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ABSTRACT 

It is shown that aplanatic lens with a radial gradient of refraction index is simultaneously a telescopic lens, notably not 
only for an axial beam, but also for an off axis parallel beam. Consideration is carried out by an algebraic way on the 
basis of regularities of ray paths. It is also shown that aplanatic and telescopic properties of the lens are independent of 
the refracting surface shapes. Various versions of lens performance are shown below. 
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1. Introduction 

Aplanatic lenses with an axial and radial gradient of the 
refraction index are known by now. In these lenses, 
spherical aberration for a point on the optical axis is 
strictly eliminated. 

Earlier possibility of creation of an aplanatic lens with 
an axial gradient of the refractive index was shown [1]. 
The homocentric beam leaving a point of 1M  on an 
optical axis, reaches to the first surface of a lens, refracts 
on it and then propagates parallel to an optical axis in the 
lens medium. Then, refracting on the second surface of a 
lens, the rays of the beam forms a homocentric dispers-
ing beam again (Figure 1). 

Virtual continuations of the ray forms the virtual image 
at the axial point 2M   on the optical axis. Various gra-
dients of the refractive index and the related refracting 
surfaces can be used for formation of a lens. The calcula-
tions for lens parameters were provided with spherical 
and parabolic surfaces of revolution. 

An aplanatic gradient lens [2] limited by the first and 
the second refracting surfaces of revolution with thickness 

 by the axis , which is multiple of double nominal 
focal length, made of a material with a radial distribution 
of the refraction index  determined from the equa-
tion 

d z

 n y

     0 0sech 2 exp expn y n ay n ay ay    ,    (1) 

where 0  is the refraction index value on the axis;  is 
the constant; having generatrix 

n a
 1y z  of the 1st convex 

surface defined by the equation: 

      2 2 2
1 1 2 1Fy z n y z s n y z     , (2) 

where Fs  is the front distance; and having generatrix 
 2y z  of the 2nd concave surface defined by the equa-

tion: 

        22 2
2 1 2 1Fy z n y z d s n y z d       , (3) 

where Fs   is the rare distance; hence, F Fs s  . 
The shape of both refracting surfaces in the known lens 

is equal. Generatrixes of Equation (2) and Equation (3) 
may be conditionally called hyperbolas of the higher or-
der. 

It is known that the pitch (periodicity length)  for 
the refractive index (RI) distribution is determined by the 
Еquation (1) and also called the hypersecans one equals 
[3] 

L

2πL a , 

as a consequence, the half of the periodicity length is 

2 πL a  

The nominal focal length of the lens with hypersecans 
RI distribution is 

0 4 π 2f L a   , 

double nominal focal length will be equal to half the pe-
riodicity length 

02 2 πF f L a    
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Figure 1. The known aplanatic lens with axial gradient. 
 

When selecting certain thickness of the lens with the RI 
distribution of type Equation (1) and flat 1st and 2nd sur-
faces normal to the optical axis, focusing, diverging or 
telescopic lens can be obtained [3]. Hence, it is quite ob-
vious that the telescopic lens is obtained in the case of 
selecting the thickness of the lens equal to twice the 
nominal focal length. As a result, the input parallel beam 
of rays, which is also parallel to the optical axis, becomes 
strictly parallel when leaving the lens. 

The ray path equation in the medium with RI distribu-
tion Equation (1) is also known. For instance, if the initial 
height of a point, from which the ray is initiated, equals 

C , the initial coordinate is C , and the initial direction 
coefficient (the initial ray tangent)  1

b z
is  , then the ray 

path equation becomes as follows [4] 

 

    1

1
arsh sh cos h sin

R

C C C

y z

ab a z z c ab a z z
a

   C
 (4) 

As a consequence, considering that 

 2arsh ln 1x x x    

and 

  2arsh 1 1x x    

one can write down that 

   1sh cos h sinC C C Cx ab a z z c ab a z z    , 

   2ln 1Ry z x x   a , 

and the derivative is obtained from the expression 

 
   

