impedance 66.427 -0.742 66.832 -0.137 66.975 0.076 66.974 0.074 
Integral Method 

Mutual Impedance 34.900 -0.718 35.1175 -0.104 35.181 0.076 35.181 0.075 

 
Table 2. The calculated values with power source type 2. 

Sampling Frequency 

1 kHz 2 kHz 5 kHz 10 kHz Measurement Method 
Zero Sequence  
Impedance( ) 

|Z| Error (%) |Z| Error (%) |Z| Error (%) |Z| Error (%)

Self-Impedance 66.972 0.072 66.972 0.071 66.970 0.068 66.970 0.068 
Algebraic Method 

Mutual Impedance 35.179 0.072 35.180 0.072 35.180 0.072 35.180 0.072 

Self-Impedance 68.548 2.427 67.536 0.914 67.116 0.286 67.018 0.141 
Differential Method 

Mutual Impedance 36.008 2.430 35.438 0.809 35.247 0.265 35.213 0.168 

Self-Impedance 66.164 -1.136 66.733 -0.285 66.987 0.094 66.986 0.092 
Integral Method 

Mutual Impedance 34.800 -1.006 35.083 -0.204 35.183 0.081 35.182 0.080 
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Figure 5. Curves of errors changing with sampling fre-
quency. 
 

As the lines is short and the results of both differential 
and integral methods are achieved in the way of averag-
ing three results of measurement, the errors of all the 
three methods are less than 0.5% in 5 kHz sampling fre-
quency. The algebraic method is the most accurate one. 

5. Conclusions 

A simulation model of two double-circuit lines spanning 
on the same towers is built in PSCAD. The zero se-
quence self-impedance and mutual impedance of the 
lines are calculated through the algebraic method, dif-
ferential method and integral method. Errors of these 
methods are analyzed in two conditions that the external 
power source with or without harmonics. Principle errors 
exist due to the approximate calculation in the differen-
tial and integral methods. Therefore, errors increase 
along with the decreasing of sampling frequency. More-
over, errors rise when harmonic is involved. Owing to 
the filter characteristic of Fourier algorithm, the algebraic 
method has the highest accuracy; the algebraic method is 
preferred in actual engineering application. 
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