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ABSTRACT 
Data sparseness has been an inherited issue of statistical language models and smoothing method is usually used to re-
solve the zero count problems. In this paper, we studied empirically and analyzed the well-known smoothing methods 
of Good-Turing and advanced Good-Turing for language models on large sizes Chinese corpus. In the paper, ten mod-
els are generated sequentially on various size of corpus, from 30 M to 300 M Chinese words of CGW corpus. In our 
experiments, the smoothing methods; Good-Turing and Advanced Good-Turing smoothing are evaluated on inside 
testing and outside testing. Based on experiments results, we analyzed further the trends of perplexity of smoothing 
methods, which are useful for employing the effective smoothing methods to alleviate the issue of data sparseness on 
various sizes of language models. Finally, some helpful observations are described in detail. 
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1. Introduction 
Speech processing (SP) studies the domain of speech 
signals and the processing methods of these digital sig- 
nals. It is always combined into natural language pro- 
cessing (NLP). The technology development is wide-
spread day after day; the information system with speech 
service already became important tendency. Speech Pro- 
cessing may divide into two broad domains: Speech Re- 
cognition and speech synthesis. The former is to recog-
nize the speech signal with respect to the text output and 
the latter is to synthesize the speech with frequent pros-
ody for the text or articles inputs. 

In many domains of natural language processing 
(NLP); such as speech recognition [1], and machine tran- 
slation [2]; the statistical language models (LMs) [3] play 
an important role in natural language processing. 

1.1. Language Models 
The statistical language models have been widely used in 
NLP. Supposed that W = w1, w2, w3, … wn, where wi and 
n denote the the ith Chinese character and its number in a 
sentence ( 0 i n≤ ≤ ). P(W) = P(w1, w2, ..., wn), the prob-
ability can be calculated by using chain rules:. 
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where 1
1
kw −  denotes string w1, w2, w3, … wk−1. 

In general, unigram, bigram and trigram (3 <= N) are 
generated. N-gram model calculates P(•) of Nth events by 
the preceding N − 1 events, rather than the string w1, w2, 
w3 … wN-1. 

1.2. N-Gram Models 

Basically, N-gram is so-called N − 1)th—order Markov 
model, which calculate conditional probability of succes- 
sive events: calculate the probability of Nth event while 
preceding (N − 1) event occurs. 

Basically, N-gram Language Model is simply ex- 
pressed as follows: 
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where C(w) denotes the counts of event w occurring in 
dataset. 

In formula (3), the obtained probability P(•) is so 
called Maximum Likelihood Estimation (MLE). While 
predicting the pronunciation category, we can predict 
based on the probability on each category t (1 t T≤ ≤ ), T 
denotes the number of categories for the polyphonic 
character. The category with maximum probability Pmax(•) 
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will be the target and then the correct pronunciation with 
respect to the polyphonic character can be decided fur- 
ther. 

As shown in Equation (3), C(•) of a novel (a unknown 
event), which don’t occur in the training corpus, may be 
zero because of the limited training data, infinite lan- 
guage and its expansion of language. It is always a hard 
work for us to collect sufficient datum. The smoothing 
methods are needed and exploited usually to alleviate the 
zero-count issue for statistical language models. 

2. Processes of Smoothing Methods 
As described above, the zero count issue [4] of unknown 
events will lead to the degradation of language models; 
therefore we need the smoothing methods to alleviate the 
situation. The idea of smoothing processes is to adjust 
the total probability of seen events to that of unseen 
events, leaving some probability mass (so-called escape 
probability, Pesc) for all the unseen events. 

Smoothing algorithms [5,6] can be considered as dis- 
counting some counts of seen events in order to obtain 
the escape probability Pesc. And then Pesc will be assigned 
into unseen events based on the smoothing algorithm. 
The adjustment of smoothed probability for all possibly 
occurred events involves discounting and redistributing 
processes: 

2.1. Discounting Process 
Based on the statistical feature, the probability of all seen 
and unseen (unknown) events is summed to be unity 
(one). First operation of smoothing method is the dis- 
counting process, which discount the probability of all 
seen events. It means that the probability of seen events 
will be decreased a bit. 

2.2. Redistributing Process 
In this operation of smoothing algorithm, the escape 
probability discounted from all seen events will be redi- 
stributed to unseen events. The escape probability is 
usually shared by all the unseen events. That is, the es- 
cape probability is redistributed uniformly to each unseen 
event, PESC/U, where U is the number of unseen events. 
On the other hand, each unseen event obtains the same 
probability in the smoothing criterion. 