   
1

2

1

h cos sh sin

sh cos h sin 1

R

C C C C

C C C C

y z

c ab a z z ab a z z

ab a z z c ab a z z







  


     

 (5) 

Note that if the length between the coordinates of the 
ray exits point from the lens Еz  and the ray entrance 
point of the lens Dz  

E Dd z z   

equals to the periodicity length 

2πL a , 

then according to Equation (4) the height of ray exit point 
from the lens Ey  is equal to the height of ray entrance 
point to the lens Dy , or 

E Dy y                  (6) 

As a result, the RI value at the ray entrance point to the 
lens will be equal to the RI value at the ray exit point 
from the lens 

   E Dn y n y             (7) 

In this case, according to Equation (5), the ray tangent 

2  occurring in the ray exit point from the lens before 
the refraction will equal to the initial tangent 1  

2 1                   (8) 

and the derivative will correspond to the initial one 

   R D R Ey z y z               (9) 

If the length  between coordinates of the ray exit 
point from the lens 

d

Ez  and coordinates of the ray en-
trance point to the lens Dz  equals to the half periodicity 
length, 

2 πL a , 

then according to Equation (4) the height of the ray exit 
point from the lens Ey  will be equal to the height of the 
ray entrance point to the lens Dy  with the sign reversed 

E Dy y               (10) 

The RI value at the ray entrance point to the lens will 
be equal to that at the ray exit point from the lens 

   E Dn y n y  

The ray tangent 2  occurring at the ray exit point 
from the lens before the refraction will be equal to the 
initial tangent 1  with the sign reversed 

2 1                   (11) 

The value of derivative will be equal in the absolute 
magnitude to the initial one taken with the sign reversed 

   R D R Ey z y z            (12) 

According to the design, in the known aplanatic lens, 
every ray of the homocentric radiation beam exiting from 
a point on the optical axis, after the refraction on the 1st 
surface becomes parallel to the optical axis. Then spread-
ing inside the lens, in a gradient medium by a curvilinear 
symmetrical path, each ray reaches the 2nd refractive sur-
face. In the cross-point with the 2nd refractive surface the 
ray is also parallel to the optical axis. 

After the refraction on the 2nd surface, each ray obtains 
the initial direction which allows re-forming a homocen-
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tric diverging beam with the center located on the optical 
axis, at a distance of F Fs s   from the 2nd surface cen-
ter. Hence, Fs   is the rear distance (Figure 2). 

Depending on the selected thickness  of the lens, 
which is multiple to the double nominal focal length, the 
refraction on the 2nd surface may happen both above and 
below the axis (if we conditionally assume the initial re-
fraction on the 1st surface occurring above the optical 
axis). Thus, however causes no effect on the lens ability 
to form a homocentric diverging beam at the exit (Figure 
3). 

d

The known lens allows formation of a homocentric di-
verging radiation beam at the exit with the only help of 
two refractive surfaces of revolution of the same shape, 
which generatrix is rather complicated, Equation (2) and 
Equation (3), that makes its manufacture rather complex. 

Thus, the fact that the other surfaces, including one 
simpler shape, cannot be used as the refractive surfaces is 
the disadvantage of the known lens restricting possibili-
ties of its manufacture. 

2. Analytical Treatment 

Disadvantages of the known lens can be avoided, if we 
consider a remarkable, previously unknown property of 
the primary lens, which has a thickness multiple to the 
periodicity length, to preserve initial direction of the ray 
at the exit point, which appears on the 1st surface, inde-
pendently of a chosen shape of the 1st and the 2nd sur-
faces, as well as front distance value and location of the 
radiation source, respectively. 

The lens having a thickness multiple to half the perio-
dicity length possesses a similar property of preserving 
the absolute value of the direction coefficient at the exit 
point for the entrance ray appearing on the 1st surface, 
 

 

Figure 2. The known aplanatic lens with thickness . L
 

 

Figure 3. The known aplanatic lens with thickness 2L . 

independently of the shapes selected for the 1st and 2nd 
surfaces, as well as of the front distance and location of 
the source of radiation, respectively. However, in this 
case the direction coefficient sign at the exit point for the 
refracted ray reverses. 

Let us show the effect of these properties, firstly for the 
lenses of the minimal thickness with the thickness equal 
to the periodicity length  and half periodicity length L

2L . 
For the lenses of a greater thickness multiple to half the 

periodicity length, these properties also take effect. 
A lens of thickness , by the optical axis at a distance 

equal to the periodicity length  is made from a mate-
rial with the radial RI distribution 

d
L

 n y



, which corre-
sponds to (1) and is known for the given wavelength, and 
is limited by the refracting 1st and 2nd surfaces of the 
same shape with generatrixes 1y z  and  2y z  and 
disposed in a homogeneous medium (assume homogene-
ous medium RI 1 1n   (air)). 

In the case under consideration, the same shape of the 
refracting surfaces of the lens  thickness, which is 
equal to the periodicity length , means that the 2nd 
surface represents the 1st surface after parallel translation 
along the optical axis  by a distance . 

d
L

z d
As a result, a distance along the axis  between any 

separate initial point on the 1st surface, which has a cer-
tain height above the axis , and a point on the 2nd sur-
face having the same height above the axis  and lo-
cated on a straight line parallel to the axis  with the 
initial point of the 1st surface will be the same and equal 
to the thickness 

z

z
z

z

d L . 
In the simplest case, the refracting 1st and 2nd surfaces 

of the same shape may be the surfaces of revolution, but 
in more general case, this is optional. 

The 1st surface vertex is located in the origin of the co-
ordinate system. The axis  represents the optical axis 
of the lens. Assuming that the lens is axially symmetrical, 
consideration is made in the meridional plane. 

z

The incident beam for the 1st surface originating from 
the point 1M  of the optical axis has a direction coeffi-
cient 1К 1u   and is refracted in the point A having 
coordinates 1C , 1C . Let us denote: the angle of inci-
dence of a ray on the 1st surface as 1

z y
 , the angle of re-

fraction on the 1st surface as 1  , normal to the 1st sur-
face in a point A as , the angle of incidence of a ray 
on the 2nd surface as 2

1N
 , the angle of refraction on the 

2nd surface as 2  , and normal to the 2nd surface in a 
point B as . 2

Let us denote: direction coefficient of the entrance ray 
refracting on the 1st surface in point A as 1T , direction 
coefficient of the ray refracted on the 1st surface in a 
point A as 1

N

u

Eu , direction coefficient of the ray refracting 
on the 2nd surface in a point B as , and direction co-2Tu
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efficient of the ray refracted on the 2nd surface in a point 
B as 2Eu . 

Direction coefficient 1Nu  of the normal 1  to the 1st 
surface in a point A can be expressed as follows: 

N

 1 11Nu y  z ,            (13) 

where  1y z  is the 1st derivative of  1y z . 
Direction coefficient 2Nu  of the normal 2  to the 

2nd surface in a point B can be expressed as follows: 
N

 2 21Nu y z  ,               (14) 

where  2y z  is the 1st derivative of  2y z . 
Let us consider the case of the 1st convex and the 2nd 

concave surfaces for a lens with the thickness multiple to 
 (Figure 4). L
The refraction scheme in Figure 3 relates to cases 

when after the refraction the direction coefficient 1Eu  of 
the exit ray refracted on the 1st surface is negative. 

For this case, a general scheme of the ray path in the 
lens is shown in Figure 5. 