3. The Smoothing Methods 
In the Section, the well-known smoothing methods, 
Good-Turing and advanced Good-Turing smoothing will 
be presented and evaluated in next section. 

3.1. Good-Turing Smoothing 
The Good-Turing smoothing method was first described 

by I. J. Good and A. M. Turing in 1953 [7]. At that time 
it was used to decipher the German Enigma code during 
World War II. Some previous works can be found in 
[8,9]. Notation nc denotes the number of n-grams with 
exactly c count in the corpus. For example, n0 represent 
that the number of n-grams with zero count and n1 means 
the number of n-grams which exactly occur once in 
training data. Therefore, nc will be described as: 
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where w denotes a bigram in training corpus. Based on 
Good-Turing smoothing, the redistributed count c* will 
be expressed in three term of nc, nc+1 and c as: 
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Note that the numerator in Equation (3) will be re- 
placed by c* of Equation (5). On the other hand, the 
count c of events is now adjusted by the smoothing me- 
thods. For the bigram models, P(•) of Equation (3) will 
be modified as: 
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The probability of Equation (6) is called Good-Turing 
estimator. Similarly, the revised count for bigrams can be 
derived from Equation (5). As shown in Equation (6), 
Good-Turing smoothing method just employs the bigram 
models to smooth the probability, rather than interpolat- 
ing higher and lower order models (such as unigrams). 

Similarly, the recounted count c* of events or can be 
derived again from Equation (5). As shown in Equation 
(6), Good-Turing smoothing just employs the n-gram 
models to smooth the probability, rather than interpolat- 
ing higher and lower order models (such as n − 1 grams). 
Hence, Good-Turing is usually used as a tool by other 
smoothing methods. 

In Good-Turing Method, the situation for 1 0cn + =  
wasn’t considered and discussed further. Katz [10] pro- 
posed a revised method for calculating c* as following: 
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Based on the formula above, the threshold value k will 
be used. Only for the events with count between 1 and k 
(k >= c >= 1), the adjusted count c* will be calculated 
according to the formula while the count of event larger 
than k will not be changed (c* = c, for ∀  c > k). Katz 
suggested that threshold k set to 5. Several previous 
works can be found in [2,7]. The influence of threshold k 
for Good-Turing will be further evaluated in Section 4. 
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3.2. Advanced Issues of Good-Turing Method 
Good-Turing smoothing has been employed in many 
natural language applications. Previous works [3,11,12] 
discussed the related parameters, such as cut-off k in 
Good-Turing method. However, these works employ 
English corpus only. In this section, we will focus on the 
Good-Turing method in Mandarin corpus and further 
analyze the problems of Good-Turing for Chinese corpus 
with various size, and different cut-off value k. 

As shown in Equation (8), Good-Turing reestimate 
count c* of all events in term of original count c and 
event number nc and nc+1. In practice, the discounted 
count c* is not used for all count c. Assumed that larger 
counts c are always much reliable. Recount c* are set by 
Katz [5], in which c denotes the count of an event, c* 
denotes the recount of an event, suggested by Katz ,1987 
for English data. ni denotes the number of bigrms with i 
counts, k denotes the cut-off value. 

Good-Turing was first applied as a smoothing method 
for n-gram models by Katz [5]. Until now, few papers 
discuss the related problems between cut-off k and en- 
tropy for Mandarin corpus, even for English. Katz sug- 
gested a cut-off k at 5 as threshold for English corpus. 
Another important parameter of Good-Turing is the best 
kb (not ever discussed in previous works) in term of 
training size N. 

For Chinese character unigram model, we first calcu- 
late the recount c* (c >= 0). Referring to the empirical 
results, some recounts c* are negative (<0). In such case, 
furthermore it leads to negative probability P and vi- 
olates the statistical principle. For instance, c = 8, n8 = 
106, n9 = 67, k = 10, the recount c* can be calculated and 
is negative −20.56. 