For the refraction schemes shown in Figure 3, the an-
gle of incidence 1  in the point A on the 1st surface can 
be determined from the following expression: 

   1 1 1 1tan 1T N T Nu u u u    1 ,    (15) 

and the angle of refraction 1   is obtained from the ex-
pression 

   1 1 1 1tan 1E N E Nu u u u     1

1

,    (16) 

Moreover, according to Snell's refraction law 

 1 1 1sin sinCn n y   , 

where  is the RI in the refraction point A.  C1n y 



Then, with regard to the fact that , the refraction 
angle is expressed as 

1 1n 

1 1 Csin sin n y   1         (17) 

 

 

Figure 4. Schemes of refraction on the 1st convex and the 
2nd concave surfaces for a lens with the thickness multiple 
to . L
 

 

Figure 5. The ray path scheme for the lens with the thick-
ness multiple to , having the 1st convex and the 2nd con-
cave surfaces. 

L

Since the ray refracted in the point A on the 1st surface, 
which has the initial direction 1Eu , spreads after the re-
fraction by a curvilinear path with a period equal to the 
periodicity length , then in the point B, after complet-
ing the full period: 

L

1) according to the condition Equation (6), the height 
 of the refraction point B will be equal to the height 
 of the refraction point A; 

2Cy

Cy 1

2) according to the condition Equation (8), direction 
coefficient 2 2Tu   of the ray incident to the 2nd sur-
face will be equal to 1Eu 1  and, respectively, 

2Tu u 1E ;               (18) 

3) according to the condition Equation (8) and ratios 
Equation (9), Equation (13) and Equation (14), and since 
shapes of the 1st and 2nd surfaces are the same, direction 
coefficient 2Nu  of the normal 2  to the 2nd surface in 
the point B will be equal to the direction coefficient 1

N

Nu  
of the normal  to the 1st surface in the point A, and 
thus 

1N

2 1N Nu u                 (19) 

The angle of incidence 2  in the point B will be equal 
to 

   2 2 2 2tan 1T N T Nu u u u    2       (20) 

Taking into account Equation (18) and Equation (19) 
and substituting them into Equation (20), we get: 

   2 1 1 1tan 1E N E Nu u u u    1       (21) 

Comparing Equation (16) and Equation (21), we get: 

1 2    

On this basis, we can write down that 

2sin sin 1                 (22) 

For the point B on the 2nd surface, according to Snell's 
refraction law, 

 C2 2 1 2sin sinn y n   , 

where  C2n y  is the RI on the refraction point B. 
Considering that 1 1n  , the angle of refraction will be 

as follows: 

 2 2sin sinCn y 2    

Taking into consideration relations Equation (17) and 
Equation (22), we get: 

   2 2 1sin sinC Cn y n y   1

C

 

Since 2 1Cy y  in the point B, as mentioned above, 
and according to Equation (7), respectively, the expres-
sion    2Cn y n y 1C  is true, and we get: 

2 1sin sin    

Then, as a consequence, 

Open Access                                                                                            OPJ 



V. I. TARKHANOV 355

2 1    

and 

2 1tan tan            (23) 

The refraction angle 2   in the point 
ex



B may also be 
pressed as follows: 

  2tan u u   2 2 2 21E N E Nu u   

If we use ratio Equation (19) in this expression, we get: 

   2 2 1 2 1tan 1E N E Nu u u u             (24) 

Based on Equation (23), and equatin
Eq

g expressions 
uation (15) and Equation (24) and making simple 

transformations, we get: 

2 1E Tu u  

Thus, direction of the exit ray refracted in the point B will 
coincide with direction of the entrance ray in the point A. 

Let us consider the case of the 1st convex and the 2nd 
concave surfaces for the lens with the thickness multiple 
to 2L  (Figure 6). 

The refraction scheme shown in Figure 6 also relates 
to the case, when after refraction the direction coefficient 

1Eu  of the ray refracted on the 1st surface is negative. 
For this case, a general scheme of the ray path in the 

lens is shown in Figure 7. 
For the refraction scheme shown in Figure 6, the angle 

of incidence 1  in the point A on the 1st surface can be 
determined from the following expression: 

   1 1 1 1tan 1T N Tu u u u    1N ,     (25) 

and the angle of refraction 1   is obtained fr



om the ex-
pression 

  1 1 1 1tan 1E N E Nu u u u     1         (26) 

 

 

Figure 6. Schemes of refraction on the 1st convex and the 
2nd concave surfaces for a lens with the thickness multiple 
to 2L . 

 

 

Figure 7. The ray path scheme for the lens with the thick
ness multiple to

-
 2L ,

 
 having the 1st convex and the 2nd 

concave surfaces.

1

Moreover, according to Snell's refraction law 

 1 1 1sin sinCn n y    

Then, with regard to the fact that 1 1n  , the refraction 
angle is expressed as 

 1 1sin sin Cn y  

For the lens with t

1  

he periodicity length 2L , the ray 
refracted in the point A on the 1st surface, having the ini-
tial direction 1Eu , spreads by periodical curvilinear path 
af

ht

int t, according to the condition Equa-
tio

ter the refraction and in the point B, after passing the 
half period: 

1) the heig 2Cy  of the refraction point B will be 
equal, by the absolute value, to the height 1Cy  of the 
refraction po

 

A, bu
n (10), will be negative; 
2) direction coefficient 2 2Tu   of the ray ident to 

the 2nd surface will be equal to 1 1Eu
inc

  by the absolute 
value but, according to the condition Equation (11), will 
be negative and, thus, 

2 1T Eu u  ;                (27) 

3) direction coefficie 2Nu  nt of the normal  to the 
1st surface in the point B will, b
equal to the direction coefficient 

2N
y the absolute value, be 

1Nu  of the normal N  1

 but, according t he con-
dition Equation (12), will be negative: 

2 1

to the 1st surface in the point A o t

N Nu u                  (28) 

The angle of incidence 2  in the point B will be equal 
to 

   2 2 2 2 2tan 1N T T Nu u u u         (29) 

Taking into account Equation (27) and Equation (28) 
and substituting them into Equation (29), we get: 

   2 1 1 1 1tan 1E N E Nu u u u         (30) 

Comparing Equation (26) and Equation (30), we get: 

1 2    

On this basis, we can write down that 

2 1sin sin    

For the point B on the 2nd surface, according to Snell's 
refraction law, 

 2 2 1 2sin sinCn y n   , 

where  2Cn y  is the RI on the refraction point B. 
Subseq , with respect to the fact that uently 1 1n  , the 
refraction angle will be expressed as follows: 

 2 2 2sin sinCn y   

Taking into account ratios Equation (18) an



d Equation 
(19), we get: 
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   2 2 1sin sinC Cn y n y    1

As mentioned above, since in the point B 2 1C Cy y  , 
but at that  n 2 1C Cy n y   , we get: 

2 1sin sin    

Then, as a consequence, 

12    

and 

2 1tan tan                 (31) 

The refraction angle 2   in the point B may also be 
ssed as follows: expre

   2 2 2 2 2E Nu u  tan 1N Eu u    

 (


If we use ratio Equation 28) in this expression, we get: 

  2 2 1 2 1tan   1E N E Nu u u u        (32) 

Based on Equation (31), and equating expressions 
Eq
transformations, we get: 

uation (25) and Equation (32) and making simple 

2 1E T

As a result, the direction coefficient 2

u u   

Eu  of the exit 
ray refracted in the point B will, by the absolute value, be 
equal to the direction coefficient 1Tu  

e
of the entrance ray 

in the point A, but will be negativ

 
th

pendently of 
se

. 
Let us show execution of aplanatic properties of the 

lens on the example of the above-considered case of re-
fraction. 