3.3. Models Evaluation-Cross Entropy and 
Perplexity 

Two commonly used schemes for evaluaitng the quality 
of language model LM are referred to the entropy and 
perplexity [13,14]. Supposed that a sample T is consisted 
of several events e1, e2, …, em of m strings. The probabil- 
ity P for a given testing sample T is calculated as fol- 
lowing: 
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where )( ieP  is the probability for the event ei, and 
)(TE can be regarded as the coded length for all events 

in testing datasets: 
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where E(T) and PP(T) denote the entropy (log model 

probability) and perplexity for testing dataset T respec- 
tively. Emin stands for the minimum entropy for a model. 

The perplexity PP is usually regarded as the average 
number for selected number which will be the possible 
candidates referred to a known sequence. When a lan- 
guage model is employed to predict the next appearing 
word in the current given context, the perplexity is adop- 
ted to compare and evaluate n-gram statistical language 
models. 

In general, lower entropy E leads to lower PP for the 
language models. It means that the lower PP, the better 
performance of language models. Therefore, perplexity is 
a quality measurement for LM. While two language mo- 
dels, LM1 and LM2, are compared, the one with lower 
perplexity is the better language representation and com- 
monly provides higher performance. 

In fact, the probability distribution for testing language 
models is usually unknown. The cross entropy (CE) is 
another measure for evaluating a language model. The 
model which can predict better the next occurring event 
always achieves lower cross entropy. In general situation,

ECE >= , E denotes the entropy using the same language 
model M for training and testing models. The Cross En-
tropy can be expressed as: 
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Based on the Shannon-McMillan-Breiman theorem [7], 
formula 12 can be simplified as following: 
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CE p M M w w w w
n→∞

=    (13) 

4. Experiments and Evaluation 
Chinese Giga Word (CGW) is the Chinese corpus col- 
lected from several world news databases and issued by 
Linguistic Data Consortium (LDC). In the paper, we 
adopted the CGW 3.0 of newest version published on 
September 2009. The CGW news sources are Agence 
France-Presse, Central News Agency of Taiwan, Xinhua 
News Agency of Beijing, aned Zaobao Newspaper of 
Singapore. 

In the paper, we will create 10 Unigram language mo- 
dels with Chinese words for experiments. At first, we 
read in random the paper of Chinese words from CGW 
corpus, a language model LM1 will be created for the 
first 3 × 107 (30 M) Chinese words. In the following, the 
other new model LM2 can be created consequently for 
the next 3 × 107 Chinese words. In other words, LM2 is 
consisted of first 6 × 107 (60 M) Chinese words of CGW, 
first half of which is also used to create LM1. 

In the paper, the 10 language models created by dif- 
ferent size of corpus are evaluated sequentially for inside 



An Empirical Study of Good-Turing Smoothing for Language Models on Different Size Corpora of Chinese 

Copyright © 2013 SciRes.                                                                                  JCC 

17 

testing on these 10 models. As shown in Table 1, the 
x-axis and y-axis present the training model (TrM) and 
testing models (TeM) respectively. For each row in Ta- 
ble 1, testing models are used for evaluating 10 training 
models TrM. On the other side, 10 testing models TeM 
will be used respectively to evaluate one of 10 training 
models for GT smoothing. Figure 1 presents the results 
on 3 dimensions respect to Table 1. 

The results of perplexity (PP) for Good-Turing smoo- 
thing are drawn in Figure 2. Note that the smaller size of 
testing models, the lower of perplexity and the larger size 
of training models, the higher of perplexity. For each row, 
it is apparent that the lowest PP, bold numbers displayed 
on the diagonal line in the table, can be achieved on the 
same training and testing models. All the results always 
match ),()( MpCEpE <= , as described in Section 3.3. 

4.1. Advanced Issues in Good-Turing 
As described in Section 3.1, the situation for 1 0cn + =  
wasn’t discussed and processed further by the Good- 
Turing Method. Katz [5] proposed a revised method for 
 

Table 1. Perplexity for good-turing smoothing method. 