It is commonly known that the two conjugated points in 
e space of objects and images are called aplanatic, if 

spherical aberration is absent in the image and the sine 
condition (or the Abbe sine law) is fulfilled. 

The above proved property of the considered lenses 
having a thickness multiple to half the periodicity length, 
which is a preservation of direction of the initial ray inci-
dent to the 1st surface at the exit point inde

lected shape of the 1st and 2nd surfaces, provides the 
absence of the spherical aberration for a point on the op-
tical axis at a finite distance from the lens. 

Let us show now that for a pair of the conjugated points 

1M  and 2M   on the optical axis the Abbe sine law is 
fulfilled. 

In the general case, the Abbe sine law looks as follows: 

sin sinn n     

or 

sin sinn n    , 

where is the RI of the medium, in which the object is 
ted; 

is the refractive index of the me um, in which the 
image is formed; 

n  
loca

n  di

  

iting from the axial object point; 
   is the angle between the optical axis and the ray 

exiting from the optical system and passing through the 
axial image point; 

  is linear magnification of the optical system. 
For considered versions of the suggested lens, the ratio 

will become as follows: 

2 1sin sin          (33) 

where 1  is the angle between the optical axis and the 
ray exiting from the axial (object) point 1M ; 

2   is the angle between the optical axis and the ray 
exiting from the lens and passing through the axial image 
point 2M   (the virtual image). 

Fo

is shown in Figure 
8,

Let us consider the lenses with the 1st convex and the 
2nd concave surfaces. 

r the lens L  thickness, with the 1st convex and the 
2nd concave surfaces, the refraction scheme on the con-
vex 1st surface for the case 1Eu 0  

 and for the 2nd surface—in Figure 9. 
For the lens 2L  thickness, with the 1st convex and 

th e 

 8-10, the ratio 
Eq

e 2nd concav surfaces, the refraction scheme on the 
convex 1st surface for the case 1 0Eu   is shown in 
Figure 8, and for the 2nd surface—in Figure 10. 

For all cases considered in Figures
uation (33) will become as follows: 

 

 

Figure 8. The refraction scheme on the 1st convex surface 
of the lens. 
 

 

Figure 9. The refraction scheme on the 2nd concave surface 
for the lens with the thickness multiple to L . is the angle between the optical axis and the ray ex-
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Figure 10. The refraction scheme on the 2nd concave surface 
for the lens with the thickness multiple to 2L . 
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Since generatrixes of the 1st and 2nd surfaces have the 
same shapes, then the deflections of the surfaces C  for 
the same height are also equal, respectively: 

Moreover, according to the initial data, the front dis-

1 2C C Cz z d     

tance and the rear distance are equal, too: 

F Fs s s    

As a result, we can write down that 

 

 

2

22

Cy

y s  

As mentioned above, for the lenses  thickness: 

2

1

22
1

C C

C

C C

y

y s

 

  

 

L

1 2C Cy y , 

and for the lenses of the thickness 2L  

1 2C C

As a result, linear magnification of

y y   

 the lenses will be 
constant and, for the lenses with the thickness multiple to 

, will be equal to: L

1  , 

and for the lenses with the thickness multiple to 2L : 

1    

Then in the lens under consideration, for a pair of the 
conjugated points 1M  and 2M   on the axis, spherical 

d f ny ray exiting 
from an axial object point, the Abbe sine law will be ful-

filled. Subsequently, points 

aberration will also be absent, an or a

1M  and 2M   

 direction coefficient of the

y locat

iple to 

will form a 
pa

se e entrance ray at the exit point (or 
preserve the absolute value of  

equ ce, 

beam of rays (with the center ma e both on the 
op

iding the pr

 thic ult

ir of aplanatic points, and the lens in this case may also 
be called aplanatic. 

The indicated property of the suggested lenses to pre-
rve direction of th

ray with reversing the coefficient sign), as a cons en
leads to the fact that the entrance homocentric diverging 

tha  

ov

kness m

t
tical axis and outside of it) will preserve homocentricity 

at the exit of the lens, and virtual extensions of the rays at 
the exit point will concur forming an virtual image of the 
object point. 

Conditions for the lenses pr oved property 
can be formulated: 

1) as the lens is F , the lens 
thickness projection on the optical axis in any plane con-
taining the optical axis, for any two points of the 1st and 
2nd surfaces having the same absolute height relative to 
the optical axis but located on different sides of it, equals 
to F ; or 

2) as the lens is thickness multiple to 2F , the lens 
thickness projection on the optical axis in any plane con-
taining the optical axis, for any two points of the 1st and 
2nd surfaces having the same height relative to the optical 
axis and located on the sa
eq

me side of the optical axis, 
uals to 2F . 
Thus, the lens having refractive surfaces, which meet 

th

 le nd the homocentricit  at the en-
tra

 the lens (with respect to restrictions applied to 
th

), 

beam will re-
m

e above conditions, will possess the proved properties. 
It is notable that the 1st consequence of this property will 
be the absence of the necessary fixed location of an object 
point on the optical axis. This means that the object point 
may be located on the optical axis at any distance from 
the ns, a y of the beam

xit 

nce of the lens will not be disturbed. 
The 2nd consequence of this property will be the ab-

sence of the necessary fixed location of an object point 
directly on the optical axis. This means that the object 
point may be located outside the optical axis at any dis-
tance from

e refraction conditions on the 1st surface associated 
with full internal reflection and finite diameter of the lens
and the homocentricity of the beam at the exit point of the 
lens will not be disturbed. 

The third consequence of this property will be simulta-
neous telescopic properties of the lens, since the entrance 
parallel beam of rays at the exit point of the lens will pre-
serve its direction, and all rays of the e

ain parallel, hence, the entrance parallel beam is not 
necessarily parallel to the optical axis of the suggested 
lens. 

As a result, the suggested lenses will possess aplanatic 
and telescopic properties simultaneously, which has not 
been known before. 
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Thus, for the known lens [2], the presence of aplanatic 
properties was proved before, but the simultaneous tele-
scopic properties were not known yet. 

t and 2nd surfaces, in particular, for the 1st concave 
an

sted lenses with a 
th

For another known lens with the refracting 1st and 2nd 
flat surfaces, which are normal to the optical axis [3], the 
telescopic properties were indicated, hence, exclusively 
for the exit ray parallel to the entrance ray. However, the 
aplanatic properties were not known simultaneously. 

Consideration of other cases and refraction versions on 
the 1s

d the 2nd convex surfaces, for flat 1st and 2nd surfaces 
etc., also allows proving the indicated property of the 
lenses. 

Numerical computation performed proves the above 
indicated property of the lenses. 

The indicated property of the sugge
ickness multiple to L  and 2L  can be used for 

forming gradient lenses possessing both aplanatic and 
telescopic properties simultaneously, as well as various 
refractive surfaces. 

It is natural to use surfaces of revolution with various 
si

ith inflection points. 

tive surfaces may be un-
sy

o inclined planes with different in-
cl

the optical axis of the lens is 
co ay be reduced to one of 
th

rix sections with different curvature 
si

rmal to the 

op

mpler generatrixes than type Equation (2) generatrix - a 
straight line, a circle, etc. In this case, refractive surfaces 
will be symmetrical relative to the optical axis. One may 
also note that the refractive surfaces may have genera-
trixes w

However, this is optional. 
In the general case, the refrac
mmetrical relative to the optical axis. There is a possi-

bility to use the refractive surfaces as the inclined planes, 
for example, as well as combined refractive surfaces as a 
combination of an inclined plane and a plane normal to 
the optical axis, tw

ined angles, etc. 
Note that if two inclined planes, 1st and 2nd, are used, 

aplanatic and telescopic properties of the lens can be 
proved using the above-mentioned approach, if each ray 
path of the homocentric or parallel beam entrance in the 
plane containing this ray and 

nsidered. Then consideration m
e above-considered cases (not shown here). 
It is possible to prove aplanatic and telescopic proper-

ties of a lens that has the refractive surfaces of revolution 
with generatrixes having inflection points using the 
above-mentioned approach, if we consider a path of each 
ray of the homocentric or parallel beam entrance sepa-
rately for generat

gns. As a consequence, consideration for every section 
can be reduced to one of the above-considered cases (not 
shown here, either). 