TrM 
TeM 30 M 60 M 90 M 120 

M 
150 
M 

180 
M 

210 
M 

240 
M 

270 
M 

300 
M 

test 30 M 4013 4103 4177 4237 4290 4339 4384 4426 4472 4512 

test 60 M 4211 4063 4110 4156 4202 4246 4286 4325 4368 4406 

test 90 M 4490 4293 4214 4243 4280 4317 4352 4387 4426 4462 

test 120 M 4710 4491 4379 4337 4359 4388 4418 4449 4484 4518 

test 150 M 4923 4691 4556 4490 4459 4477 4501 4528 4560 4591 

test 180 M 5125 4882 4732 4650 4600 4575 4591 4613 4641 4669 

test 210 M 5294 5044 4882 4790 4730 4689 4670 4684 4707 4732 

test 240 M 5459 5202 5030 4930 4862 4810 4773 4754 4769 4789 

test 270 M 5651 5385 5201 5091 5015 4953 4903 4868 4845 4858 

test 300 M 5834 5562 5368 5250 5166 5097 5036 4990 4951 4933 

Avg. 4971 4771 4665 4618 4596 4589 4591 4602 4622 4647 

 

 
Figure 1. PP results display on 3 dimensions with respect to 
Table 2 for GT smoothing. 

 
Figure 2. Results of perplexity PP of Good-Turing. 

 
calculating c* based on Equation (7). It is obvious that 
Good-Turing (GT) smoothing is always superior to the 
advanced Good-Turing (AGT) for all the testing models. 
On the other hands, the AGT set the thresholds k (k = 5) 
and avoid the issue caused by the situation 1 0cn + = , 
while it will lead to the degradation of performance (hi- 
gher perplexity) for all training models. 

Figure 3 presents the results of perplexity PP of 
Good-Turing smoothing. Comparison for Good-Turing 
and Advanced Good-Turing smoothing are displayed in 
Figure 4. It is obvious that the GT is always superior to 
that of AGT for all 10 TrM models. Our observation is 
the setting for cut off k proposed by KATZ for Good- 
Turing smoothing can’t achieve better performance while 
it avoided occurrence of situation, which will lead to 
violation of probability. 

Comparison for Good-Turing (GT) and Advanced 
Good-Turing (AGT) smoothing are displayed in Figure 
4. It is obvious that the GT is always superior to that of 
AGT for all 10 TrM models. In Figure 4, two observa- 
tions are the same as described for GT and AGT 
smoothing: 

1) the lowest PP was achieved on TrM120M, for average 
PP of lower triangle of each training models. 

2) the lowest PP was also achieved on the model 
TrM180M and TrM210M, for average PP of each training 
models. The perplexity for TrM with size larger than 180 
M words will be also gradually increased. 

Based on the evaluation results of PP for three smooth- 
ing methods, we could conclude that, in general case for 
average perplexity, the lowest PP can be achieved on 
model TrM120M. The experiment results could prove that 
the model which was created on larger than 180 M cor- 
pus can’t achieve a better performance. On the other 
hand, our experiments supported that the model with 
middle size of corpus of 180 M Chinese words can al- 
ways achieve the best performance of language model. 

4.2. Evaluation of Outside Testing 
In the following experiments, the text sources from 
ASBC corpus are exploited as outside datasets. The 
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Figure 3. Perplexity PP of AGT smoothing. 

 

 
Figure 4. Average perplexity PP of GT and AGT smooth- 
ing. 
 

 
 

 
Figure 5. PP trend for GT (upper) and AGT (lower) 
smoothing on various k, outside testing. 
 
Academic Sinica Balanced Corpus version 3.0 (ASBC) is 
composed of 9228 text files distributed in different fields, 
occupying 118 MB and near 5 millions of Chinese words 
labeled with POS tag. The contents and paper distribu- 
tions of ASBC are listed in Table 5. 

Ten Chinese language models LM1, LM2, to LM10, 
which contain different size of Chinese words from 
CGW 3.0, will be evaluated for outside testing. In our 
experiments the perplexity is calculated on these 10 
models. Based on empirical results, the influence of cut 
off k for AGT smoothing is varied on size of testing mo- 
del TeM. It is obvious that the smaller the cut of k, the 
lower perplexity for all TeMs. 

The same observation can be also found for GT 
smoothing. Figure 5 presents that PP for GT smoothing 
on various k, outside testing. Note that the PP trends de- 
creased gradually while the size of model increased. It 
means the perplexity will be affected by the models size. 

5. Conclusion 
In this paper, we studied empirically and analyzed the 
well-known smoothing methods for language models on 
large sizes Chinese corpus. The smoothing methods, 
Good-Turing, Advanced Good-Turing, are evaluated for 
inside testing and outside testing. We analyzed further 
the results of experiments, which is helpful for employ- 
ing the effective smoothing methods to alleviate the issue 
of data sparseness on various size of training corpus. 
Some helpful observations are described in detail for 
both GT and AGT smoothing. 
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