3. Possible Versions of the Lens Performance 

Obviously, the simplest version of the lens performance 
will be a lens with flat 1st and 2nd surfaces no

tical axis. 
Other versions of suggested lens performance with the 

thickness multiple to L  and 2L  are also possible: 
with spherical refractive surfaces (Figures 11, 12); 
with conic refractive surfaces (Figure 13); 
with flat refractive surfaces (Figure 14); 
with flat inclined refractive surfaces (Figure 15); 
with combined refractive surfaces having flat and in-

clined flat surfaces (Figure 16). 
In the context of considered versions of the suggested 

lens, the known lens [2] is a particular case, for which 
1) surfaces of revolution are selected as the refractive 

ones; 
 

 

Fi th scheme for 
th e 1st 
co

gure 11. Parallel and homocentric beam pa
e lens with the thickness multiple to L , having th
nvex and the 2nd concave spherical surfaces. 

 

 

Figure 12. Parallel and homocentric beam path scheme for 
the lens with the thickness multiple to 2L , having the 1st 

concave and the 2nd convex spherical surfaces. 
 

 

Figure 13. Parallel and homocentric beam path scheme for 
the lens with the thickness multiple to 2L , having the 1st 

convex and the 2nd concave conic surfaces. 
 

 

Figure 14. Parallel and homocentric beam path scheme for 
the lens with the thickness multiple to 2L , having the 1st 

and the 2nd flat surfaces normal to the optical axis. 
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Figure 15. Parallel and homocentric beam path scheme for 
the lens with the thickness multiple to 2L , having the 1st 

and the 2nd flat inclined surfaces. 
 

 

Figure 16. Parallel and homocentric beam path scheme for 
the lens with the thickness multiple to 2L

 wit

, having the 1st 

and the 2nd combined refractive surfaces h flat inclined 
and flat surfaces normal to the optical axis. 

d t

s of revolution, special 
functions Equation (2) and Equation (3) are selected; for 
the entrance ray, after the refraction on the 1st surface, 
application of these functions provides direction parallel 
to the optical axis. 

It may also be noted that the maximum attainable nu-
merical aperture for all considered aplanatic lenses will 

qua

eans that then,
hen passing the lens material, maximal height of the ray

on
his angle. According to the design, in

th

lanatic lens. 
copic properties of the lens are inde-
cting surface shapes, which simplifies 

 creation of boroscopes, objectives, condensers, 
co

[1]

ience Publishers, New 
York, 2007, pp. 23-30. 

[3] A. L. Mikaely yered medium for 

are parallel to the optical surface. Then, while passing 
through the lens material, the maximum ray height on the 
path does not exceed the ray entrance height. 

4. Conclusions 

As shown, aplanatic lens with a radial gradient of refrac-
tion index is simultaneously a telescopic lens, notably not 
only for an axial beams, but also for an off axis parallel 
beams. 

Maximum reachable numerical aperture of the lens is 
principally lower than that of the known ap
Aplanatic and teles
pendent of the refra
production of the lens. 

Various suggested versions of the lens performance 
may be applied to fiber optics and optical instrument- 
making,

uplers for fiber-optic communication lines with sources 
of radiation and photodetectors, etc. 
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 the path will exceed the entrance height by a certain 
value depending on t

e known lens, after refraction on the 1st surface all rays 
 


